Flow Visualization: The State-of-the-Art

Robert S. Laramee
The Visual and Interactive Computing Group
Computer Science Department
Swansea University
Swansea, Wales, UK
r.s.laramee@swansea.ac.uk
Overview

- Introduction to Flow Visualization (FlowViz)
- What is Flow Visualization? A Brief Introduction
- What approaches have been developed?
  - Classification:
  - Direct
  - Texture-based
  - Geometric
  - Feature-based flow visualization
- Applications
- Conclusions and Future Work

A note on scope: An overview is provided with references to more depth.
What is Flow Visualization?

- a classic topic within scientific visualization
- depiction of vector quantities (as opposed to scalar quantities)
- applications include automotive simulation, aerodynamics, turbomachinery, meteorology, oceanography, medical visualization

Challenges:
- to effectively visualize both magnitude + direction, often simultaneously
- large data sets
- time-dependent data
- multi-field visualization
- What should be visualized? (data filtering/feature extraction)
Computational vs. Experimental FlowVis

Computational FlowVis - using computers for FlowVis
- data resulting from flow simulation, measurements, or flow modelling, e.g., computational fluid dynamics (CFD)
- computer-generated images and animations, often mimicking experimental FlowVis

Visualization of actual fluids, e.g., water and air
- dye injection
- interferometry
- Schlieren/shadows
- flow topology graphs
- etc.
Data Characterized by Many Dimensions

Spatial dimensions:
- 2D (planar flow, simplified or synthetic)
- 2.5D (boundary flow, flow on surface)
- 3D (real-world flow)

Temporal dimension:
- steady flow - 1 time step (or instantaneous or static flow)
- time-dependent flow - multiple time steps (or unsteady or transient, real-world)
- caution is advised in the context of animation

Simulation Data Attributes a.k.a. Data Dimensions:
- velocity
- temperature
- pressure
- and many more...
Flow Visualization Classification

- **direct**: overview of vector field, minimal computation, e.g. glyphs, color mapping
- **texture-based**: covers domain with a convolved texture, e.g., Spot Noise, LIC, ISA, IBFV(S)
- **geometric**: a discrete object(s) whose geometry reflects flow characteristics, e.g. streamlines
- **feature-based**: both automatic and interactive feature-based techniques, e.g. flow topology
Texture-Based Flow Visualization

Computing textures that provide a dense coverage/visualization of a vector field.

Advantages:
- detailed view of vector field
- clearer perception of characteristics
- contains elements of direct + geometric FlowViz

Disadvantages:
- computation time
- perception in 3D
- aliasing
Texture-Based FlowViz: LIC (Cabral and Leedom) in 2D, Instantaneous
Texture-Based FlowViz: Spot Noise in 2D, Instantaneous with Color Coding

Good for visualizing detail. (de Leeuw)
Texture-Based FlowViz: Time-Dependent Texture Advection in 2D

Unsteady FlowViz of the Gulf of Mexico (Jobard et al)
Texture-Based FlowViz: 2D Unsteady Flow

Image Based Flow Visualization (IBFV, Van Wijk)
Texture-Based FlowViz: LIC on Surfaces, Unsteady

A comparison of 3 LIC techniques (left) UFLIC, (middle) ELIC, and (right) PLIC (Verma et. al.)
Texture-Based FlowViz: Texture-Advection on Surfaces, Unsteady

Image Space Advection (ISA, Laramee et al.) and Image Based Flow Visualization for Curved Surfaces (IBFVS, van Wijk)
Texture-Based FlowViz: Texture Advection in 3D, Unsteady

3D IBFV (Telea and Van Wijk)
Texture-Based FlowViz: Texture Advection in 3D, Unsteady

3D texture-based flow vis with illumination, velocity masking, and focus+context (Weiskopf et al.)
Texture-Based Flow Visualization

For more information on texture-based flow visualization techniques, please see:


(1st STAR)
Geometric Flow Visualization

The computation of discrete objects whose shape is directly related to underlying geometry

Advantages:
- intuitive
- clearer perception of characteristics

Disadvantages:
- placement
- visual complexity in 3D
Geometric FlowViz: Some Terminology

*Stream vs. Path vs Streak vs Time lines*

**Streamline**
- everywhere tangent to flow at instantaneous time, $t_0$ (blue/aqua)

**Pathline**
- path traced by a particle over time, $t$ (red/maroon)

**Streakline**
- line traced by continuous injection at location, $x_0$ (light green)

**Timeline**
- temporal evolution of initial line, $l_0$ (yellow)
Geometric FlowViz: Streamlines and Streamlets in 2D, Steady-State

Evenly Space Streamlines (Jobard and Lefer)
Geometric FlowViz: Pathlines and Streamlets in 2D, Unsteady

Pathlines and particles using textures (Van Wik)
Geometric FlowViz: Timelines in 2.5D and 3D (B. Girod) (unsteady)

2.5D timelines using textures (Laramee et al.) and 3D timelines as discrete objects (B. Girod)
Geometric FlowViz: Streamribbons and Streamtubes, 3D, Steady-state

130 ms

4.3 m/s
Geometric FlowViz: Perceptual Issues in 3D, Steady-State

Illuminated Streamlines (Zoeckler et al)

