
Well-ordering proofs for Martin-Löf Type

Theory ?

Anton Setzer

Department of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala,
Sweden, email: setzer@math.uu.se

Abstract

We present well-ordering proofs for Martin-Löf’s type theory with W-type and one
universe. These proofs, together with an embedding of the type theory in a set
theoretical system as carried out in [Set93] show that the proof theoretical strength
of the type theory is precisely ψΩ1

ΩI+ω, which is slightly more than the strength
of Feferman’s theory T0, classical set theory KPI and the subsystem of analysis
(∆1

2−CA)+(BI). The strength of intensional and extensional version, of the version
à la Tarski and à la Russell are shown to be the same.

0 Introduction

0.1 Proof theory and Type Theory

Proof theory and type theory have been two answers of mathematical logic
to the crisis of the foundations of mathematics at the beginning of the cen-
tury. Proof theory was originally established by Hilbert in order to prove the
consistency of theories by using finitary methods. When Gödel showed that
Hilbert’s program cannot be carried out as originally intended, the focus of
proof theory changed towards analyzing theories and determination of the
minimum of strength needed in order to prove their consistency. Proof theory
has been very successful in providing an excellent measure for theories, the
proof theoretical strength.

On the other hand, type theories were designed to provide a new framework
for mathematics, the consistency of which can be justified by itself.

? part of this research was done while the author was visiting the University of
Leeds as part of the EC Twinning Project “Proofs and Computation”

Preprint submitted to Elsevier Preprint 7 March 1998

Both directions of mathematical logic have become quite important recently
because of their applicability to computer science. Proof theoretical methods
are used for instance to extract programs from proofs, to analyze term rewrit-
ing systems and for theoretical questions in the area of logic programming.

On the other hand a lot of systems for machine assisted theorem proving are
based on type theory. One reason why type theory is an excellent basis theory
is that in type theory algorithms and proofs are more or less the same. We
see here that in these areas questions concerning foundations and applications
are very closely related: a good understanding of a situation is the best basis
for finding ways to do what we want to do in a better way.

When looking at these two fields it seems to be interesting to apply proof
theory to type theory. In particular, the question mainly answered in this
article is: what is the precise proof theoretical strength of Martin-Löf’s type
theory. This is interesting because the answer determines the exact place of
Martin-Löf’s type theory on the proof theoretic scale. This allows to compare
it with other theories, the strength of which is already known.

More precisely, in this article we are dealing with the strength of Martin-Löf’s
type theory with one universe and W-type. This work was first presented in
our thesis [Set93]. There are two directions to be proved. One is to determine
an upper bound, a refined version of which is presented in [Set96c]. There we
embed type theory in a Kripke-Platek style set theory, KPI+, the strength
of which can be determined easily. The more difficult direction of the proof,
which is carried out in this article, is to show that this bound is sharp. The
importance of this question became obvious to the author after a talk he gave
on the upper bound, where a proof theorist commented: “Okay, it’s clear that
Martin-Löf’s type theory can be embedded like this, but is Martin-Löf ’s type
theory really as strong as you claim it is?”. The answer now is: it has exactly
the strength the author conjectured at that time.

0.2 Well-ordering Proofs

To prove that the strength conjectured is precise is technically complicated. We
are going to prove directly that the type theory considered proves transfinite
induction up to an ordinal notation for ψΩ1

ΩI+n for every n ∈ ω. Since our
proposed strength is ψΩ1

ΩI+ω = supn∈ω ψΩ1
ΩI+n, this shows that the proof

theoretical strength, which is the supremum of all ordinals up to which the
theory proves transfinite induction, is ≥ ψΩ1

ΩI+ω.

We will use the method of distinguished sets (in German “ausgezeichnete
Mengen”) developed mainly by Buchholz and Schütte for carrying out well-
ordering proofs. This well-established method has been modified by the au-

2

thor, who introduced some new techniques in order to make these methods
applicable to the type theoretic setting.

Carrying out these well-ordering proofs means to present the logically most
complicated proofs that can be carried out in the system. To reach the full
strength we have to use the full power of the theory. In applications, often
powerful theories like Calculus of Constructions or extensions of Martin-Löf’s
type theory form the basis theory, although the full power of these theories is
not needed. In a well-ordering proof for all ordinals below the proof theoretical
strength, we actually have to use all the power available.

0.3 The State of Knowledge

In [GR94] Griffor and Rathjen were, independent of the author and in parallel,
following another approach towards determining the proof theoretical strength
of Martin-Löf’s type theory by embedding constructive set theory into type
theory. [GR94] contains an excellent review of all the research carried out in
the past in this area. We refer the interested reader to that article and only
mention the main new results concerning type theory obtained in [GR94].
Griffor and Rathjen showed, that the theory ML1V, Martin-Löf’s type theory
with one universe and Aczel’s iterative set V or elimination rules for the uni-
verse or both has the strength of Kripke-Platek set theory KPω. They showed,
that type theory with one universe and the W-type restricted to elements of
the universe only, which they called ML1W, has strength (∆1

2 − CA) + (BI).
Adding elimination rules for the universe and/or Aczel’s iterative set V is
shown to yield the same strength. For the strength of ML1W, the theory con-
sidered here, they determined independently the same upper bound as it was
done by the author (ψΩ1

ΩI+ω). The exact strength is not determined there,
concerning the lower bound they only noted that it is naturally stronger than
ML1W. For the precise strength, they referred to our thesis [Set93], on which
the present article is based. In [GR94] the obvious generalization of these re-
sults to n universes and ω universes together with their strength is mentioned
as well (no proof is given). In order to avoid confusion, we would like to men-
tion some typos in [GR94], as pointed out by Rathjen to the author, namely
the ordinals on page 384, lines 20, 22 and 23 should be read as ψΩ1

ΩI+ω,
ψΩ1

ΩI+n and ψΩ1
ΩI+ω instead of ψΩ1(I + ω), ψΩ1(I + n) and ψΩ1(I + ω).

0.4 Overview

The content of our article is as follows: In Sect. 1 we will introduce the ψ-
function in ZF+∃x.(x regular cardinal ∧ℵx = x). Based on the set theoretical
system we introduce in Sect. 2 the ordinal notation system OT. In Appendix B

3

the reader can find a proof that the order-type of the ordinals is in accordance
with the set theoretical definition of the functions. In Sect. 3 we introduce
two versions of Martin-Löf’s type theory with W-type and one universe: MLJ

(where J stands for the constructor in the elimination rules for the identity
type) is what seems to be (apart from extensions by the logical framework) the
currently most widely accepted version. ML[TD] is essentially the version in the
book by Troelstra and van Dalen [TD88] (the index [TD] refers to that book).
In order to switch more easily between elements of the universe and types, we
introduce variants MLJ,aux and ML[TD],aux. Sect.4 of the article contains the
well-ordering proof itself. The technique used there is a modification of the
usual well-ordering techniques, which we hope, is more intuitive. Buchholz
gave some useful hints for these modifications. We will omit in this section
all the complicated type theoretic definitions. Instead we make assumptions
about possible constructions, which are actually carried out in Sect. 5.

0.5 Why Do We Use Set Theory?

In this article we will work in Sect. 1 and in the appendix directly in set theory.
Especially the readers coming from type theory might ask in what sense this
is necessary.

First of all: In all other sections apart from those mentioned above we show,
without referring to set theory, that in our version of Martin-Löf’s type theory
we can show that a certain primitive recursive ordering on the primitive re-
cursive subset OT of the natural numbers is a well-ordering. Therefore, those
readers who reject set theory as a basis of mathematics might consider the set
theoretic part as mere heuristic.

Second: Set theory is here needed in order to give a representation of the order
type of the ordinal notation on the universal scale, namely the scale of ordinals
in set theory. This can by definition not be done without using set theory, and
exactly for this set theory is needed in this article.

Another point, the author was several times confronted with, is the fact that
we need to assume the existence of a large cardinal: of one inaccessible. Now
this is necessary for the approach taken here (in the sections dealing with set
theory). But we could as well replace all cardinals by admissibles and the first
inaccessible by the first recursively inaccessible and get in the only relevant
part of the system, namely the part below Ω1, exactly the same ordinals (see
for instance [Rat93]). So all the set theoretic part could have been carried
out in ZF or some weak fragment of set theory (e.g. Kripke-Platek set theory,
extended by one inaccessible and ω + 1 admissibles above it) as well.

One could even replace the cardinals by smaller ordinals. Let o(b) be the

4

ordinal denoted by b and Ω1 be the notation, which is in this article interpreted
as ℵ1. The only property for o(Ω1), we need is that o(b) < o(Ω1) for all b ≺ Ω1.
The minimal solution would be o(Ω1) = min{γ|∀b ∈ OT.b ≺ Ω1 → o(b) <
γ}, although in our setting we cannot define this, since we need to know
o(Ω1) in order to determining o(b) for all b ≺ Ω1. Very roughly speaking the
interpretation of an ordinal term which represents a cardinal is just an ordinal,
“big enough for having some closure properties”.

0.6 Help for Researchers outside Proof Theory

In this article we will concentrate on carrying out the technical proofs care-
fully and in detail. In [Set97a] we will provide more intuition and motivation
for the methods used and give some introduction into collapsing functions.
Unfortunately, this article covers only the strength up to Ωω, but a future
article is planned in which the bigger ordinals are covered as well.

0.7 Extensions and Future Research

It should be easy to extend the well-ordering proofs, carried out in this article,
to stronger theories. To show, that the strength of Martin-Löf’s type theory
with n Universes is ψΩ1

ΩIn+ω, where In is the n-th inaccessible, should not
cause any problems and this implies that the strength of the theory with
arbitrary finitely iterated universes is ψΩ1

Iω, Iω = sup{In | n ∈ ω}.

We have carried out the ordinal analysis of the extension of Martin-Löf’s type
theory by one Mahlo universe ([Set96a,Set96b]), and determined its strength
as ψΩ1

ΩM+ω, where M is the first Mahlo cardinal (one needs to extend the
ψ-functions to cover this strength). We are working on extensions by even
bigger universes.

In [Set97b] we show that every arithmetical Π2-sentence provable in KPI+,
Kripke-Platek set theory with ω universes, is provable in the type theory
considered here. This is done by carrying out cut elimination for KPI+ using
transfinite induction up to ψΩ1

ΩI+n.

0.8 Concluding Remarks

The article is self-contained, except for some lemmata cited in Sect. 1. So all
the proof-theoretical and type theoretical definitions are included.

5

The author wants to thank W. Buchholz for introducing him into proof theory
and especially into the technique of well-ordering proofs and for his precious
hints. Further he wants to thank H. Schwichtenberg and S.S. Wainer for their
assistance and support, for motivation and for a lot of fruitful discussions.

1 Ordinals in Set Theory

We will first start to present set theoretically the ordinal functions. These
functions form the basis of the ordinal notation system, which we will introduce
in Sect. 2, and allow to determine the order-type of this system and of each
ordinal notation. The system is a slight modification of the system presented
in [Buc92], and some properties are determined as in [BS88].

1.1 The ψ-functions

Preliminaries 1.1 In this section we will work in ZF+∃x.(x regular cardinal
∧ℵx = x).

Definition 1.2 (variant of Definition 4.1 of [Buc92]) Let # be the natural
sum on ordinals. Ω0 := 0, Ωσ := ℵσ for σ > 0.
I := min{σ | σ regular Cardinal ∧ Ωσ = σ}, the first weakly inaccessible
cardinal.
I+ := sup{ζn | n < ω}, where ζ0 := ΩI+1, ζn+1 := Ωζn ,
Ord := {α | α ordinal , α < I+},
R := {σ ∈ Ord | ω < σ ∧ σ regular } = {I} ∪ {Ωσ+1 | σ < I+}.
In this section let α, β, γ, δ, ρ be elements of Ord, κ, λ, π, σ, τ be elements of
R, all possibly with subscripts or accents. Let ϕ be the usual Veblen function.

Definition 1.3 (variant of Definition 4.1 of [Buc92]) By transfinite recur-
sion on α, we define simultaneously for all κ ordinals ψκα (κ ∈ R) and sets
C(α, β) ⊆ Ord as follows:

ψκα := min{β | κ ∈ C(α, β) ∧ C(α, β) ∩ κ ⊆ β} ,

C(α, β) :=
{

the closure of β ∪ {0, I} under the functions
+, ϕ, σ 7→ Ωσ, (π, ξ) 7→ ψπξ (π ∈ R, ξ < α)

.

(Note that by IH ψπξ is already defined for all ξ < α, π ∈ R.)
We define ψκ : Ord −→ Ord, ψκ(α) := ψκα. Cκ(α) := C(α, ψκα).

Lemma 1.4 (Lemma 4.4 of [Buc92])

6

(a) β < π ⇒ cardinality(C(α, β)) < π
(b) C(α, β) =

⋃
η<β C(α, η), for each limit ordinal β.

(c) κ ∈ C(α, κ).
(d) Cκ(α) ∩ κ = ψκα.

