Brownian motion and Kolmogorov complexity

Willem L. Fouché
fouchwl@unisa.ac.za

Department of Decision Sciences
University of South Africa
PO Box 392,
UNISA,
Pretoria,
0003
SOUTH AFRICA
1. Introduction

2. Complex oscillations

3. Homogeneous structures given by generic Brownian motion

4. Rapid points

5. Fractal properties of rapid points

6. Recursive properties of rapid points
The results of this talk follows on my papers [F,JSL] and [F,AM], where it was shown that each binary string α which is complex (random) in the sense of Kolmogorov-Chaitin (a KC-string) can be algorithmically transformed into a “generic” Brownian motion x_α.

It is generic in the sense that every probabilistic event which holds almost surely with respect to the Wiener measure, is reflected in x_α, provided the probabilistic event has a suitably effective description.
The class of generic Brownian motions coincides with a class C of functions which were introduced by Asarin and Prokovskiy in 1986. Each function in the latter class is a uniform limit of a sequence (x_n) of piecewise linear functions. Moreover, every x_n can be encoded by a binary string s_n of length n such that, for some positive constant d, the Kolmogorov complexity of s_n is at least $n - d$, for all large values of n.
For this reason we called the elements of \mathcal{C} *complex oscillations*. The complex oscillations have interesting recursion-theoretic properties. For example, it is shown in [F,JSL] that, if x is a complex oscillation and r is a nonzero recursive real number in the unit interval, then $x(r)$ will not be a real number.

In [F, AM] I showed that, for each $x \in \mathcal{C}$, one can compute from the values of x at the rational numbers a unique KC-string α such that $x = x_{\alpha}$.
3. Homogeneous structures given by generic Brownian motion

In this way one can identify interesting implicit structure in a generic Brownian motion. For example, the codes of many countable homogeneous relational structures can be computed from the values of a generic Brownian motion at the rationals in the unit interval. Recall that a relational structure \(X \) is homogeneous if any isomorphism \(f : A \to B \) between finite substructures of \(X \) can be extended to an automorphism of \(X \).
The universal procedure which computes from the values of a complex oscillation x the KC-string α such that $x = x_\alpha$, also yields a code of a very interesting homogeneous structure, the so-called Rado graph or random graph.

Indeed, if α is a KC-string and e_1, e_2, \ldots is a recursive enumeration, without repetition, of the 2-element subsets of ω, let $R_\alpha = (\omega, E_\alpha)$ be the graph defined by:

$$e_i \in E_\alpha \leftrightarrow \alpha_i = 1.$$

Then the graph R_α is isomorphic to Rado’s graph [F, 1996]. In this sense one could say that a Rado graph is “enfolded” in every complex oscillation.
In the paper on which this talk is based, we take a closer look at the reverse process, namely the unfolding of KC-strings, not only to a generic Brownian motion as in [F,AM], but also to the dynamical aspects of Brownian motion, as reflected in every complex oscillation. Our focus is on the structure of the so-called rapid points of a complex oscillation. The fractal geometry of a...
4. Rapid points

Call a point \(t \in (0,1) \) a \textit{rapid point} of a continuous function \(X \) on the unit interval when

\[
\lim_{h \to 0} \frac{|X(t + h) - X(t)|}{\sqrt{|h| \log(1/|h|)}} > 0.
\]

Denote the set of rapid points of \(X \) by \(R(X) \). It was shown by Orey and Taylor (1974) that Brownian motion has almost surely a set of rapid points of Hausdorff dimension 1.
When X is one-dimensional Brownian motion, the set $R(X)$ has an extremely interesting structure. For example, Kaufmann showed in 1974 that, almost surely, $R(X)$ contains, for each $0 < \beta < 1$, a Salem set of Hausdorff dimension β. (Recall that a compact subset E of \mathbb{R}^d of Hausdorff dimension $\beta > 0$ is said to be a Salem set, if β is the supremum of the reals $0 \leq \alpha < d$ for which there is some positive nonzero Radon measure μ with support contained in E, such that the Fourier transform $\hat{\mu}$ of μ satisfies $|\hat{\mu}(\xi)|^2 \ll |\xi|^{-\alpha}$, for all large values of $|\xi|$. In this case, E will generate \mathbb{R}^d as an abelian group!)
The rapid points of a complex oscillation have a specific recursive structure. If x is a complex oscillation, then x has a dense set of rapid points.

