Game Semantics Supported Component Verification

Aleksandar Dimovski Ranko Lazić

Department of Computer Science
University of Warwick, UK

BCTCS, 2006
Objectives, motivations

Traditional approaches for software model checking

- Operational semantics:
 Program denotes a state transition system
- Finite models by predicate abstraction
- Tools:
 SLAM [Microsoft], BLAST [Berkeley], Magic [CMU]
Objectives, motivations

Game semantics yields algorithms for software model checking

- based on Regular languages for 2nd–order finitary IA [Abramsky, Ghica, Murawski and Ong, TACAS 2004]
- based on Visibly pushdown automata for 3rd–order finitary IA [Murawski, Walukiewicz and Ong, FoSSaCS 2005]

Advantages of Game semantics based approach for software model checking:

- model for any open program fragment with higher-order procedures
- fully abstract semantic model (i.e. the model is sound and complete)
- compositional as denotational semantics
- generation of minimal models
Compositional verification

- addresses state explosion problem
- “divide and conquer” approach
- assume–guarantee reasoning

\[\Gamma \vdash \text{let } f_1 \text{ be } N_1 \text{ in} \]
\[\quad \text{let } f_2 \text{ be } N_2 \text{ in} \]
\[\quad \ldots \]
\[\quad \text{let } f_k \text{ be } N_k \text{ in} \]
\[M : T' \] \[= \]
\[\Gamma \vdash N_1 \] \[o \]
\[(\Gamma, f_1 \vdash N_2 \] \[o \]
\[(\ldots \] \[o \]
\[(\Gamma, f_1, \ldots, f_{k-1} \vdash N_k \] \[o \]
\[(\Gamma, f_1, \ldots, f_k \vdash M : T' \])
Game semantics: the idea

- Computation seen as a play between a program – Player P and its environment (context) – Opponent O
- A play consists of a sequence of moves (questions and answers), alternating between players
- Model of a program is a strategy (set of plays) for Player P to respond to moves of Opponent O
Game semantics: Types

- Types are interpreted as games
- A game G is
 - a set of moves M_G
 - a labelling function $\lambda_G : M_G \rightarrow \{O, P\} \times \{Q, A\}$
 - an enabling relation, \vdash_G
 - legal plays, $P_G \subseteq M_G^*$
Programs are interpreted as strategies.

A strategy σ for a game G is an even-length prefix-closed non-empty set of legal plays of G.

Composition = “CSP-style parallel composition plus hiding”
Abstracted Idealized Algol (AIA)

- Imperative features, locally-scoped variables, call-by-name procedures
- Integer abstractions:
 \[
 \begin{align*}
 \emptyset &= \{\mathbb{Z}\} \\
 [n, m] &= \{ < n, n, n + 1, \ldots, m - 1, m, > m \}, \text{ for } n \leq 0 \leq m
 \end{align*}
 \]
- `abort` command causes abnormal termination
- Operational semantics:
 \[
 1 +_{[0,1]} 1 \rightarrow \{2, 3, 4 \ldots\} \rightarrow > 1
 \]
- For AIA_2, game-semantic models are regular languages
Assume-Guarantee proof rule

\[
\begin{align*}
\llbracket \Gamma, f : T \vdash M : T' \rrbracket & \circ \sigma \text{ is SAFE} \\
\llbracket \Gamma \vdash N : T \rrbracket & \triangleright \sigma \\
\frac{}{\llbracket \Gamma \vdash \text{let } f \text{ be } N \text{ in } M : T' \rrbracket \text{ is SAFE}}
\end{align*}
\]

- Given \(\llbracket \Gamma, f : T \vdash M : T' \rrbracket \), define a weakest assumption strategy \(\sigma_W \), which contains legal plays from \(P!\llbracket T \rrbracket \) which, when simulated on \(\llbracket \Gamma, f : T \vdash M : T' \rrbracket \) do not produce any unsafe plays.
- For \(\sigma_W \), AG proof rule is guaranteed to return a conclusive result.
- Angluin’s \(L^* \) algorithm is used for learning \(\sigma_W \).
\(L^*\) learns a strategy \(\sigma\) for \(G\) via queries

- **Membership query:** given \(s \in (O_G P_G)^*\), whether \(s \in \sigma\)?
- **Equivalence query:** given a DFA \(D\), whether \(L(D) = \sigma\)?

\(L^*\) will generate the unknown strategy using at most \(n - 1\) equivalence queries, where \(n\) is the number of states in the minimal DFA.

Queries are implemented using model checking

- **Membership query:** given \(s\), build a strategy
 \[\sigma_s = \{s' \mid s' \sqsubseteq^{\text{even}} s\}\]; then model check \(\llbracket \Gamma, f \vdash M \rrbracket \models_9 \sigma_s\) for safety
- **Equivalence query:** given a DFA \(D\), model check two premises of the AG rule
Verification procedure

\[\Gamma, f \vdash M : T' \]
\[\Gamma \vdash N : T \]

Data Abstraction

\[[\Gamma, f \vdash M] \]
\[[\Gamma \vdash N] \]

AGCheck

\[L^* (S, E_j, T_j) \]

Assump. \(\sigma_j \) \[[\Gamma, f \vdash M] \vdash_{in} \sigma_j \text{ SAFE?} \]
false c
true

\[[\Gamma \vdash N] \leq \sigma_j ? \]
false c
true

\[[\Gamma, f \vdash M] \vdash_{in} \tau_c \text{ SAFE?} \]
false c
true

Refinement
\[S_0 = S_j, E_0 = E_j, j = 0 \]

false
true

UNSAFE
SAFE

c' is genuine?
Future work

- Concurrency, 3rd-order, call by value, pointers, ...
- Predicate abstraction