Proof: All statements are immediate consequences of Definition 1.3. ut

Lemma 1.5 (Lemma 4.5 of [Buc92])

(a) ψκα < κ ∧ ψκα 6∈ Cκ(α)
(b) (α0 < α ∧ α0 ∈ Cκ(α))⇒ ψκα0 < ψκα
(c) ψκα 6∈ {Ωσ | σ < Ωσ} ∪ {0} ∧ ∀ξ, η < ψκα.ϕξη, ξ + η < ψκα.
(d) Ωσ ∈ C(α, β)⇒ σ ∈ C(α, β)
(e) ωξ0# · · ·#ωξn ∈ C(α, β)⇒ {ξ0, . . . , ξn} ⊆ C(α, β)
(f) κ = Ωσ+1 ⇒ Ωσ < ψκα < Ωσ+1

(g) ΩψIα = ψIα
(h) (Ωσ ≤ γ ≤ Ωσ+1 ∧ γ ∈ C(α, β))⇒ σ ∈ C(α, β).
(i) α0 ≤ α⇒ (ψκα0 ≤ ψκα ∧ Cκ(α0) ⊆ Cκ(α))

Proof: See [Buc92]. Only in (c), we vary, but the unproven part is trivial. ut

Lemma 1.6 (α ∈ Cκ(α) ∧ β ∈ Cπ(β))⇒ (ψκα = ψπβ ⇔ (α = β ∧ κ = π))

Proof: Assume α ∈ Cκ(α) ∧ β ∈ Cπ(β). “⇐”: trivial. “⇒”: Assume ψκα =
ψπβ. Case κ = Ωσ+1 ∧ π = I. Then ψπβ = Ωψπβ, Ωσ < ψκα < Ωσ+1, ψκα 6=
Ωψκα, a contradiction. The case κ = I 6= π is similar. Case κ = Ωσ+1, π = Ωρ+1,
σ 6= ρ. If σ < ρ, ψκα < κ ≤ Ωρ < ψπβ, a contradiction, similarly we get a
contradiction if ρ < σ. Therefore π = κ. In case of α < β, α ∈ C(α, ψκα) ⊆
C(β, ψκα) = Cπ(β), by Lemma 1.5 (b) ψκα < ψπβ a contradiction. The case
β < α is similar. Therefore we conclude α = β. ut

Definition 1.7 (a) Lim := {α ∈ Ord | α limit ordinal },
Suc := {α + 1 | α ∈ Ord},
A := {α ∈ Ord | α > 0 ∧ ∀β, γ < α.β + γ < α},
G := {α ∈ Ord | α Gamma ordinal } = {α ∈ Ord | α = ϕα0},
Car := {Ωα | 0 < α ∈ Ord},
Fi := {α ∈ Ord | 0 < α = Ωα}.

(b) α =′
NF β + γ :⇔ α = β + γ = β#γ ∧ γ ∈ A ∧ β 6= 0.

α =NF β + γ :⇔ α = β + γ = β#γ ∧ β 6= 0 ∧ γ 6= 0.
α =NF ϕβγ :⇔ α = ϕβγ ∧ β, γ < α.

7

α =NF Ωβ :⇔ α = Ωβ ∧ β < α.
α =NF ψπγ :⇔ π ∈ R ∧ α = ψπγ ∧ γ ∈ Cπ(γ).

(c) For κ ∈ R we define κ− by: Ω−

σ+1 := Ωσ, I− := 0.

Remark 1.8 (a) If α =′
NF β+γ∧α =′

NF β
′+γ′ or α =NF ϕβγ∧α =NF ϕβ′γ

′

or α =NF Ωβ ∧ α =NF Ωβ′ ∧ γ = γ′ or α =NF ψβγ ∧ α =NF ψβ′γ
′

then β = β ′ ∧ γ = γ′.
(b) The sets {0}, {I}, {α | ∃β, γ.α =NF β + γ}, {α | ∃β, γ.α =NF ϕβγ},
{α | ∃β.α =NF Ωβ}, {α | ∃π, γ.α =NF ψπγ} are disjoint.

The following shows, that in the situation β < α, π, β ∈ Cσ(α) we only need
to add ψπβ to Cσ(α) if ψπβ =NF ψπβ, i.e. if β ∈ Cπ(β):

Definition 1.9

C′0(α, β) := β ∪ {0, I} ,

C′n+1
(α, β) := C′n(α, β)

∪ {γ | ∃δ, ρ ∈ C′n(α, β).γ =′

NF δ + ρ ∨ γ =NF ϕδρ

∨γ =NF Ωδ ∨ (γ =NF ψδρ ∧ ρ < α)} ,

C′(α, β) :=
⋃

n<ω

C′n(α, β) ,

C′

π(α) := C′(α, ψπα) .

Lemma 1.10 (a) Cκ(α) = C′
κ(α).

(b) I 6= κ ∈ R⇒ Cκ(α) = C′(α, κ− + 1).
(c) CΩ1

(I+) = C′(I+, 0)

Proof: In the appendix, Sect. A. ut

Corollary 1.11 Assume (I 6= κ ∧ ρ = κ− + 1) ∨ (κ = I ∧ ρ = ψIβ), ρ ≤ α ∈
Cκ(β).

(a) α = I ∨ ∃γ, δ ∈ Cκ(β).(α =′
NF γ + δ ∨ α =NF ϕγδ ∨ α =NF Ωγ ∨ (α =NF

ψγδ ∧ δ < β))
(b) If α =NF ϕγδ ∨ α =NF γ + δ ∨ α =NF ψγδ ∨ (α =NF Ωγ ∧ γ = δ)

then γ, δ ∈ Cκ(β).

Proof: α ∈ Cκ(β) = C′(β, ρ). ut

8

1.2 Definition of Gπρ

We want to define in Sect. 2 primitive recursively an ordinal notation system
for the ordinals in CΩ1

(I+) using the functions defined above. In order to
obtain unique terms it is necessary to define the sets Cπ(α) or more precisely
represent these sets. This is done by first defining finite sets of ordinals Gπ(α).
These sets can be represented in our term system, and using Lemma 1.13 we
can define representations of the sets Cπ(α) in the system of terms.

Definition 1.12 Definition of finite sets Gπ(α) for α ∈ CΩ1
(I+) = C′(I+, 0)

by recursion on the minimal n such that α ∈ C′n(I+, 0).

(G1) Gπ0 := GπI := ∅.
(G2) γ =′

NF δ + ρ or γ =NF ϕδρ or (γ =NF Ωδ ∧ ρ = δ) then
Gπ(γ) := Gπδ ∪ Gπρ.

(G3) If ρ =NF ψκβ, then

Gπρ :=





{β} ∪ Gπκ ∪ Gπβ, if π ≤ κ 6= I∨
(κ = I ∧ (π ≤ ψIβ ∨ π = I)),

Gπκ if κ < π = I
∅, if κ < π 6= I or

κ = I ∧ ψIβ < π < I.

Lemma 1.13 If α ∈ CΩ1
(I+), then α ∈ Cπ(β)⇔ Gπ(α) < β.

Proof: Induction on n, such that α ∈ C′n(I+, 0).
If α = 0, I or α =′

NF γ+ δ, ϕγδ,Ωγ , the assertion follows by IH or immediately.
Let α = ψκξ, ξ ∈ Cκ(ξ), ξ, κ ∈ C′(I+, 0).
Suppose π = κ. Using the IH for ξ, β in one direction we infer α ∈ Cπ(β) ⇒
α < ψπβ ⇒ ξ < β ∧ κ, ξ ∈ C(ξ, α) ⊆ C(β, ψπβ) = Cπ(β) ⇒ Gπ(α) =
Gπ(ξ) ∪ Gπ(κ) ∪ {ξ} < β, and in the other direction Gπ(α) < β ⇒ ξ, κ ∈
Cπ(β) ∧ ξ < β ⇒ ψκξ ∈ Cπ(β)
Suppose κ < π 6= I. Then Gπ(α) = ∅, α ∈ Cπ(β).
Suppose π < κ 6= I. Then α ∈ Cπ(β)⇔ κ, ξ ∈ Cπ(β) ∧ ξ < β.
Suppose π < κ = I. In case of ψκξ < π, it follows ψκξ ∈ Cπ(β), Gπ(α) = ∅,
and if π ≤ ψκξ, ψκξ ∈ Cπ(α)⇔ κ, ξ ∈ Cπ(β) ∧ ξ < β ⇔ Gπ(α) < β.
Suppose κ < π = I. Then α ∈ Cπ(β) ⇔ ψκξ < ψπβ ⇔ κ < ψπβ ⇔ κ ∈
Cπ(β)⇔ Gπ(κ) < β ⇔ Gπ(α) < β. ut

9

2 The Notation System OT

2.1 Introduction of the Notation System

Now we will introduce the ordinal notation system OT. We will work in
Heyting-Arithmetic, which can be embedded in Martin-Löf’s type theory in a
straightforward way.

Preliminaries 2.1 In this section, a primitive recursive set is given by a
primitive recursive function f such that ∀x ∈ N.fx = 0 ∨ fx = 1. We write
t ∈ A for ft = 1, if A is the set denoted by f . A ⊆ B :≡ ∀x ∈ A.x ∈ B and
A ∼= B :≡ A ⊆ B ∧ B ⊆ A.
In the following assume a, b, c, n,m, π, κ, λ ∈ N.

We will, as usual in proof theory, first introduce a system of terms and an
ordering on these terms, and then define the set of ordinal notations OT as a
subset of these terms.

Definition 2.2 We give an inductive definition of sets T′, Suc
′, A′, G′, Car

′,
R′, Fi

′ of terms together with length(a) for a ∈ T′, where we assume some
coding of the terms as natural numbers. All the sets and length can be defined
primitive recursively.
(T′ is a set of terms denoting ordinals and Suc

′, A′, G′, Car
′, R′, Fi

′ contain
terms of T′, which, if in normal form, correspond to elements of Suc, A, G,
Car, R, Fi respectively.)

(T′ 1) 0OT ∈ T′, length(0OT) := 1.
(T′ 2) If n > 0, a0, . . . , an ∈ A′, then

t := (a0, . . . , an) ∈ T′, if an ∈ Suc
′, then t ∈ Suc

′,
length(t) := length(a0) + · · ·+ length(an).

(T′ 3) If a, b ∈ T′, then t := ϕ′ab ∈ A′, if a = b = 0OT, then t ∈ Suc
′,

length(ϕ′ab) := length(a) + length(b).
1OT := ϕ′0OT

0OT.
(T′ 4) If b ∈ T′, π ∈ R′, then t := ψπb ∈ G′,

and if π = I, then t ∈ Fi
′.

length(t) := length(π) + length(b).
(T′ 5) If a ∈ T′, a 6= 0OT, then t := Ω′

a ∈ Car
′,

if a ∈ Suc
′, then t ∈ R′,

in all cases length(t) := length(a) + 1,
(T′ 6) I ∈ Fi

′ ∩ R′, length(I) := 1.
(T′ 7) R

′ ⊆ Car
′ ⊆ G

′ ⊆ A
′ ⊆ T

′, Fi
′ ⊆ Car

′ ⊆ G
′, Suc

′ ⊆ T
′.

10

Lim
′ := T′ \ ({0OT} ∪ Suc

′).
For a ∈ A′, (a) := a. () := 0. Therefore for every a ∈ T′ there exists a unique
n ≥ 0 and unique a1, . . . , an such that a = (a1, . . . , an).
After some change of the coding we assume 0 = 0OT, 1 = 1OT. In the following
π, κ, λ will indicate elements of R

′, a, b, c of T
′, whereas n will be used for

natural numbers considered as natural numbers not coding elements of T′.

Definition 2.3 Definition of a ≺′ b for a, b ∈ T′ (which can be defined as
a primitive recursive relation) by recursion on length(a) + length(b), using in
the definition a �′ b as an abbreviation for a ≺′ b ∨ a = b.
Later ≺ will be defined as the restriction of ≺′ to OT.
a ≺′ b is false, if a 6∈ T′ ∨ b 6∈ T′ ∨ a = b.

(≺′ 1) c 6= 0⇒ 0 ≺′ c.
(≺′ 2) n+m ≥ 1, a0, . . . , an, b0, . . . , bm ∈ A′, then

(a0, . . . , an) ≺
′ (b0, . . . , bn) :⇔

(n < m ∧ ∀i ≤ n.ai = bi)∨
(∃j ≤ min{n,m}.(∀i < j.ai = bi) ∧ aj ≺

′ bj)
(≺′ 3) If a, b, c, d ∈ T′, then

(ϕ′ab ≺
′ ϕ′cd) :⇔

((a ≺′ c ∧ b ≺′ ϕ′cd) ∨ (a = c ∧ b ≺′ d)∨
(c ≺′ a ∧ ϕ′ab �

′ d)).
(≺′ 4) If a, b ∈ T′, c ∈ G′, then

(ϕ′ab ≺
′ c) :⇔ max{a, b} ≺′ c.

(≺′ 5) π, κ ∈ R′,b, d ∈ T′, then
(ψπb ≺

′ ψκd) :⇔
(π = κ ∧ b ≺′ d) ∨ (κ 6= I 6= π ∧ π ≺′ κ)∨
(π = I 6= κ ∧ ψπb ≺

′ κ)∨
(π 6= κ = I ∧ π ≺′ ψκd)

(≺′ 6) If I 6= π ∈ R
′, κ ∈ Car

′, b ∈ T
′, then

(ψπb ≺
′ κ) :⇔ π �′ κ

(≺′ 7) b, c ∈ T′, then
(ψIb ≺

′ Ω′
c) :⇔ ψIb �

′ c
(≺′ 8) If b ∈ T′, then

ψIb ≺
′ I.

(≺′ 9) If a, c ∈ T′, then
(Ω′

a ≺
′ Ω′

c) :⇔ (a ≺′ c)
(≺′ 10) If a ∈ T′, then

(Ω′
a ≺

′ I) :⇔ (a ≺′ I).
(≺′ 11) In all other cases a ≺′ b :⇔ ¬(b �′ a).

Lemma 2.4 ≺′ is a linear ordering on T′.

11

Proof: easy, but tedious. ut

Definition 2.5 We assume some implementation of finite sets A as natural
numbers together with an element relation ∈ in Heyting Arithmetic such that
the usual properties hold, especially, if φ(x) is a primitive recursive decidable
predicate, then ∀x ∈ A.φ(x) is decidable, and, if B is a primitive recursive
set of natural numbers, the set Pfin(B) of finite sets which are subsets of B is
primitive recursive.

Definition 2.6 Assume a ∈ T
′, M,M ′ primitive recursive sets. (Later, when

we are going to work in Martin-Löf’s type theory, this definition will be applied
to the subsets and subclasses of N of this system. Further this definition applies
to ≺, � as defined later as well)

M �′ M ′ :⇔∀x ∈M∃y ∈M ′(x �′ y),

M ≺′ M ′ :⇔∀x ∈M∃y ∈M ′(x ≺′ y),

a �′ M :⇔{a} �′ M.

The ψ-function in the set theoretical system are not injective. Therefore, sev-
eral terms of T′ denote the same ordinals. In order to get an injective map from
ordinal terms into the ordinals, we need to define a set OT of restricted ordi-
nal notations, such that every ordinal term in OT denotes a unique ordinal.
The uniqueness is achieved, if we add ψκc to OT only, if for the ordinals κ′, γ
denoted by κ, c we have γ ∈ Cκ′(γ). Lemma 1.10 (c) allows us to show that in
this way we get notations for all ordinals in C(I+, 0). We introduce sets Cκ(c),
corresponding to Cκ′(γ) by Lemma 1.13 via the sets Gκ(c), corresponding to
Gκ′(γ).