StreamRunner (Laramee)
Geometric FlowViz: Streaklines in 3D

Streaklines in 3D as discrete objects (B. Girod)
Geometric FlowViz: StreamBalls, StreamSurfaces, StreamArrows, 3D, Steady-State

Streamballs (Brill et al.), Streamsurfaces (Hultquist), and StreamArrows (Loeffelmann et al.)
Geometric FlowViz: Flow Volumes (3D), Steady and Unsteady

A subset of 3D flow domain specified by initial 2D patch (Crawfis)
Geometric FlowViz: High Quality Animation, 3D, Unsteady

Visualization of Hurricane Isabel (Helgeland et al.)
Geometric Flow Visualization

For more information on geometric flow visualization techniques, please see:

Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee, and Helmut Doleisch, **Feature Extraction and Visualization of Flow Fields** in *EUROGRAPHICS 2002, State of the Art Reports*, pages 69-100, September 4-6 2002, Saarbruecken, Germany

(2nd STAR)
Flow Visualization: An Application

- **swirl motion:**
  - characterized by motion about cylinder-aligned axis
  - more stable (easier)

- **tumble motion:**
  - characterized by motion about axis orthogonal to cylinder
  - unstable, more difficult

Robert S. Laramee
r.s.laramee@swansea.ac.uk

http://cs.swan.ac.uk/~csbob/
Achieving ideal patterns of motion leads to optimal mixing (of air and fuel) conditions
- e.g., higher exhaust/gas ratio (EGR)
- decrease in fuel consumption
- lower emissions

Can visualization provide insight into or verify characteristic shape/behavior of flow?
- What tools help to visualize swirl/tumble motion?
- Where (in the combustion chamber) are ideal ideal flow pattern not being realized?
Flow Visualization: An Application

Direct, geometric, and texture-based flow visualization methods are used in 2D, 2.5D, and 3D.
Feature-Based Flow Visualization

What is Feature-Based Flow Visualization?
Recall: What is Flow Visualization?

- a classic topic within scientific visualization
- depiction of vector quantities (as opposed to scalar quantities)

Challenges:
- to effectively visualize both magnitude + direction, often simultaneously
- large data sets
- time-dependent data
- multi-field visualization
- What should be visualized? (data filtering/feature extraction)
What is Feature-Based Flow Visualization?

What is a feature?

- feature: “A prominent or distinctive aspect, quality, or characteristic”, from dictionary.com
- feature: any subset of the flow domain deemed interesting by an onlooker, i.e., the viewer (Bob’s definition)

What is feature-based flow visualization?

- feature-based flow visualization: the focus on and resulting depiction of a subset of the flow domain. (Bob’s definition)
Feature-Based flow visualization involves extracting features from the vector field domain.

- **selection**: conceptually, filtering the data
- **clustering**: coherency is established from point selection
- **attribute calculation**: quantification, e.g., position, volume, orientation --> leads to features
Feature-Based Flow Visualization: Motivation

Why?

- **data reduction**: original data set is represented with important features
- **perception**: visualization of 3D and 4D flow is problematic in the absence of feature-based techniques
- **new insight**: “new” characteristics of the flow can be observed
- **technical advantages**: less memory consumption, faster interaction and rendering
Feature Based Flow Visualization: 3D Steady and Unsteady

- Vector field clustering (Telea and Van Wijk)
- Vortex extraction (Post et al.)
Cores of swirling particle motion in unsteady flow, extraction based on pathlines (Wienkauf et al.)
Feature Based Flow Visualization: 3D, Unsteady, Interactive

- SimVis: interactive, multiple connected views (Doleisch et al.)
Feature-Based Flow Visualization

For more information on feature-based flow visualization techniques, please see:


(3rd STAR)
Topology-Based Flow Visualization

Can be considered a sub-field of feature-based flow visualization:

- **singularities** in flow field are extracted, loosely: locations where flow velocity approaches zero, e.g., sources, sinks, etc.
- the relationship, connectivity, or *topology* between singularities is then analyzed and visualized
- the topology of vector field is often called “skeleton” of the flow
Topography-Based Flow Visualization, 2.5D Steady

- a single framework can be used to extract sources, sinks, saddle points, and periodic orbits
- uncertainty due to discrete nature of simulation, interpolation, and integration can be factored into extraction and visualization
- (Chen et al.)
Topology-Based Flow Visualization

For more information on topology-based flow visualization techniques, please see:


(4<sup>th</sup>! STAR)
Four major design goals:

- an even distribution of flow to each engine cylinder
- avoid regions of stagnant flow
- avoid very high velocity flow
- minimize fluid pressure loss between inlet and outlet
Feature-Based Flow Visualization: An Application

- A range of direct, texture-based, geometric, feature-based, and topology-based visualization methods are applied

Texture-Based Flow Visualization at the Boundary Surface

ISA provides a spot-noise like visualization and complete coverage of the surface.
Flow Visualization: Challenges

- FlowViz in 3D - perceptual issues, seeding strategies
- Unsteady FlowViz in 3D - computation time
- What should be extracted and visualized?
- How can features be extracted and visualized? e.g. vortices
- costly in terms of processing time
- interpretation can be challenging
- correctness: verification of result (sometimes ignored)

An area still rich in unsolved problems.
Acknowledgements

- Thank you for your attention! Any questions?

We would like to thank the following:


- PDF versions of STARS 1-4 and MPEG movies available at:

http://cs.swan.ac.uk/~csbob