If x is the complex oscillation x_α associated with the KC-string α, a dense set of rapid points can be effectively retrieved from α. Indeed, there is a universal algorithmic procedure which, upon having access to an oracle for a KC-string α, will yield, for any closed dyadic interval I, a sequence (t_k) of rational numbers in I such that $|t_{k+1} - t_k| < 2^{-k}$ for all $k \geq 1$ and, moreover, such that the limit t of the sequence (t_k) is a rapid point of the complex oscillation x_α associated with α.
Furthermore, each rapid point of a complex oscillation is *not* a recursive real number. In fact, if $t \in (0, 1)$ is a recursive real number, then t is an “ordinary” point of x. This means that Khintchine’s law of the iterated logarithm is reflected in x at every recursive t, i.e., if t is recursive, then

$$
\lim_{h \to 0} \frac{|x(t + h) - x(t)|}{\sqrt{2|h| \log \log(1/|h|)}} = 1.
$$
Briefly the construction of x_α from a KC-string α is as follows: Let $g : (0, 1) \rightarrow \mathbb{R}$ be the function defined by

$$\alpha = \int_{-\infty}^{g(\alpha)} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt, \quad \alpha \in (0, 1).$$
Note that g is a recursive function, i.e., there is a uniform procedure that outputs $g(\alpha)$ up to arbitrary accuracy using only a finite number of bits of α. We fix a recursive bijection $<,>$ from ω^2 to ω. To any $\alpha \in \mathbb{N}$, we associate a sequence $B = (\beta_0, \beta_1, \beta_{jn} : j \geq 1, 0 \leq n < 2^j)$, where the sequence (β_{jn}) is lexicographically ordered with respect to the double indices jn, in such a way that the kth term of the sequence B is given by

$$\alpha_k0\alpha_k1 \cdots$$
Here, we have written kl instead of $< k, l >$. For $1 \leq j < \omega$, $0 \leq n < 2^j$, set $\xi_{jn} = g(\beta_{jn})$; in addition, set $\xi_k = g(\beta_k)$, for $k = 0, 1$. It follows that there is a uniform procedure that computes from $\alpha \in KC$, for each j, n, the number ξ_{jn} up to arbitrary accuracy. For $\alpha \in \mathcal{N}$ and $t \in [0, 1]$ set

$$x_{\alpha}(t) = \xi_0 \Delta_0(t) + \xi_1 \Delta_1(t) + \sum_{j<\omega} \sum_{n<2^j} \xi_{jn} \Delta_{jn}(t).$$

It is shown in [F, AM] that, if $\alpha \in KC$, then the series converges and that the function x_{α} is in fact a complex oscillation. Conversely, for every complex oscillation x, there is a unique KC-string α such that $x = x_{\alpha}$.
Theorem

If \((A_k)\) is a uniform sequence of \(\Sigma_1^0(F)\) sets with \(\sum_k W(A_k) < \infty\), then, for each complex oscillation \(x\), it is the case that \(x \notin A_k\) for all large values of \(k\).

An analogue for \(KC\)-strings of this theorem appears in [3].

Willem L. Fouché, Decision Sciences, UNISA

1. Introduction
2. Complex oscillations
3. Homogeneous structures
4. Rapid points
5. Fractal properties of rapid points
6. Recursive properties of rapid points

1. Introduction

2. Complex oscillations

3. Homogeneous structures

4. Rapid points

5. Fractal properties of rapid points

6. Recursive properties of rapid points

Vov’k, V.G.: The law of the iterated logarithm for Brownian motion and Kolmogorov complexity.