Definition 2.7 Inductive definition of the finite subset Gπa of N for π ∈ R′,
a ∈ T

′ by recursion on length(a).

(G1) Gπ(0) := ∅.
(G2) If a0, . . . , an ∈ A′, n > 0 then

Gπ((a0, . . . , an)) := Gπ(a0) ∪ · · · ∪ Gπ(an)
(G3) If a, b ∈ T′, then Gπ(ϕ

′
ab) := Gπ(a) ∪ Gπ(b).

(G4) If κ ∈ R′, b ∈ T′, then
Gπ(ψκb) :=




{b} ∪ Gπ(κ) ∪ Gπ(b), if π �′ κ 6= I∨
(κ = I ∧ (π �′ ψIb ∨ π = I)),

Gπ(κ) if κ ≺′ π = I
∅, if κ ≺′ π 6= I or

κ = I ∧ ψIb ≺
′ π ≺′ I.

(G5) If a ∈ T
′, then Gπ(Ω

′
a) := Gπ(a).

(G6) Gπ(I) := ∅.

12

G0
π(a) := Gπ(a) ∪ {0}.

In the following we define some sets which are analogues to the set theoretic
constructions. The restriction of these sets to OT, as defined later, will give
the direct translation of the constructions in set theory.

Definition 2.8 (a) For a ∈ T′ we define the primitive-recursive set Cr′(a) of
a-critical terms in T

′, (more precisely λx.y.x ∈dec Cr′(y) will be primitive
recursive, where x ∈dec Cr′(y) is the boolean value corresponding to the
relation x ∈ Cr′(y)):
0, (a1, . . . , an) 6∈ Cr′(a).
ϕ′bc ∈ Cr′(a) :⇔ a ≺′ b.
If b ∈ G′, then b ∈ Cr′(a) :⇔ a ≺′ b.

(b) For a, b ∈ T′ we define C̃a(b) := {c ∈ T′ | Ga(c) ≺
′ b}, which is primitive

recursive (again more precisely λx.y, z.x ∈dec C̃y(z) will be primitive
recursive). (C̃a(b) corresponds to the set Cα(β) in set theory.)

Definition 2.9 We define the set OT of ordinal notations, which will be a
subset of T′.

(OT 1) 0 ∈ OT.
(OT 2) If n > 0, a0, . . . , an ∈ OT ∩ A′, an �

′ an−1 �
′ · · · �′ a0, then

(a0, . . . , an) ∈ OT,
(OT 3) If a, b ∈ OT, b 6∈ Cr′(a), ¬(b = 0 ∧ a ∈ G

′) then
ϕ′ab ∈ OT.

(OT 4) If b ∈ OT π ∈ R′ ∩ OT, Gπ(b) ≺
′ b, then

ψπb ∈ OT,
(OT 5) If a ∈ OT \ (Fi

′ ∪ {0}), then Ω′
a ∈ OT.

(OT 6) I ∈ OT.

Fi := Fi
′ ∩ OT, R := R′ ∩ OT, G := G′ ∩ OT, A := A′ ∩ OT, Suc := Suc

′ ∩ OT,
Car := Car

′ ∩ OT Cr(a) := Cr′(a) ∩ OT, Ca(b) := C̃a(b) ∩ OT.
a ≺ b :⇔ a ≺′ b ∧ a ∈ OT ∧ b ∈ OT, a � b :⇔ a �′ b ∧ a ∈ OT ∧ b ∈ OT.
In the following, we write sometimes a for the primitive recursively decidable
set {x ∈ OT | x ≺ a}.

2.2 Functions in OT

Definition 2.10 (a) For a, b ∈ T′ we define a +OT b, +OT being a primitive
recursive function. We will always omit the index OT.
Let a = (a1, . . . , an), b = (b1, . . . , bm), n,m ≥ 0.
If m ≥ 1 and ai ≺ b1 for all i = 1, . . . , n, then a + b := b. If m = 0
(therefore b = 0), a + b := a. Otherwise, there exists j ∈ {1, . . . , n} such

13

that b1 � aj, ai ≺ b1 for all i ∈ {j + 1, . . . , m}. With this j we define
a+ b := (a1, . . . , aj, b1, . . . , bm).

(b) For a ∈ T′, n a natural number, we define a · n: a · 0 := 0, a · (n + 1) :=
(a · n) + a. (a, n) 7→ a · n is primitive recursive.

(c) For a, b ∈ T
′ we define ϕab. ϕ will be primitive recursively definable.

If b ∈ Cr(a), then ϕab := b.
If b = 0 ∧ a ∈ G′, then ϕab := a.
Otherwise ϕab := ϕ′ab.

(d) For a ∈ T′ we define Ωa, Ω will be primitive recursively definable.
Ω0 := 0, if a ∈ Fi, then Ωa := a, otherwise Ωa := Ω′

a.
(e) Ω0

a := a, Ωn+1
a := ΩΩn

a
.

Definition 2.11 (a) We define a =NF b + c, iff for some n,m ≥ 1 and
ci, di ∈ OT, b = (b1, . . . , bn), c = (c1, . . . , cm), a = (b1, . . . , bn, c1, . . . , cm)
and a ∈ OT.
a =′

NF b + c :⇔ a =NF b+ c ∧ c ∈ A.
(b) a =NF ϕbc :⇔ a = ϕ′bc ∧ a ∈ OT.
(c) a =NF Ωb :⇔ a = Ω′

b ∧ a ∈ OT.
(d) a =NF ψbc :⇔ a = ψbc ∧ a ∈ OT.

Remark 2.12 (a) ∀x, y ∈ OT.∀n ∈ N.x + y, x · n, ϕxy,Ωx,Ω
n
x ∈ OT.

(b) ∀x ∈ OT.∃y, z ∈ OT.x = 0 ∨ x = I ∨ x =′
NF y + z ∨ x =NF ϕyz ∨ x =NF

Ωy ∨ x =NF ψyz.
(c) ∀x, y, z ∈ T′.(x =NF y + z ∨ x =NF ϕyz ∨ (x =NF Ωy ∧ y = z) ∨ x =NF

ψyz)→ (length(y) < length(x) ∧ length(z) < length(x)).
(d) ∀x ∈ OT.∀y, z ∈ T

′.(x =NF y+z∨x =NF ϕyz∨(x =NF Ωy∧y = z)∨x =NF

ψyz)→ y, z ∈ OT.
(e) ∀x, y, y′ ∈ OT.(y ≺ y′ → x + y ≺ x + y′).
(f) ∀x, y, x′, y′ ∈ OT.ϕxy ≺ ϕx′y

′ ↔ ((x ≺ x′ ∧ y ≺ ϕx′y) ∨ (x = x′ ∧ y ≺
y′) ∨ (x′ ≺ x ∧ ϕxy � y′)).

(g) ∀x, y ∈ OT.Ωx ≺ Ωy ↔ x ≺ y.
(h) ∀x, y.x � x + y ∧ y � x + y ∧ x � ϕxy ∧ y � ϕxy ∧ x � Ωx.

Definition 2.13 (a) For κ ∈ R we define κ−, the predecessor of a cardinal
by Ω′−

s+1 := Ωs, I− := 0.
(b) For a : N we define ã, a+, a−Fi, a+Fi. (ã will be the largest cardinal below,

a+ the least cardinal greater than a, a−Fi the largest element of Fi
′ below

and, if a ≺ I, a+Fi the least element of Fi
′ greater than a).

If a 6∈ OT, ã, a−Fi, a+, a+Fi are defined arbitrarily.
0̃ := 0−Fi := 0, 0+ := Ω1, 0+Fi := ψI0.
If a = (a0, . . . , an), n > 0, then ã := ã0, a

+ := a+
0 , a−Fi := a−Fi

0 , a+Fi :=
a+Fi

0 .
If a =NF ϕbc, then with d := max{b, c} we define ã := d̃, a+ := d+,
a−Fi := d−Fi, a+Fi := d+Fi.
If a =NF ψbc, b 6= I, then ã := b−, a+ := b, a−Fi := b−Fi, a+Fi := b+Fi.

14

If a =NF ψIc, ã := a−Fi := a, a+ := Ωa+1, a
+Fi := ψI(c+ 1).

If a =NF Ωb, ã := a, a−Fi := b−Fi, a+ := Ωb+1, a
+Fi := b+Fi.

Ĩ := I, I+ := ΩI+1, I−Fi := I, I+Fi := I.

(c) a−I :=
{

0 if a ≺ I
I otherwise

.

Remark 2.14 (a) ∀x, y ∈ OT.x̃, x+, x−Fi, x+Fi, x−I, x+I ∈ OT.
(b) ∀x, y ∈ OT.x � y → (x̃ � ỹ∧x+ � y+∧x−Fi � y−Fi∧x+Fi � y+Fi∧x−I �

y−I ∧ x+I � y+I).
(c) ∀x ∈ OT.∀y ∈ R.x ≺ y− → Gy(x) ∼= ∅.
(d) ∀x ∈ R′.∀y ∈ T′.Gx(ỹ) ⊆ Gx(y)∧ Gx(y

−Fi) ⊆ Gx(y)∧ (y ∈ R′ → Gx(y
−) ⊆

Gx(y)).
(e) ∀x ∈ OT.x̃+ = x+.
(f) ∀x ∈ OT.∃y ∈ OT.x̃ = Ωy ∧ x

+ = Ωy+1 ∧ x̃ � x ≺ x+

(g) ∀x ∈ OT ∩ ψI0.x
−Fi = 0 ∧ x+Fi = ψI0.

∀x ∈ OT.ψI0 � x ≺ I → ∃y ∈ OT.y ∈ CI(y) ∧ x
−Fi = ψIy ∧ x

+Fi =
ψI(y + 1) ∧ x−Fi � x ≺ x+Fi.
∀x ∈ OT.I ≺ x→ x−Fi = x+Fi = I.

(h) ∀x ∈ OT.∀n,m ∈ N.n < m→ Ωn
x+1 ≺ Ωm

x+1.
(i) ∀x ∈ OT.∃n ∈ N.x ≺ Ωn

x−Fi+1.

(j) c ≺′ d→ C̃b(c) ⊆ C̃b(d).
(k) a ∈ C̃b(c)→ a+ 1 ∈ C̃b(c), ψab ∈ OT→ ψa(b+ 1) ∈ OT.

Remark 2.15 (a) 0, I ∈ Cκ(b).
(b) If b =NF c+ d or b =NF ϕcd or b =NF Ωc ∧ c = d, then b ∈ Cκ(a)⇔ c, d ∈

Cκ(a).
(c) If b ∈ OT ∧ b ≺ κ, then b ∈ Cκ(a)⇔ b ≺ ψκa.
(d) If b =NF ψπd, then b ∈ Cκ(a)⇔ (b ≺ ψκa ∨ (π, d ∈ Cκ(a) ∧ d ≺ a)).
(e) If b =NF ψπd, κ 6= I, then b ∈ Cκ(a)⇔ (b � κ− ∨ (π, d ∈ Cκ(a)∧ d ≺ a)).

3 The Type Theories ML[TD], MLJ

We are going to prove the lower bounds for two versions of type theory. Both
are versions of intensional Martin-Löf’s type theory with W-type and a uni-
verse in the formulation à la Tarski. One is ML[TD], which is a slightly weakened
version of the formulation by Troelstra and van Dalen in [TD88] and extends
the version in Troelstra’s article [Tro87]. We have slightly changed the rules,
in order to be as close as possible to the other version (see Remark 3.3 for
details). The other version is MLJ, which is a formulation, where we have
the elimination rules for the identity type using the constructor J. The rules
for J can be found in [PSH90,NPS90]. We have chosen here a polymorphic
version, since we have there less bureaucracy. However, there seems to be no
problem to carry out the well-ordering proofs in monomorphic type theory as

15

well. Although MLJ seems to be weaker than ML[TD], we do not know how
to carry out an embedding and therefore, in order to obtain a lower bound
for all versions, we will carry out the well-ordering proof in both MLJ and
ML[TD],aux, which will not cause almost any additional work.
There has been a further change in the presentation of type theory, namely
that one uses nowadays the logical framework. But since versions using the
logical framework can be easily seen as extensions of MLJ and we are here
interested in lower bounds, we will carry out the proof only in the weakest
versions. However using abbreviations we are going to present the rules almost
as if we had the logical framework available.
We will write A type instead of A set, since we have in the absence of the
logical framework no real types and we want to use the terminology set for
subsets of the natural numbers.
For technical reasons we introduce theories ML[TD],aux and MLJ,aux, which are
variants of ML[TD] and MLJ. From every statement in ML[TD],aux we get a
statement in ML[TD], but in ML[TD],aux we can more easily switch between the
universe and the main level, similar for MLJ,aux and MLJ. We will afterwards
work in ML[TD],aux and MLJ,aux.

3.1 Definition of ML[TD], MLJ and ML[TD],aux

Definition 3.1 (a) In the following “the four type theories” refers to ML[TD],
MLJ, MLJ,aux and ML[TD],aux. If not stated differently, every definition
refers to all four type theories.

(b) The symbols are infinitely many variables zi (i ∈ ω); the symbols ⇒, :,
,, (,), =; the term constructors (with their arity in parenthesis) ik (for
each i < k, with arity 0), 0 (0), N̂k (for each k ∈ ω, with arity 0), N̂ (0),
S (1), λ (1), i (1), j (1), r (1), Ap (2), p (2), E (2), sup (2), R (2), Π̂ (2),
Σ̂ (2), +̂ (2), Ŵ (2), P (3), D (3), Î (3), Ck (k ∈ ω, arity k+ 1), the type
constructors with their arity Nk (for each k ∈ ω, arity 0), N (0), U (0), T
(1), Π (2), Σ (2), + (2), W (2) and I (3). Additionally MLJ and MLJ,aux

have the term constructor J with arity 2 and ML[TD],aux and MLJ,aux have
the underlined type constructors Nk (for each k ∈ ω, arity 0), N (0), Π
(2), Σ (2), + (2), W (2) and I (3).
Nk, N, Π, Σ, +, I, W are called the small type constructors, and for
each of each such constructor C let C is the corresponding underlined
type constructor, and Ĉ is the corresponding term constructor with the
“hat”.

(c) The b-objects of each of the four type theories are variables, (x1, . . . , xn)b
and C(b1, . . . , bn), if C is an n-ary term, type or (in case of ML[TD],aux,
MLJ,aux) underlined type constructor b, b1, . . . , bn are b-objects and x1,
. . . , xn are variables.
The set of free variables FV(b) of a b-object b are defined in the usual

16

way. We write +, + and +̂ infix (e.g. (a + b) for +(a, b)).
We define for b-objects b1, . . . , bn, b and variables x1, . . . , xn the simulta-
neous substitution b[x1 := b1, . . . , xn := bn], which respects abstraction
(y1, . . . , ym), in the usual way, using the convention, that if the same
variable y occurs more than once, only the substitution xi := bi with i
minimal such that xi = y applies. “b[x1 := b1, . . . , xn := bn] is an allowed
substitution”, and α-equality (=α) are defined in the usual way.

(d) The set of m-terms of the four type theories is inductively defined as: a
variable x is an m-term; if i < k, i, k ∈ N, then ik is an m-term; and if
k ∈ N, then N̂k is an m-term; if r, s, t are m-terms, x, y, z, x′ ∈ VarML,
x 6= y 6= z 6= x, then 0, S(r), P(r, s, (x, y)t), λ((x)r), Ap(r, s), p(r, s),
E(r, (x, y)s), i(r), j(r), D(r, (x)s, (x′)t), r(r), sup(r, s), R(r, (x, y, z)s), N̂,
Π̂(r, (x)s), Σ̂(r, (x)s), r+̂s, Î(r, s, t) and Ŵ(r, (x)s) are m-terms; if n ∈ N

and r, s1, . . . , sn are m-terms, then Cn(r, s1, . . . , sn) is an m-term.
Additionally with the same r, s, x as before in MLJ and MLJ,aux J(r, (x)s)
is an m-term.
Abstracted m-terms are (x1, . . . , xn)r for some m-term r and variables
x1, . . ., xn (In the case n = 0, ()r := r).

(e) The m-types of the four type theories are Nk (k ∈ ω), (k ∈ ω), N, U; and if
A,B are m-types, x ∈ VarML, r, s m-terms, then Π(A, (x)B), Σ(A, (x)B),
A+B, I(A, r, s), W(A, (x)B), T(r) are m-types.
Additionally, in ML[TD],aux and MLJ,aux, with the same k, A,B, x, r, s we
have that Nk, N, Π(A, (x)B), Σ(A, (x)B), A+B, I(A, r, s), W(A, (x)B)
are m-types.
Abstracted m-types are (x1, . . . , xn)A for some m-type A (again ()A :=
A).

(f) If r ≡ (x1, . . . , xn)s is an abstracted m-term or m-type, r1, . . . , rn, n ≥
1 are m-terms or m-types, then r(r1, . . . , rn) := s[x1 := r1, . . . , xn :=
rn]. r is a suitable abstracted m-term means in the following, that if
r(r1, . . . , rn) occurs, then r ≡ (x1, . . . , xn)s for some xi and s, and the
substitution is allowed.
Similarly we define for abstracted m-types A and m-terms ri, A(r1, . . . ,
rn) and suitable abstracted m-types.

(g) An m-context-piece is a string x1 : A1, . . . , xn : An where n ≥ 0, xi dif-
ferent variables, Ai m-type.
An m-context is an m-context-piece x1 : A1, . . . , xn : An, such that
FV(Ai) ⊆ {x1, . . . , xi−1} for i = 1, . . . , n. The empty context (n = 0)
will be denoted by ∅ and the concatenation of the context pieces ∆ and
∆′ by ∆,∆′.
The m-judgements are the following: context, A type, A = B, s : A and
s = t : A where A, B are m-types and s, t m-terms.
A dependent m-judgement is an expression Γ ⇒ Θ where Γ is a m-
context, Θ an m-judgement. Two dependent m-judgements Γ ⇒ Θ and
Γ ⇒ Θ′ are α-equivalent, if they differ only in the choice of bounded
variables.

17

We write, if Θ is a judgement, Θ instead of ∅ ⇒ Θ, and, if Γ is a context-
piece, Γ context instead of Γ⇒ context.

Definition 3.2 of the four type theories ML[TD], MLJ and ML[TD],aux and
MLJ,aux.

(a) We will define the rules, which are of the form

Γ1 ⇒ Θ1
. . .

Γn ⇒ Θn(Rule)
Γ⇒ Θ

where Γ1, . . . ,Γn,Γ are m-context-pieces, Θ1, . . . ,Θn,Θ are m-judgements
(n = 0 is allowed) of the four type theories. Then we define for T ∈
{ML[TD],MLJ,ML[TD],aux} T ` Γ⇒ Θ inductively by:
If (Rule) is a rule of T as above, ∆ is an m-context of T such that the
following holds:
• ∆,Γ1, . . . , ∆,Γn, ∆,Γ are m-contexts of T ;
• T ` ∆,Γi ⇒ Θi for i = 1, . . . , n;
• if n = 0 and ∆,Γ 6≡ ∅, then T ` ∆,Γ context.
Then T ` ∆,Γ⇒ Θ.
In (b) - (d) let A,B,C,D be in each rule suitable abstracted m-types,
a, b, c, r, s, t suitable abstracted m-terms, Θ be an m-judgement, Γ be
an m-context-piece of the currently treated type theory, all possibly with
indices or accents ′.
Further let x, y, z, u be variables. If for some abstracted m-term or m-type
A we have an occurrence of A(x1, . . . , xn), in the first such occurrence as
a premise of a rule assume xi 6∈ FV(A) (i = 1, . . . , n). Further assume
that all substitutions are allowed.
A→ B abbreviates Π(A, (x)B) for a new variable x.

(b)
The rules of MLJ are as follows:

General Rules

A type
(Cont)

x : A context

x : A,Γ context
(Ass)

x : A,Γ⇒ x : A

x : B not a context-piece

in Γ

r : A(Ref1) r = r : A
A type

(Ref2) A = A

r = s : A(Sym1) s = r : A
A = B(Sym2) B = A

18

r = s : A
s = t : A(Trans1) r = t : A

A = B
B = C(Trans2) A = C

r : A
A = B(Repl1) r : B

r = s : A
A = B(Repl2) r = s : B

x : A,Γ⇒ Θ

⇒ t : A(Sub1)
Γ[x := t]⇒ Θ[x := t]

x : A,Γ⇒ B(x) type

t = t′ : A(Sub2)
Γ[x := t]⇒

B(t) = B(t′)

x : A,Γ⇒ s(x) : B(x) type

t = t′ : A(Sub3)
Γ[x := t]⇒ s(t) = s(t′) : B(t)

Γ⇒ Θ(Alpha)
Γ′ ⇒ Θ′

Where Γ⇒ Θ and Γ′ ⇒ Θ′,
are α-equivalent

Type Introduction Rules

(NT
k) Nk type

(k ∈ N)

(NT) N type

A type

x : A⇒ B(x) type
(ΠT)

Π(A,B) type

A type

x : A⇒ B(x) type
(ΣT)

Σ(A,B)

A type

B type
(+T)

A+B type

A type

r : A
s : A(IT)

I(A, r, s) type

A type

x : A⇒ B(x) type
(WT)

W(A,B)

Introduction Rules

(NI
k) ik : Nk

(i < k, i, k ∈ N)

(NI
0) 0 : N

19

r : N(NI
0) S(r) : N

x : A⇒ t(x) : B(x)
(ΠI)

λ(t) : Π(A,B)

x : A⇒ B(x) type

r : A
s : B(r)

(ΣI)
p(r, s) : Σ(A,B)

r : A
B type

(+I
1) i(r) : A+B

A type

r : B(+I
2) j(r) : A+B

s : A(II)
r(s) : I(A, s, s)

x : A⇒ B(x) type

r : A
s : B(r)→W(A,B)

(WI)
sup(r, s) : W(A,B)

Elimination Rules

z : Nk ⇒ D(z) type

r : Nk

si : D(ik) (i = 0 . . . k − 1)
(NE

k) Ck(r, s0, . . . , sk−1) : D(r)

(k ∈ N)

x : A⇒ B(x) type

s : Π(A,B)

r : A(ΠE)
Ap(s, r) : B(r)

r : N
z : N⇒ C(z) type

s : C(0)

x : N, y : C(x)⇒

t(x, y) : C(S(x))
(NE)

P(r, s, t) : C(r)

x : A⇒ B(x) type

r : Σ(A,B)

z : Σ(A,B)⇒ C(z) type

x : A, y : B(x)⇒

t(x, y) : C(p(x, y))
(ΣE)

E(r, t) : C(r)

z : A+B ⇒ C(z) type

r : A+B
x : A⇒ s(x) : C(i(x))

y : B ⇒ t(y) : C(j(y))
(+E)

D(r, s, t) : C(r)

s : A
s′ : A

r : I(A, s, s′)

x : A, y : A, z : I(A, x, y)⇒

C(x, y, z) type

x : A⇒ t(x) : C(x, x, r(x))
(IE)∗

J(r, t) : C(s, s′, r)

20

x : A⇒ B(x) type

r : W(A,B)

u : W(A,B)⇒ C(u) type

x : A, y : B(x)→W(A,B), z : Π(B(x), (v)C(Ap(y, v)))

⇒ t(x, y, z) : C(sup(x, y))
(WE)

R(r, t) : C(r)

(v 6∈ FV(C))

Equality Rules

z : Nk ⇒ D(z) type

si : D(ik)(i = 0, . . . , k − 1)
(N=

k)
Ck(ik, s0, . . . , sk−1) = si : D(ik)

(i < k, i, k ∈ N)

z : N⇒ C(z) type

s : C(0)

x : N, y : C(x)⇒ t(x, y) : C(S(x))
(N=

0)
P(0, s, t) = s : C(0)

r : N
z : N⇒ C(z) type

s : C(0)

x : N, y : C(x)⇒ t(x, y) : C(S(x))
(N=

S)
P(S(r), s, t) = t(r,P(r, s, t)) : C(S(r))

x : A⇒ t(x) : B(x)

r : A(Π=)
Ap(λ(t), r) = t(r) : B(r)

x : A⇒ B(x) type

r : A
s : B(r)

z : Σ(A,B)⇒ C(z) type

x : A, y : B(x)⇒ t(x, y) : C(p(x, y))
(Σ=)

E(p(r, s), t) = t(r, s) : C(p(r, s))

r : A
z : A+B ⇒ C(z) type

x : A⇒ s(x) : C(i(x))

y : B ⇒ t(y) : C(j(y))
(+=

1)
D(i(r), s, t) = s(r) : C(i(r))

r : B
z : A+B ⇒ C type

x : A⇒ s(x) : C(i(x))

y : B ⇒ t(y) : C(j(y))
(+=

2)
D(j(r), s, t) = t(r) : C(j(r))

21

s : A

x : A, y : A, z : I(A, x, y)⇒ C(x, y, z) type

x : A⇒ t(x) : C(x, x, r(x))
(I=)∗

J(r(s), t) = t(s) : C(s, s, r(s))

x : A⇒ B(x) type

r : A
s : B(r)→W(A,B)

u : W(A,B)⇒ C(u) type

x : A, y : B(x)→ W (A,B),

z : Π(B(x), (v)C(Ap(y, v)))⇒ t(x, y, z) : C(sup(x, y))
(W=)

R(sup(r, s), t) = t(r, s, λ((v′)R(Ap(s, v′), t)))

: C(sup(r, s))

(if v 6∈ FV(C), v′ 6∈ FV(s) ∪ FV(t))

Rules for the Universe

Type Introduction Rules for the Universe

(UI) U type
a : U(TI)

T(a) type

Introduction Rules for the Universe

(N̂I
k) N̂k : U
k ∈ ω

(N̂I) N̂ : U

a : U
x : T(a)⇒ b(x) : U

(Π̂I)
Π̂(a, b) : U

a : U
x : T(a)⇒ b(x) : U

(Σ̂I)
Σ̂(a, b) : U

a : U
b : U

(+̂
I
)
a+̂b : U

a : U
r : T(a)

s : T(b)
(ÎI)

Î(a, r, s) : U

a : U
x : T(a)⇒ b(x) : U

(ŴI)
Ŵ(a, b) : U

22

Equality Rules for the Universe

(N̂=
k) T(N̂k) = Nk

(k ∈ ω)

(N̂=) T(N̂) = N

a : U
x : T(a)⇒ b(x) : U

(Π̂=)
T(Π̂(a, b)) = Π(T(a), (x)T(b(x)))

a : U
x : T(a)⇒ b(x) : U

(Σ̂=)
T(Σ̂(a, b)) = Σ(T(a), (x)T(b(x)))

a : U
b : U(+̂

=
)

T(a+̂b) = T(a) + T(b)

a : U
r : T(a)

s : T(b)
(Î=)

T(Î(a, r, s)) = I(T(a), r, s)

a : U
x : T(a)⇒ b(x) : U

(ŴI)
T(Ŵ(a, b)) = W(T(a), (x)T(b(x)))

(c) The Rules for ML[TD] are the same as for MLJ (but referring to m-terms,
-types etc. of ML[TD] instead of MLJ) but with the elimination- and equal-
ity rules for the identity type (IE) and (I=) (denoted by ∗) replaced by
the following rule:

s : A
s′ : A

r : I(A, s, s′)
(IE)

s = s′ : A

(d) The Rules for ML[TD],aux (MLJ,aux) are the same rules as for ML[TD]

(MLJ). Additionally we have the following rules for the underlined con-
structors:

A type

x : A⇒ B(x) type
(ΠT)

Π(A,B) type

A type

x : A⇒ B(x) type
(Π=)

Π(A,B) = Π(A,B)

Similarly for N, Nk, Σ, +, I, W.

Remark 3.3 on the versions considered.

23

(a) Apart from modifications of names, we have changed ML[TD] in the fol-
lowing sense relative to the formulation in [TD88], in order to be as close
to “MLJ” (which slightly weakens the system, but this is no harm since
we treating lower bounds only):
• We have omitted the rule, which derives r : A from r = r : A.
• We have replaced the thinning rule by the context rule.
• In [TD88] the elimination rule for Π has assumption λ(t) : Π(A,B)

instead of x : A⇒ t(x) : B(x), similarly for Σ. Our version is obviously
slightly weaker.
• We have replaced the elimination rules for the Σ-type using projections

by the elimination rules found e.g. in [ML84]. By defining E(r, s) :=
s(p0(r), p1(r)), our rules can be derived from the original rules. In the
opposite direction we can define as well p0, p1 using E by p0(r) :=
E(r, (x, y)x) and p1(r) := E(r, (x, y)y), however we do not get the η-
rule, therefore our rules are slightly weaker.
• We have omitted the equality rule for the identity type. Further we have

changed the constructor for the introduction rule to r(a) instead of r
in order to be as close as possible to the other system (and we weaken
the system microscopically).
• We have added the rule (Repl2) for systematic reasons, which seems to

be missing. However we will not use that rule.
Note that the essential difference between ML[TD] and MLJ are the elim-
ination rules for the identity type.

(b) We have not added to MLJ the equality versions of type introduction,
introduction and elimination rules (e.g. that from x : A ⇒ t = t : B(x)
we can derive λ(t) = λ(t′) : Π(A,B)) as it can be found in [PSH90].
Our systems suffices, and is weaker than the system in [PSH90], since
the substitution rules are provable there (see [PSH90], Theorem 4.2 for
(Sub1), for (Sub2) and (Sub3) this follows similarly) and we are interested
in lower bounds only.

(c) One could have replaced Nk by N1 + · · ·N1︸ ︷︷ ︸
ktimes

for k ≥ 2, further N1 by

I(N, 0, 0), therefore only N0 is needed. We do not use Nk for k > 2.

3.2 Abbreviations

Definition 3.4 Let in this definition T be one of the four type theories.
We introduce several abbreviations and conventions, to work more easily in
T .

(a) We assume, that all free variables are chosen differently from bounded
variables, and bounded variables are chosen in such a way that there are
no variable clashes, identifying α-equivalent m-terms and m-types.

24

(b) We will write Γ⇒ r : A for T ` Γ⇒ r : A, where T is the type theory we
are working in. Further Γ⇒ r, s : A for T ` Γ⇒ r : A ∧ T ` Γ⇒ s : A,
etc. We say “Γ⇒ A” for “T ` Γ⇒ t : A for some m-term”.

(c) By “assume Γ ⇒ A type, then (∗)” we mean: For every context ∆ such
that T ` ∆,Γ ⇒ A type (∗) relative to the context ∆ follows. (Usually
A is in this situation a meta-variable for an m-type).

(d) We write (λx.t) for λ((x)t), if S ∈ {Σ,Π,W,Σ,Π,W, Σ̂, Π̂, Ŵ}, Sx :
A.B for S(A, (x)B), and (rs) for Ap(r, s). The usual conventions about
omitting brackets apply. Especially the scope of λx. is as long as possible,
for instance λx.s t should be read as λx.(s t).
We will write λx, y.t for λx.λy.t, ∀x, y : A.B for ∀x : A.∀y : A.B, similarly
for ∃,Π,Σ and for more than two variables.

(e) The projections r0, r1 are defined by r0 := E(r, (x, y)x), r1 :=
E(r, (x, y)y). Further (r =A s) := I(A, r, s).

(f) We use ∀ and Π, ∃ and Σ as the same symbol, similarly for ∀̂, ∀ etc.
(g) ⊥ := N0, A∨B := A+B, A×B := A∧B := Σx : A.B for a new variable

x, A↔ B := (A→ B)∧ (B → A), (remember A→ B := Πx : A.B for a
new variable x) ¬A := A→ ⊥, (r 6=A s) := ¬(r =A s).
∧, ∨, ∀, ∃ are used for types considered as propositions, whereas ×, +,
Π, Σ are used for types as functions and sets in the sense of Martin-Löf.

(h) We define ∀x rel s.A := ∀x : C.x rel s → A and ∃x rel s.A := ∃x :
C.x rel s ∧ A, in any situation where we have x : B ⇒ x rel s type,
and can read the type B from rel . (rel will be either a binary relation
between elements of a type, e.g. <N,and s a term of type B, or rel
will be the ∈-relation defined between terms for natural numbers and
types as defined later). If x ∈ FV(s), then we first have to change to
an α-equivalent form, considering ∀x rel s.A =α ∀y rel s.A[x := y], if
y 6∈ FV(A) and substitutable for x, similar for ∃.

(i) In this and the next chapter we assume that A,B,C are m-types, a, b, c,
r, s, t m-terms, Γ,∆ m-context-pieces, Θ an m-judgement, u, v, w, x, y, z
variables, all possibly with indices or accents (′). Elements of OT are
usually denoted by a, b, c.

3.3 Working with the Universe

Remark 3.5 We can derive in MLJ,aux and ML[TD],aux from the rules (CT),
(CI), (CE), (C=) for a type constructor C 6= U,T new rules by replacing some
of the explicit occurrences of C by C. This is possible since from the assumption
and the new type-introduction-rules we can derive C(t1, . . . , tn) = C(t1, . . . , tn)
(e.g. in the (Π) rules we always get Π(A,B) = Π(A,B)). The only exception
are the types B(t) → W(A,B) and B → W(A,B) in the rules (WI), (WE)
and (W=) in the case of ML[TD],aux: We do not have B → W(A,B) = B →
W(A,B), therefore W cannot be replaced by W.

25

So, when we reason informally, we have only to be careful with the use of
underlining in the case of the W-type, and here only for the cases mentioned.
(Note that in the presence of the equality versions of the type introduction rules
this problem does not occur).

Definition 3.6 (a) We define ψ(C) for all term, type and underlined type
constructors C of the four type theories: If C is a small type constructor,
ψ(C) := C. For all other constructors C we define ψ(C) := C.

(b) For a b-object ψ(b) is the result of applying ψ to each symbol. The same
applies for m-context-pieces, -contexts, -judgements.

(c) We define γ(C) and γ(C) for some type constructors C: If C is a small

type constructor, γ(C) := Ĉ. For all other type constructors C γ(C) is
undefined.

(d) If A is an abstracted m-type, then A is the result of underlining all small
type constructors in A.

(e) Definition of γ(A) for some abstracted m-types A. (For all other m-types,
the value of γ(A) will be a symbol for undefined). We will write γ(A) ↓
for “γ(A) is defined”, and s ' t for (s ↓↔ t ↓) ∧ (s ↓→ s = t), where a
more complex term is defined, if the process of successively evaluating it
always leads to defined terms.
γ(T(t)) := t. For underlined type constructors C and abstracted m-terms
or -types Di, γ(C(D1, . . . , tn)) :' γ(C)(γ(D1), . . . , γ(Dn)), where γ(t) :=
t for m-terms t and γ((x1, . . . , xn)D) :' (x1, . . . , xn)γ(D). For all other
type constructors (especially U) γ(C(tq, . . . , tn)) is undefined.

(f) We define φ(A) for m-types A. If γ(A) is defined, φ(A) := T(γ(A)). If
this instance does not apply, we define φ(C(D1, . . . , Dn)) :=
C(φ(D1), . . . , φ(Dn)), where C is a constructor and Di are abstracted
m-terms or types. Here φ(t) := t,for m-terms t and φ((x1, . . . , xn)A) :=
(x1, . . . , xn)φ(A).

(g) φ(B) is defined for m-judgements, -contexts etc. by applying φ to all the
types occurring there.

Lemma 3.7 Assume A[x := t], B[x := t] are allowed substitutions, where
A,B are m-terms or m-types and t an m-term.

(a) γ(A) ↓⇔ γ(A[x := t]) ↓
(b) If γ(B) is defined, then γ(B)[x := t] is allowed, γ(B)[x := t] = γ(B[x :=

t]).
(c) φ(B)[x := t] and ψ(B)[x := t] are allowed, φ(B)[x := t] = φ(B[x := t]),

ψ(B)[x := t] = ψ(B[x := t]).

Lemma 3.8 Let T = ML[TD] and Taux = ML[TD],aux or T = MLJ and Taux =
MLJ,aux

(a) If Taux ` Γ⇒ Θ, then T ` ψ(Γ)⇒ ψ(Θ).

26

(b) If Taux ` Γ⇒ Θ, then Taux ` φ(Γ)⇒ φ(Θ).
(c) If Taux ` Γ ⇒ Θ, where Θ ∈ {A type, s : A, s = t : A,A = B,B = A}

or Taux ` Γ, x : A,∆ ⇒ Θ′, and if further γ(A) ↓, then Taux ` φ(Γ) ⇒
γ(A) : U.

Proof: (a) and simultaneously (b) and (c) follow by an easy induction on the
derivation. ut

Definition 3.9 We say “Γ ⇒ A type is correctly defined from Γi ⇒ Θi (i =
1, . . . , n)”, iff the following holds for all contexts ∆:

• ∆,Γi ⇒ Θi for all i implies ∆,Γ⇒ A type.
• If for all i ∈ {1, . . . , n} such that Θi ≡ (B type) for some B we have
γ(B) ↓, φ(Γi) ⇒ γ(B) : U, and for all other i we have ∆, φ(Γi) ⇒ φ(Θi)
then ∆, φ(Γ)⇒ γ(A) : U.

We write “A is a type correctly defined from . . .” for “A type is correctly
defined from . . .”.

From now on we are working in MLJ,aux and ML[TD],aux. Let ML be one
of these two theories.

3.4 The Basic Types and Sets in ML

Definition and Remark 3.10 (a) Let B := N2. Obviously γ(B) ↓.
(b) Let ff := 02, tt := 12. Obviously tt,ff : B.
(c) if r then s else t := C2(r, s, t). Obviously x : B, y : A, z : A ⇒if x then

y else z : A.
(d) atom(t) := T(if t then N̂0 else N̂1). atom(t) is obviously a type correctly

defined from t : B.
(e) r ∧B s :=if r then s else ff, r ∨B s :=if r then tt else s, ¬B 1r :=if

r then ff else tt. r ∧B s, r ∨B s,¬B 1r : B. Obviously atom(r ∧B s) ↔
atom(r) ∧ atom(s) etc.

(f) We assume the usual ordering of the natural numbers defined, i.e. there
are m-terms <N,B, ≤N,B of type N→ (N→ B), written infix (i.e. r <N,B s
for <N,B rs), we define r <N s := atom(r <N,B s), r ≤N s := atom(r ≤N,B

s), and assume that the usual properties of <N, ≤N can be proved in ML.

In the following we will define classes of natural numbers, the subsets of the
natural numbers and decidable subsets of the natural numbers. Classes are
properties on the natural numbers. If this property is small, i.e. can be seen
as an element of the universe, than the class will be an element of the power
set of the natural numbers. The decidable subsets are those for which we

27

can decide by having a function N → B, whether an element belongs to the
set. The distinction between classes and sets is similar to this distinction in
subsystems of analysis and set theory.

Definition and Remark 3.11 (a) Γ ⇒ (x)A : Cl(N) :⇔ Γ, x : N ⇒
A type.
We will identify (x)A and (y)A[x := y], if y 6∈ FV(A) and substitutable.

(b) In the following, if we say Γ ⇒ A : Cl(N), A stands for (x)B for some
variable x and some m-type B. We say “A is a class” for A : Cl(N).
Note, that “A is a class, correctly defined from . . .” stands for “A ≡ (x)B
for some m-type B and x : N⇒ B type is correctly defined from . . .”.

(c) (t ∈ (x)A) := A[x := t]. This is a type correctly defined from A : Cl(N)
and t : N.

(d) P(N) := N→ U, the power-set of the natural numbers.
(e) tCl := (y)T(ty). tCl is a class, correctly defined from t : P(N). If it is

clear, that t is an element of P(N), we omit the superscript Cl, writing
s ∈ t for s ∈ tCl, which is an abbreviation for T(ts).

(f) Pdec(N) := N→ B, the decidable subsets of the natural numbers.
(g) a ∈dec b := ba. We have x : N, y : Pdec(N)⇒ x ∈dec y : B.
(h) tdec,Cl := (y)atom(y ∈dec t). t

dec,Cl is obviously a class, correctly defined
from t : Pdec(N). If it is clear, that t is an element of Pdec(N), we will
omit again the superscript dec,Cl (so s ∈ t stands for atom(ts)).

(i) t 6∈ A := ¬(t ∈ A), a type correctly defined from t : N and A : Cl(N).
(j) A ⊆ B := ∀x ∈ A.x ∈ B for some new variable x, A ∼= B := A ⊆

B ∧B ⊆ A, both are types correctly defined from A,B : Cl(N). Obviously
we have that ∼= is an equivalence relation, ⊆ a partial ordering.

(k) (x)A ∪ (x)B := (x)(A ∨ B), (x)A ∩ (x)B := (x)(A ∧ B) (note that we
identify α-equivalent objects in Cl(N))
Obviously, both are classes correctly defined from A,B : Cl(N).

(l) ∅ := (x)⊥, a correctly defined class.
(m) {a1, . . . , an} := (x)(x =N a1 ∨ · · · ∨ x =N an), a class correctly defined

from ai : N.
(n) To ease the intuition {x | A} := (x)A, which we will use if we are talking

about an element of Cl(N), P(N), Pdec(N). {x ∈ A | B} := {x | x ∈
A ∧ B}.

(o) If A is an m-term or m-type, which possibly depends on x, then⋃
x:B A := {y | ∃x : B.φ(x) ∧ y ∈ A},⋃
x:B.φ(x)A := {y | ∃x : B.φ(x) ∧ y ∈ A},⋃
x∈B A := {y | ∃x ∈ B.y ∈ A},⋃
x∈B.φ(x)A := {y | ∃x ∈ B.φ(x) ∧ y ∈ A}.

If t is a term 6≡ x, then
{t | x ∈ A} := {y | ∃x ∈ A.y = t},
{t | x : A} := {y | ∃x : A.y = t}.

Remark 3.12 (a) If Γ⇒ B : Cl(N), B ≡ (x)A, then γ(B) ↓↔ γ(A) ↓, and

28

if γ(B) ↓, then γ(A) = (x)γ(B), and we have φ(Γ)⇒ λ(γ(A)) : P(N).
(b) If A,A′, B, B′ : Cl(N), A ∼= A′, B ∼= B′, then A ∪ B ∼= A′ ∪ B′, A ∩B ∼=

A′ ∩B′

Definition 3.13 By “R′ is a decidable n-ary relation” we mean that there is
an n-ary function R′

dec : Nn → B, written as R′
dec(t1, . . . , tn), and that in the

following
R′(t1, . . . , tn) := atom(R′

dec(t1, . . . , tn)). Sometimes, if n = 2, R′ and R′
dec will

be written infix.

3.5 Using the W-type

The following is a preparation for the definition of W(A) in Sect. 5.

Definition 3.14 (a) index := λy′.R(y′, (x, y, z)x).
(b) pred := λy′.R(y′, (x, y, z)λu.yu).
(c) s ≺1

W(A,B) t := ∃u : B(index(t)).s =W(A,B) pred(t)u. (s is an immediate
subtree of t).

(d) s ≺W(A,B) t := ∃f : (N → W(A,B)).∃n : N.0 <N n ∧ (f0) =W(A,B)

s∧ (fn) =W(A,B) t∧∀i : N.i <N n→ (fi) ≺1
W(A,B) f(S(i)). (s is a subtree

of t).
(e) s �W(A,B) t := (s ≺W(A,B) t) ∨ (s =W(A,B) t).
(f) We will in the following omit the index W(A,B), if there is no confusion.

Remark 3.15 Assume x : A⇒ B(x) type

(a) u : W(A,B)⇒ index(u) : A,
x : A, y : (B(x)→W(A,B))⇒ index(sup(x, y)) = x : A.

(b) v : W(A,B) ⇒ pred(v) : (B(index(v)) → S(A,B)), and x : A, y :
(B(x) → W(A,B)) ⇒ pred(sup(x, y)) = λu.yu : (B(x) → S(A,B)),
where S can be W and W.

(c) We have s ≺1
W(A,B) t, s ≺W(A,B) t and s �W(A,B) t are types correctly

defined from A type, x : A ⇒ B(x) type and s, t : W(A,B) (where
x 6∈ FV(B)).

Lemma 3.16 Assume x : A⇒ B(x) type.

(a) ∀x, y : W(A,B).x � y ↔ (x ≺ y ∨ x = y).
(b) ∀x, y, z : W(A,B).(x ≺ y ∧ y ≺ z)→ x ≺ z.
(c) ∀x, y : W(A,B).x ≺1 y → x ≺ y.
(d) ∀u : W(A,B).∀x : A.∀y : (B(x)→W(A,B)).(u ≺1 sup(x, y))↔

(∃v : B(x).u =W(A,B) yu).
(e) ∀u : W(A,B).∀x : A.∀y : (B(x) → W(A,B)).u ≺ sup(x, y) ↔ ∃v :

B(x).u � (yv).

29

(f) ∀x : W(A,B).¬x ≺ x.

Proof: (a) –(c) are immediate. (d) follows by using the substitution rules and
x : A, y : (B(x) → W(A,B)), u : B(x) ⇒ pred(sup(x, y))u = yu : W(A,B).
(e) follows from (d). (f): Induction on u : W(A,B): Assume x : A, y : (B(x)→
W(A,B)), p : (∀u : B(x).¬yu ≺ yu). Assume sup(x, y) ≺ sup(x, y). Then
sup(x, y) � (yv) for some v : B(x), yv ≺1 sup(x, y), therefore (yv) ≺ (yv),
and using p we get ⊥, and therefore the assertion. ut

4 The Well-ordering Proofs

4.1 Overview

The usual method for establishing well ordering proofs in strong theories is the
method of distinguished sets (in German “ausgezeichnete Mengen”) developed
mainly by Buchholz and Schütte. The first publication can be found in [Buc75],
and this paper – unfortunately it is in German – might serve as an excellent
introduction for the reader, who does not know this area well. Jäger used the
methods in [Jäg83] to determine the proof theoretical strength of Feferman’s
theory T0 and therefore applied it to a system for constructive mathematics.
The methods were refined in the book by Buchholz and Schütte ([BS88]) and
a draft on recent research can be found in [Buc90]. This last article was the
major basis for our well-ordering proof. We have modified it in order to avoid
fundamental sequences.

In [Set97a] we have tried to give motivation and an introduction to well-
ordering proofs in type theory (restricted to systems without a universe).

Originally the methods for carrying out well-ordering proofs were developed
for the use in subsystems of analysis and in set theory. In our proof we are just
going to adapt these techniques to the type theoretic setting. The best way
to get an understanding of what is going on seems to be to study it first in
the set theoretic setting, and then to look at the way this proof can be carried
out in type theory. Therefore, in this section, we are trying to refer as little
as possible to the type theory. We will characterize the constructions we are
giving and will present the type theoretic definitions themselves in Sect. 5. In
the current section we work almost as we would work in traditional theories
as well.

We start in the well ordering proofs with a set A which we want to extend
to a bigger set W(A) (Assumption 4.10, the actual definition of W(A) will

30

be carried out in Lemma 5.6 (d)). In order to do this, we define first a set
or class M(A) (Definition 4.5 (c)), which is a set of ordinal terms, which are
potential elements of W(A), and the set or class τA(a) of predecessors of a
relative to A, (Definition 4.5 (a)). Now in pure set theory we would define
W(A) =

⋂
{Y ⊆ N | ∀x ∈ M(A).τA(x) ⊆ Y → x ∈ Y }. In our setting

we characterize W(A) as a set (or class), such that for all b ∈ M(A), from
τA(b) ⊆W(A) follows b ∈W(A), and further, W(A) is the least set with this
property, i.e. for any class C, if for all b ∈ M(A), τA(b) ⊆ C implies b ∈ C,
then W(A) ⊆ C.

If we look at W(A) between Ωa and Ωa+1, then (at least as long as the weak
condition W ⊆ M(A) is fulfilled) W(A) is the well-founded part of the set of
ordinals the atoms of which below Ωa are in A. Gaps in the set A below Ωa

will create gaps in W(A). (For instance if there is a gap between b and Ωa,
then there is a gap in W(A) between Ωa · e+ b and Ωa · (e+ 1) for e ≺ Ωa+1.)

A set A will be called distinguished (Definition 4.18), if A is a segment of
W(A). In a classical theory, this would mean that A = W(A) ∩ b for some b,
but in an intuitionistic theory we cannot determine in general such a b. If A
is a distinguished set and Ωa+1 � A, then A ∩ {x ∈ OT|Ωa � x ≺ Ωa+1} is
the well-founded part of the ordinal terms the components below Ωa are in A
itself (so the atoms themselves are again in the well-founded part of similar
kind). Very roughly we could say that A is some kind of fixed point of W(A)
(in fact in general W(A) is bigger, but all ordinal terms in W(A)\A are bigger
than the ordinal terms in A) or A is well-founded with support in itself.

Using the definition of distinguished sets, we get another understanding of
W(A): If A is distinguished, A ∼= W(A) ∩ κ (A is the distinguished part up
to κ), then W(A) ∩ κ+ is distinguished (the distinguished part up to κ+). So
W(A) is some kind of jump operator, which gives the step to the next cardinal.

We conclude the principle of induction over distinguished sets (Lemma 4.21
(a)), and that the ordinal terms in the countable part of distinguished sets
form a segment (Lemma 4.21 (b)), which is well-ordered in the usual sense
(Lemma 4.21 (c)).

In order to prove transfinite induction up to some big ordinal notation (in
the countable part), we therefore need just to find a distinguished set, which
contains this ordinal notation. Since distinguished sets are closed under the col-
lapsing function ψ, in order to get a distinguished set which contains ψΩ1

ΩI+n,
it suffices to define such a set which contains ΩI+n. With sets this is not pos-
sible, but we can introduce distinguished classes as well (note that we have
only restricted comprehension schemes available). If we take the union over all
distinguished sets, which is a class, we get a distinguished class W (Definition
4.25) with the property W ∩ I ∼= W(W) ∩ I (Lemma 4.38 (c)). We can define

31

now distinguished classes (Definition 4.39) which contain ΩI+n and are done
(Theorem 4.41).

Assumption 4.1 In this section we will not care about underlining construc-
tors. Essentially we can underline any parts of the formula except for the
classes it is built from (denoted by A, B, C) as long as we underline ev-
erything in an abbreviation consistently (e.g. in M(A), W(A) or A ∼= B as
defined below, either all constructors apart from those positioned in A and B
are underlined or none). When introducing a new element A of the universe by
writing A : P(N) we will be a little bit sloppy and write A instead of λ(γ(A)).

4.2 Definition of M(A), τA(a), AA(B)

Preliminaries 4.2 In this chapter we assume, unless stated differently, A,
B, C : Cl(N),
a, b, c, d : N, κ, π : N such that κ, π ∈ R, all possibly with subscripts or accents
(′).

Assumption 4.3 In the following we assume that for every primitive recur-
sive set A and every k-ary primitive recursive function f defined in Sect. 2 we
have defined corresponding sets A : Pdec(N) and functions f : Nk → N, such
that the same lemmata, provable now in Martin-Löf ’s type theory, hold.

In order to define M(A) and τA(a) we will first introduce a set Ca(A) (Def-
inition 5.4). This is roughly speaking the set of ordinals built from atoms in
A∩a by all ordinal functions, except that we restrict ψκ to κ such that a ≺ κ.
For a ∈ OT, A ⊆ OT, Ca(A) is the least set of ordinals Y , such that:

(C1) A ∩ a ⊆ Y ,
(C2) 0, I ∈ Y ,
(C3) If b, c ∈ Y , d =′

NF b + c ∨ d =NF ϕbc ∨ d =NF Ωb then d ∈ Y
(C4) If κ, c ∈ Y , a ≺ κ, d =NF ψκc, then d ∈ Y .

Since in (C2)–(C4) we are referring to terms with length less than a, this
definition can be transformed into an ordinary (not inductive) definition. This
is done in Definition 5.4 in Sect. 5. In this section we only need what is stated
in Assumption 4.4.

Assumption 4.4 For every A : Cl(N), and a : N we assume that there exists
a b-object Ca(A) such that Ca(A) : Cl(N), which is correctly defined from
A : Cl(N), and a : N, and such that (in this version and in the underlined
version according to Assumption 4.1), if a ∈ OT, the following holds:

(a) Ca(A) ⊆ OT.

32

(b) 0, I ∈ Ca(A).
(c) ((d =NF ϕbc ∨ d =′

NF b + c ∨ (d =NF Ωb ∧ b = c))) → (d ∈ Ca(A) ↔ (d ∈
A ∩ a ∨ {b, c} ⊆ Ca(A))).

(d) Assume d =NF ψκc.
If a ≺ κ, then d ∈ Ca(A)↔ (d ∈ A ∩ a ∨ {κ, c} ⊆ Ca(A)).
If κ � a, then d ∈ Ca(A)↔ d ∈ A ∩ a.

Ca(A) will be defined in Definition 5.4 and the properties are verified in Lemma
5.5.

Definition 4.5 (a) τA(a) := Ca(A) ∩ a.
(b) AA(B) := {y ∈ M(A) | τA(y) ⊆ B}.
(c) M(A) := {y ∈ OT | y ∈ Cy(A)}.

Remark 4.6 (a) M(A), τA(a), AA(B), are classes, correctly defined from
A,B : Cl(N) and a : N.

(b) M(A), τA(a) ⊆ OT and AB(A) ⊆ M(A).
(c) Assume A ∼= A′, B ∼= B′. Then Ca(A) ∼= Ca(A′), M(A) ∼= M(A′),

τA(a) ∼= τA
′

(a), AA(B) ∼= AA
′

(B′).

Lemma 4.7 Assume a, b ∈ OT.

(a) A ⊆ M(A)→ Ca(A) ∼= Cã(A).
(b) (A ⊆ M(A) ∧ a � b)→ Cb(A) ⊆ Ca(A).
(c) (A ⊆ M(A) ∧ B ⊆ M(B) ∧ A ∩ ã ∼= B ∩ ã)→ Ca(A) ∼= Ca(B).
(d) a ≺ Ω1 → Ca(A) ∼= OT.
(e) Assume ψIa � b ≺ I, ψIa � c ≺ I and a ∈ CI(a). Then Cb(A) ∩ CI(a) ∼=

Cc(A) ∩ CI(a).
(f) Assume a ≺ κ, d := ψκc ∈ OT, z := min{a, d}, A ⊆ M(A). Then

d ∈ Ca(A)↔ d ∈ A ∩ ã ∨ {κ, c} ⊆ Cz(A).
(g) (A ⊆ M(A) ∧ b̃ � c ∧ b−I = c−I)→ Cb(A) ∩ (b̃+ 1) ∼= Cc(A) ∩ (b̃+ 1).
(h) A ∩ a ⊆ Ca(A).

Proof: (a), (b): We show under the assumption A ⊆ M(A) and ã � b that
Cb(A) ⊆ Ca(A).
Assume A ⊆ M(A). We show ∀x ∈ OT.∀a, b ∈ OT.ã � b→ x ∈ Cb(A)→ x ∈
Ca(A) by induction on length(x). Suppose x =NF ϕyz ∨ x =′

NF y+ z ∨ (x =NF

Ωy ∧ y = z). Then x ∈ A ∩ b ∨ y, z ∈ Cb(A). Suppose y, z ∈ Cb(A). Then the
assertion follows using the IH. The case x ∈ A∩a is trivial. Suppose x ∈ A∩ b
and a � x. Then x ∈ M(A), x ∈ Cx(A), y, z ∈ Cx(A), by IH y, z ∈ Ca(A),
x ∈ Ca(A). Suppose x =NF ψκy. Then the assertion follows in a similar way.
(c), (d), (h): easy.
(e): Assume a, b, c as in the assertion. We show ∀u ∈ CI(a).u ∈ Cb(A) ↔ u ∈
Cc(A) by Ind(length(u)) and assume u according to induction.
Case u = 0, I: trivial.

33

Case u =NF ϕu1
u2∨u =′

NF u1+u2∨(u =NF Ωu1
∧u1 = u2). Then u1, u2 ∈ CI(a)

and u ∈ Cb(A)⇔ u1, u2 ∈ Cb(A) ∨ u ∈ A ∩ b ⇔ u1, u2 ∈ Cb(A) ∨ u ∈ A ∩ ψIa
⇔ u1, u2 ∈ Cc(A) ∨ u ∈ A ∩ c ⇔ u ∈ Cc(A) (using the IH).
Case u =NF ψκu1. If κ ≺ I, then u ≺ ψIa, κ � b, c, u ∈ Cb(A) ⇔ u ∈ A ⇔
u ∈ Cc(A). If I � κ, then κ, u1 ∈ CI(a) and (by IH) u ∈ Cb(A) ⇔ κ, u1 ∈
Cb(A) ∨ u ∈ A ∩ e ⇔ κ, u1 ∈ Cc(A) ∨ u ∈ A ∩ ψIa ⇔ κ, u1 ∈ Cc(A) ∨ u ∈
A ∩ c⇔ u ∈ Cc(A).

(f) If ã � d, then z̃ = ã, Cz(A) ∼= Cã(A). Suppose d ≺ ã. Then κ = I,

d ∈ Ca(A) ⇔ d ∈ Cã(A) ⇔ d ∈ A ∩ ã ∨ c ∈ Ca(A), and by (e) ⇔ d ∈
A ∩ ã ∨ c ∈ Cz(A)⇔ d ∈ A ∩ ã ∨ κ, c ∈ Cz(A).
(g): We show ∀x ∈ OT.x ≺ b̃ → (x ∈ Cb(A) ↔ x ∈ Cc(A)) by induction on
length(x), assume x according to induction.
Case x = 0, I: x ∈ Cb(A) ∩ Cc(A).
Case x =NF ϕb′c

′ or x =′
NF b′ + c′ or x =NF Ωb′ ∧ b

′ = c′. x ∈ Cb(A) ⇔ x ∈
A ∩ b ∨ {b′, c′} ⊂ Cb(A)⇔ x ∈ A ∩ c ∨ {b′, c′} ⊂ Cc(A)⇔ x ∈ Cc(A).
Case x =NF ψκb

′. Subcase κ ≺ b: x ∈ Cb(A) ⇔ x ∈ A ∩ b ⇔ x ∈ A ∩ c ⇔
x ∈ Cc(A). Subcase b � κ: By x ≺ b̃ follows κ = I, c ≺ κ. Now by (f)
x ∈ Cb(A)⇔ x ∈ A ∨ κ, I ∈ Cx(A)⇔ x ∈ Cc(A).
Now Cb(A) ∩ b̃ ∼= Cc(A) ∩ b̃. Further b̃ ∈ Cc(A) ⇔ b̃ ∈ Cb(A) (and therefore
the assertion): “⇐” follows by (a), (b). “⇒”: Case b̃ = Ωd+1: b̃ ∈ Cc(A) ⇔

b̃ ∈ Cb̃(A) ⇔ d ∈ Cb̃(A) ∩ b̃ ⇔ d ∈ Cc(A) ⇔ b̃ ∈ Cc(A). Case b̃ =NF ψIe:

b̃ ∈ Cb(A) ⇒ b̃ ∈ Cb̃(A) ⇒ e ∈ Cb̃(A) ∩ CI(e) ⊆ Cc(A) (by (e)) ⇒ ψIe ∈
Cc(A). ut

Assumption 4.8 If not stated differently, let in the following A, Ai, A
′, B,

Bi, B
′ : Cl(N), a, ai, a

′, b, bi, b
′, c, ci, c

′ : N, κ, π ∈ R.

Lemma 4.9 (a) A ⊆ M(A), b � a→ τA(a) ∩ b ⊆ τA(b).
(b) (A ⊆ M(A) ∧ b � a ∧ b̃ = ã)→ τA(b) ∼= τA(a) ∩ b.
(c) a ≺ Ω1 → τA(a) ∼= a.
(d) 0, I ∈ M(A).
(e) If A ⊆ M(A), b, c ∈ (A ∩ ã) ∪ (M(A) \ ã), a =NF b + c or a =NF ϕbc or

a =NF Ωb, then a ∈ M(A).

Proof: (a): Lemma 4.7 (b). (b): Lemma 4.7 (a). (c): Lemma 4.7 (d). (d):
0, I ∈ Cy(A) for every y ∈ OT. (e): In case of b ≺ ã, b ∈ A ∩ ã ⊆ Ca(A),
otherwise b̃ = ã, b ∈ Cb(A) ∼= Ca(A). Similarly c ∈ Ca(A), therefore a ∈
Ca(A), a ∈ M(A). ut

34

4.3 The Step to the Next Cardinal – W(A)

We introduce now W(A), such that essentially

W(A) =
⋂
{Y ⊆ N | ∀x ∈ M(A).τA(x) ⊆ Y → x ∈ Y } .

More precisely this will be characterized in the following assumption, the def-
inition of W(A) can be found in Definition 5.6 in Sect. 5.

Assumption 4.10 For every m-type A we assume that we can define a m-
type W(A), which is correctly defined from A : Cl(N), such that

(a) AA(W(A)) ⊆W(A)
(b) If B : Cl(N), then AA(B) ∩W(A) ⊆ B →W(A) ⊆ B.

Notation 4.11 By “we prove ∀x ∈W(A).φ(x) by Ind(x ∈W(A))” we mean
that with B := {y : N | φ(y)} we show AA(B) ∩W(A) ⊆ B, i.e. for all x ∈
W(A) under the assumption ∀y ∈ τA(x).φ(y), which will be called induction
hypothesis, holds φ(x). By Assumption 4.10 (b) follows then ∀x ∈W(A).φ(x).
By “assume x according to induction” we mean in this context “assume x ∈
W(A) and the induction hypothesis”.

Definition 4.12 (a) Let for A : Cl(N), b : N A|b := A ∩ (b+ 1).
(b) A v B := A ⊆ OT ∧ ∀x ∈ A.A|x ∼= B|x (this is equivalent to A ⊆

OT ∧ A ⊆ B ∧ ∀x ∈ A.B ∩ x ⊆ A, “A is a segment of B”).

Lemma 4.13 (a) ∀x ∈W(A).τA(x) ⊆W(A) ∧ x ∈ M(A).
(b) (A ∩ Ωa

∼= B ∩ Ωa ∧ A ⊆ M(A) ∧ B ⊆ M(B)) → (M(A) ∩ Ωa+1
∼=

M(B) ∩ Ωa+1 ∧W(A) ∩ Ωa+1
∼= W(B) ∩ Ωa+1).

(c) If A ∼= B, then W(A) ∼= W(B).
(d) W(A) ∩ Ω1 v OT.

Proof: (a): We show by Ind(x ∈ W(A)) that ∀x ∈ W(A).(τA(x) ⊆ W(A) ∧
x ∈ M(A)), which is immediate.
(b): The assertion for M(A) is obvious. For W(A) we show by Ind(x ∈W(A))
that ∀x ∈ W(A).x ≺ Ωa+1 → x ∈ W(B), therefore W(A) ∩ Ωa+1 ⊆ W(B) ∩
Ωb+1, which is immediate, because of ∀y ≺ Ωa+1.τ

A(y) ∼= τB(y). W(A) ∩
Ωa+1 ⊇W(B) ∩ Ωb+1 follows in the same way.
(c): Immediate by (b).
(d): ∀x ≺ Ω1.τ

A(x) ∼= x, therefore by (a) ∀x ∈ W(A).x ⊆ W(A), and, since
W(A) ⊆ OT, ∀x ∈W(A) ∩ Ω1.W(A)|x ∼= x. ut

Definition 4.14 Assume A : Cl(N).

35

(a) A is weakly downward closed iff ∀x, y ∈ OT.∀κ ∈ R.∀z ∈ A.(((z =′
NF

x + y ∨ z =NF ϕxy ∨ (z =NF Ωx ∧ x = y)) → (x ∈ A ∧ y ∈ A)) ∧ (z =NF

ψκy → κ− ∈ A)).
(b) A is downward closed, iff A is weakly downward closed, ∀x, y ∈ OT.∀z ∈

A.z =NF x + y → (x ∈ A ∧ y ∈ A), ∀x ∈ A.x̃, x−Fi, x−I ∈ A and
∀κ ∈ R ∩ A.κ− ∈ A.

(c) A is weakly upward closed bounded by C, iff (∀x, y ∈ A.∀z ∈ OT.z �
C → ((z =′

NF x+ y ∨ z =NF ϕxy ∨ z =NF Ωx)→ z ∈ A)) ∧ (0 � C → 0 ∈
A) ∧ (I � C → I ∈ A).

(d) A is upward closed bounded by C, iff (∀x, y ∈ A.∀z ∈ OT.z � C → ((z =
x+ y ∨ z = ϕxy ∨ z = Ωx ∨ z = x+)→ z ∈ A))∧ (0 � C → 0 ∈ A)∧ (I �
C → I ∈ A).

(e) A is (weakly) upward closed, iff A is (weakly) upward closed bounded by
OT.

Remark 4.15 If A is weakly downward closed and weakly upward closed boun-
ded by C and A � C, then A is downward closed and upward closed bounded
by C.

Proof: easy. ut

Lemma 4.16 (a) If A ⊆ M(A) and A ∩ ã is weakly downward closed, then
Ca(A) is downward and upward closed, τA(a) downward closed and up-
ward closed bounded by a, and W(A) ∩ a+, M(A) ∩ a+ are downward
closed.

(b) If A ∩ κ vW(A), then A ∩ κ is weakly downward closed.

Proof: (a) Assume A ⊆ M(A), A ∩ ã weakly downward closed. We show

Cã(A) is weakly downward closed. (Note that Ca(A) ∼= Cã(A)). Assume x =′
NF

y + z ∨ x =NF ϕyz ∨ (x =NF Ωy ∧ y = z), x ∈ Cã(A). Then x ∈ A ∩ ã,

y, z ∈ A ∩ ã ⊆ Cã(A) or directly y, z ∈ Cã(A).

Assume x =NF ψκy ∈ Cã(A), y ∈ Cκ(y). We show κ− ∈ Cã(A):
If κ � a, then x ∈ A ∩ ã, κ− ∈ A ∩ ã ⊆ Ca(A).
Case κ = I: κ− = 0 ∈ Ca(A).

Case a ≺ κ 6= I: ã � x, κ ∈ Cã(A), κ = Ωz+1for some z, by the first part of

this proof z ∈ Cã(A), κ− = z ∈ Cã(A) or κ− =NF Ωz ∈ Cã(A).
Ca(A) is trivially weakly upward closed, therefore Ca(A) is downward and
upward closed.
τA(a) downward and upward closed bounded by a follows from the above.
W(A) ∩ a+, M(A) ∩ a+ downward closed: Assume x =NF y1 + y2 ∨ x =NF

ϕy1y2 ∨ (x =NF Ωy1 ∧ y1 = y2) ∨ (x =NF ψκu ∧ y1 = y2 = κ−) ∨ y1 = y2 ∈
{x̃, x−Fi, x−I} ∨ (x ∈ R ∧ y1 = y2 = x−). Assume x ∈ W(A) ∩ a+. Then
x ∈ Cx(A), yi ∈ Cx(A) ∩ x ∼= τA(x) ⊆ W(A). Assume x ∈ M(A) ∩ a+. Then

36

x ∈ Cx(A), by (a) yi ∈ Cx(A), by Lemma 4.7 (b) yi ∈ Cyi(A), yi ∈ M(A).
(b) Assume A ∩ κ v W(A). Assume x =′

NF y1 + y2 ∨ x =NF ϕy1y2 ∨ (x =NF

Ωy1 ∧ y1 = y2), x ∈ A ∩ κ. Then x ∈ W(A) ⊆ M(A), x ∈ Cx(A), x 6∈ A ∩ x,
therefore y1, y2 ∈ Cx(A) ∩ x ∼= τA(x) ⊆ W(A)|x ∼= A|x. Assume x =NF ψπy,
y ∈ Cπ(y) and x ∈ A. Then x ∈ W(A) ⊆ M(A), x ∈ Cx(A), π ∈ Cx(A). If
π = I, then π− = 0 ∈ W(A). Otherwise π = Ωz+1 ∈ Cx(A), z + 1 ∈ Cx(A). If
x � z + 1, z ∈ Cx(A), otherwise z + 1 ∈ τA(x) ⊆ W(A) ∩ x ⊆ A, by the first
part z ∈ A ∩ x ⊆ Cx(A), in both cases therefore z ∈ Cx(A), π− = z ∈ τA(x)
or π− =NF Ωz ∈ τ

A(x), π− ∈W(A). ut

Lemma 4.17 (a) 0 ∈W(A).
(b) If A ∩ κ ∼= W(A) ∩ κ, A ⊆ M(A), then W(A) ∩ κ+ is downward closed

and upward closed bounded by κ+.
(c) Assume A ⊆ M(A). Then ∀κ, y ∈ W(A).∀z ∈ OT.(z = max{κ, y} ∧

W(A) ∩ z̃ ∼= A ∩ z̃ ∧ κ ∈ R ∧ y ∈ Cκ(y))→ ψκy ∈W(A).

Proof: (a): trivial.

(b): We show W(A)∩κ+ is weakly upward closed bounded by κ+. By Lemma
4.16 (a) and Remark 4.15 follows the assertion.

(i) 0 ∈W(A): (a).

(ii) Assume b ∈W(A)∩ κ+. We show ∀c ∈W(A).∀a ∈ OT.a =NF b+ c→ a ∈
W(A) by Ind(c ∈ W(A)) and assume c according to induction, a =NF b + c,
c ∈ OT.
c ∈W(A), by Lemma 4.9 (e) therefore a ∈ M(A).
Assume d ∈ τA(a). Assume d ≺ b. Then d ∈ τA(a) ∩ b ⊆ τA(b) ⊆ W(A).
Assume d = b. Then d ∈ W(A). Assume b ≺ d. Then d = b + d′, 0 ≺ d′ ≺ c,
therefore d =NF b + d′. d′ ∈ Ca(A) ∩ c ⊆ τA(c), by IH d ∈ W(A). Therefore
a ∈ AA(W(A)) ⊆W(A) and the assertion.

(iii) Proof for a =NF ϕbc:
We show ∀b ∈ W(A).∀c ∈ W(A).∀a ∈ OT.a =NF ϕbc → a ≺ κ+ → d ∈
W(A) by Ind(b ∈ W(A)), side-Ind(c ∈ W(A)). Assume b according to main-
induction, c according to side-induction. Assume a, a =NF ϕbc, a ≺ κ+. We
show a ∈W(A).
Lemma 4.9 (e) yields a ∈ M(A).
We show ∀d ∈ τA(a).d ∈W(A) by side-side-Ind(length(d)). Assume d accord-
ing to side-side-induction. Suppose d � max{b, c}. Then d ∈ τA(b) ∪ τA(c) ∪
{b, c} ⊆ W(A). Otherwise max{b, c} ≺ d ≺ ϕbc, d 6∈ G. Case d =′

NF d1 + d2.
Then di ∈ τ

A(a), by side-side-IH di ∈ W(A), and by (ii) d ∈ W(A). Assume
now max{b, c} ≺ d =NF ϕd1d2. Subcase d1 ≺ b: d2 ≺ a, d2 ∈ Ca(A)∩a ∼= τA(a),

37

by side-side-IH d2 ∈ W(A), further d1 ∈ Ca(A) ∩ b ⊆ τA(b), by main-IH
d ∈W(A).
Subcase d1 = b: d2 ∈ Ca(A) ∩ c ⊆ τA(c), by side-IH d ∈W(A).
Subcase b ≺ d1: d � c, contradicting the assumption above.

(iv) We show ∀b ∈ W(A).Ωb ≺ κ+ → Ωb ∈ W(A) by Ind(b ∈ W(A)) and
assume b according to induction. If b = Ωb the assertion is trivial. Let a = Ωb

and assume a =NF Ωb, a ≺ κ+.
a ∈ M(A) by Lemma 4.9 (e).
We show ∀y ∈ τA(a).y ∈W(A) by side-induction on length(y), and assume y
according to induction.
Suppose y � b. Then y ∈ τA(a)|b ⊆ τA(b) ∪ {b} ⊆W(A).
Assume b ≺ y ≺ a. Then y 6∈ Fi.
Case y =′

NF y1 + y2 or y =NF ϕy1y2: yi ∈ τ
A(a), by side-IH yi ∈W(A), by (ii),

(iii) y ∈W(A).
Case y =NF Ωy1 : y1 ∈ τ

A(a) ∩ b ⊆ τA(b), by main-IH y ∈W(A).
Case y =NF ψκy1. κ 6= I. y ≺ a, therefore κ � a, y ∈ Ca(A), therefore
y ∈ A ∩ a ⊆W(A).

(v) We show I ≺ κ+ → I ∈ W(A). I ∈ M(A). We show ∀y ∈ τA(I).y ∈ W(A)
by induction on length(y):
If y ∈ A ∩ I, y ∈ W(A). If y = 0, y ∈ W(A) by (i). If y =′

NF y1 + y2 or
y =NF ϕy1y2 or y =NF Ωy1 ∧ y1 = y2, then by IH yi ∈W(A), by (ii), (iii), (iv)
y ∈W(A).
If y =NF ψκz, y ∈ A ∩ I ⊆W(A).

The assertion follows now by (i)–(v).

(c): Assume A ⊆ M(A), τ ∈ Car ∩W(A), W(A) ∩ τ ∼= A ∩ τ . We show
∀y ∈W(A).y ≺ τ+ → ∀κ ∈ R.(κ = I∨κ− ∈W(A)|τ)∧y ∈ Cκ(y)∧ψκy ≺ τ+)
→ ψκy ∈W(A)

by Ind(y ∈W(A)).
Then with τ := z̃ follows the assertion.
Assume y according to Induction, y, κ according to the assumptions of the
assertion.
We show

∀u ∈ Cκ(y) ∩ Cψκy(A) ∩ τ+.u ∈W(A) (∗)

by side-induction on length(u). Assume u according to induction, u ∈ Cκ(y)∩
Cψκy(A) ∩ τ+. Case u = 0, I: (b). Case u =′

NF u1 + u2 or u =NF ϕu1
u2 or

u =NF Ωu1
∧ u1 = u2: By IH ui ∈W(A), by (b) u ∈W(A).

Case u =NF ψπu
′.

Subcase u ≺ ψ̃κy. Then by Lemma 4.7 (f) u ∈ A ∨ (ψκy ≺ π = I ∧ π, u′ ∈

38

Cu(A)).
If u ∈ A, u ∈ A ∩ τ ⊆W(A). Assume now π = I and I, u′ ∈ Cu(A).
If κ 6= I, u � κ− ∈W(A), u ∈ Cψκy(A) ∩ κ− ⊆ τA(κ−) ⊆W(A).
If κ = I, u′ ≺ y. By Lemma 4.7 (e) u′ ∈ Cψπu

′

(A) ∩ Cπ(u
′) ⊆ Cψκy(A),

u′ ∈ Cπ(u
′) ∩ τ+ ⊆ Cκ(y) ∩ τ

+, by side-IH u′ ∈ W(A) ∩ τ+. If u′ ≺ τ ,
u′ ∈ A ∩ y ∩ τ ⊆ Cy(A) ∩ y ∼= τA(y) (using Lemma 4.7 (h)). If τ � u′,
ũ′ = τ = ỹ, u′ ∈ W(A) ⊆ M(A), u′ ∈ Cu′(A) ∩ y ∼= Cy(A) ∩ y ∼= τA(y). In
both cases the main-IH yields u ∈W(A).

Subcase ψ̃κy = u. Then κ 6= I, u = κ− ∈W(A).

Subcase ψ̃κy ≺ u. Then using Lemma 2.15 (e) π, u′ ∈ Cκ(y) ∩ Cψκy(A), u′ ≺
y ≺ τ+, u′ ∈ Cπ(u

′), π � τ+ ∨ π = I.
If π ≺ τ+, by side-IH π ∈ W(A), π− ∈ W(A). If π = τ+, π− ∈ W(A).
Therefore in all cases π = I ∨ π− ∈ W(A)|τ . By side IH further u′ ∈ W(A),
u′ ∈ M(A), u′ ∈ Cu′(A). If u′ ≺ ỹ, u′ ≺ τ , u′ ∈W(A)∩τ ⊆ A∩τ , u′ ∈ A∩ ỹ ⊆
τA(y). Otherwise u′ ∈ Cu′(A) ∩ y ∼= Cy(A) ∩ y ∼= τA(y). The main IH yields
in all cases ψπu

′ ∈W(A), and the proof of (∗) is complete.

It follows Cψκy(A) ∩ ψκy ⊆ W(A). Further, if y ≺ ψ̃κy, y ∈ W(A) ∩ τ ∩

ψ̃κy ⊆ Cψκy(A) otherwise y ∈ M(A), y ∈ Cy(A) ⊆ Cψκy(A). If κ 6= I, κ− ∈
M(A), κ− ∈ Cκ−(A) ∼= Cψκy(A), κ ∈ Cψκy(A), otherwise directly κ = I ∈
Cψκy(A), ψκy ≺ κ, therefore ψκy ∈ Cψκy(A), ψκy ∈ M(A), ψκy ∈ A

A(W(A)) ⊆
W(A). ut

4.4 Distinguished Sets and Classes

Definition 4.18 Ag(A) := A ⊆ OT ∧ A v W(A), A is a “distinguished set”
(in German “ausgezeichnete Menge”).
Prog(A,B) := ∀x ∈ A.A ∩ x ⊆ B → x ∈ B.
Prog(B) := Prog(Ω1, B), (which is equivalent to ∀x ≺ Ω1.x ⊆ B → x ∈ B)
A+ :=

⋃
z∈A((W(A) ∩ z+) ∪ {z+})

Remark 4.19 (a) A+ is correctly defined from A : Cl(N), a : N.
(b) If A ∼= A′, B ∼= B′, then A v B ↔ A′ v B′, Ag(A) ↔ Ag(A′),

Prog(A,B)↔ Prog(A′, B′), Prog(A)↔ Prog(A′), A+ ∼= A′+.

Remark 4.20 If a ∈ A, Ag(A), then τA(a) ∼= A ∩ a.

Proof: A ∩ a ⊆ Ca(A) ∩ a ∼= τA(a). Further a ∈ A ⊆ W(A), τA(a) ⊆
W(A) ∩ a ∼= A ∩ a. ut

Lemma 4.21 Assume Ag(A).

(a) Prog(A,B)→ A ⊆ B.

39

(b) A ∩ Ω1 v OT.
(c) Prog(B)→ A ∩ Ω1 ⊆ B.

Proof: (a) Assume Prog(A,B). Let C := {y ∈ OT|y ∈ A → y ∈ B}. Then
by Remark 4.20 follows AA(C) ⊆ C, W(A) ⊆ C, A ⊆ B.
(b) A ∩ Ω1 vW(A) ∩ Ω1 v OT by Lemma 4.13 (d).
(c) By Prog(B), i.e. Prog(Ω1, B) follows Prog(A∩Ω1, B), and by A∩Ω1 v Ω1

therefore A ∩ Ω1 ⊆ B. ut

Notation 4.22 If we have Ag(A), then by “we show ∀x ∈ A.φ(x) by Ind(x ∈
A)” we mean that we prove Prog(A, {x : N | φ(x)}), i.e. we show for all x ∈ A
under the assumption (which will be called induction hypothesis) ∀y ≺ x.y ∈
A → φ(y) that φ(x) holds. By the lemma above follows then ∀x ∈ A.φ(x).
By “assume x according to assumption” we mean “assume x ∈ A and the
induction hypothesis for x”.

Lemma 4.23 Assume Ag(A).

(a) A is downward closed and upward closed bounded by A.
(b) If κ, c ∈ A, κ ∈ R, c ∈ Cκ(c), then ψκc ∈ A.
(c) Ag(A+) ∧ A ⊆ A+ ∧ ∀x ∈ A.x+ ∈ A+.

Proof: (a): Lemma 4.17 (b).
(b): Lemma 4.17 (c).
(c): A ⊆ A+ ⊆ OT: immediate. If x ∈ A, then x̃ ∈ A, A ∩ x̃ ∼= W(A) ∩ x̃ ∼=
A+ ∩ x̃, A+ ∩ x+ ∼= W(A) ∩ x+ ∼= W(A+) ∩ x+, x̃ ∈ A ∩ x+ ⊆ W(A) ∩ x+ ∼=
W(A+) ∩ x+, x+ ∈ A+, further x̃ ∈ A+ ∩ x+ ∼= W(A+) ∩ x+, x+ ∈ W(A+),
therefore A+|x+ ∼= W(A+)|x+, therefore ∀z ∈ A+.A+|z ∼= W(A+)|z, A+ v
W(A+). ut

Lemma 4.24 (Uniqueness of distinguished sets). Assume Ai : Cl(N), Ai
∼=

W(Ai) ∩ ai (i = 0, 1), a0 � a1. Then A0
∼= A1 ∩ a0.

Proof: W.l.o.g. a0 = a1. (Otherwise replace A1 by A1 ∩ a0).
We show ∀y ∈ A0.y ≺ a0 → y ∈ A1 by Ind(y ∈ A0), assume y according to
induction, y ≺ a0.
We show ∀z ∈ A1.z ≺ y → z ∈ A0 by Ind(z ∈ A1) and assume z according to
induction, z ≺ y.
A0∩y ⊆ A1, therefore A0∩z ⊆ A1∩z. By A1∩z ⊆ C follows A1∩z ⊆ A0∩z.
Therefore A0|z ∼= W(A0)|z ∼= W(A1)|z ∼= A1|z, z ∈ A0, the side-induction
is complete. Now A1 ∩ y ⊆ A0 ∩ y. Further A0 ∩ y ⊆ A1 ∩ y. Therefore
y ∈ A0|y ∼= W(A0)|y ∼= W(A1)|y ∼= A1|y, and the main induction is complete.
Therefore A0

∼= A0 ∩ a0 ⊆ A1, similarly A1 ⊆ A0 and we are done. ut

40

4.5 The Union of all Distinguished Sets – W

Definition 4.25 W :=
⋃
X:P(N).Ag(X) X. Obviously W : Cl(N).

Lemma 4.26 (a) ∀X : P(N).Ag(X) ↔ X v W, that is: the distinguished
sets are just segments of W.

(b) If B : Cl(N) and B v W, then Ag(B).

Proof: (a), “→”: X ⊆ W is clear. Assume a ∈ X, b ∈ W ∩ a. Then there
exists B : P(N) with b ∈ B and Ag(B). X ′ := X|b, B′ := B|b.
Then by Lemma 4.13 (b) W(X ′)|b ∼= W(X)|b ∼= X|b ∼= X ′ and W(B′)|b ∼=
W(B)|b ∼= B|b ∼= B′. Therefore by Lemma 4.24 X ′ ∼= B′, b ∈ B′ ∼= X ′ ⊆ X.

“←”If a ∈ X, then there exists B : P(N) such that a ∈ B and Ag(B). The
proof of “→” shows B v W, therefore X|a ∼=W|a ∼= B|a ∼= W(B)|a, therefore
W(X)|a ∼= W(B)|a ∼= X|a, and we conclude Ag(X).
(b): As (a), “←”. ut

Lemma 4.27 Ag(W).

Proof: Assume a ∈ W. Then a ∈ A v W for some A : P(N), W|a ∼= A|a,
therefore W(W)|a ∼= W(A)|a ∼= A|a ∼=W|a. ut

Lemma 4.28 (a) Assume A : Cl(N), ∀x ∈ A.∃Y : P(N).Ag(Y) ∧ x ∈ Y ∧
Y ⊆ A. Then Ag(A).

(b) If A : Cl(N), y ∈ OT, Ag(A), then Ag(A ∩ y).

Proof: (a):We show A v W. Assume x ∈ A, Ag(Y), x ∈ Y ⊆ A. Then
Y v W, W|x ∼= Y |x ⊆ A|x ