Using Integral Surfaces to Visualize CFD Data

Tony Mcloughlin, Matthew Edmunds, Robert S. Laramee, Mark W. Jones, Guoning Chen, Eugene Zhang
Overview

Flow Visualization with Integral Surfaces:

- Introduction to flow visualization
- Stream, path, and streaklines
- Integral surface-based flow visualization
- Advantages of surfaces over curves
- Stream and path surfaces
- Stream and path surface demo
- Streak surface demo
- Conclusions and Acknowledgments
Flow Visualization: Background

1. **direct**: overview of vector field, minimal computation, e.g. glyphs, color mapping
2. **texture-based**: covers domain with a convolved texture, e.g., Spot Noise, LIC, ISA, IBFV(S)
3. **geometric**: a discrete object(s) whose geometry reflects flow characteristics, e.g. streamlines
4. **feature-based**: both automatic and interactive feature-based techniques, e.g. flow topology

Robert S. Laramee
r.s.laramee@swansea.ac.uk

http://cs.swan.ac.uk/~csbob/
Stream, Path, and Streaklines

Terminology:

- **Streamline**: a curve that is everywhere tangent to the flow (release 1 massless particle)
- **Pathline**: a curve that is everywhere tangent to an unsteady flow field (release 1 massless particle)
- **Streakline**: a curve traced by the continuous release of particles in unsteady flow from the same position in space (release infinitely many massless particles)

Each is equivalent in steady-state flow
Characteristics of Integral Lines

Advantages:

- **Implementation**: various easy-to-implement streamline tracing algorithms (integration)
- **Intuitive**: interpretation is not difficult
- **Applicability**: generally applicable to all vector fields, also in three-dimensions

Disadvantages:

- **Perception**: too many lines can lead to clutter and visual complexity
- **Perception**: depth is difficult to perceive, no well-defined normal vector
- **Seeding**: optimal placement is very challenging (unsolved problem)
Stream Surfaces

Terminology:

- **Stream surface**: a surface that is everywhere tangent to flow
- **Stream surface**: the union of stream lines seeded at all points of a curve (the seed curve)
- Next higher dimensional equivalent to a streamline
- Unsteady flow can be visualized with a path surface or streak surface
Stream Surfaces: Advantages

Motivation:

- **Separates (steady) flow**: flow cannot cross surface (stream surfaces only)
- **Perception**: Less visual clutter and complexity than many lines/curves
- **Perception**: well-defined normal vectors make shading easy, improving depth perception
- **Rendering**: surfaces provide more rendering options than lines: e.g., shading and texture-mapping etc.

Disadvantages:

- **Construction/Implementation**: *more complicated algorithms are required to construct integral surfaces*
- **Occlusion**: multiple surfaces hide one another
- **Placement**: placement of surfaces is still an unsolved problem
Easy Integral Surfaces

- Relies on use of quad primitives
- Use of local operations (per quad).
- Simple data structure
- Implicit parameterization
- Formulated as a reconstructive sampling of the vector field
 - d_{sample}
 - d_{advance}
 - d_{sep}
Algorithm Overview

Seed;
While(not terminated)
 Advance front;
 Update Sampling Rate;
End While
Render;
Seeding and Advancement

- Interactive seeding curve:
 - Position and orientation
 - Length
 - Prongs/number of seeds
- Integral surface front advance distance guided by
 - Nyquist rate
 - 0.5 \(d_{\text{sample}}\)
Stream and Path Surface Results:
Video(s)
Constructing Streak Surfaces in 3D Unsteady Vector Fields

Robert S. Laramee
r.s.laramee@swansea.ac.uk

http://cs.swan.ac.uk/~csbob/
3D, Unsteady Flow

Discrete locations in 3D space
- 4-tuple (4D vector) for each sample
- x-, y-, z-, t- components
- Direction
- Magnitude
- Velocity field when describing the motion of a fluid
- Obtained from CFD simulations or constructed from empirical data
- Unsteady vector fields vary over time
Terminology

- **Streaklines**: curved formed by joining all particles passing through same point in space (at different times)

- Strong relation to smoke/dye injection from experimental flow visualization.

- **Streak surfaces** are an extension of streak lines (next higher dimension)
Streak Surface Construction Challenges

Challenges:

- Computational cost: surface advection is very expensive
- Surface completely dynamic: entire surface (all vertices) advect at each time-step
- Mesh quality and maintaining an adequate sampling of the field.
 - Divergence
 - Convergence
 - Shear
- Objects in domain and critical points
- Large size of time-dependent (unsteady) vector field data, out-of-core techniques
Properties:

- Surface constructed using quad primitives (as opposed to triangles)
- Local operations for surface refinement performed on a quad-by-quad basis
- No global optimization required
- Allows the construction of large surfaces
- CPU-based for easier implementation
- Fills the gap between methods of Burger et al. [2009] and Krishnan et al. [2009]
 - Not as fast as GPU but interactive
 - Fewer constraints than GPU implementation – does not need to fit into GPU memory
Do:

Position seed with interactive rake

- Iteratively construct surface:
 - Advect surface
 - Refine Surface
 - Test for boundary conditions
 - Update
 - Test for termination criteria

- Final rendering
Streak Surface Results: Video
Summary and Conclusions

- We claim surfaces offer advantages over traditional curves when visualizing 3D and 4D flow
- We present interactive algorithms for construction of stream, path and streak surfaces
- Algorithms are based on local operations performed on quads for mesh refinement
- Technique handles divergence, convergence and shear flow
- Splitting of surface to adapt to flow around object boundaries
- Demonstrated on a variety of data sets
Acknowledgements

Thank you for your attention! Any questions?

We thank the following for material used here:

- Tony McLoughlin

This work was partially funded by EPSRC Grant EP/F002335/1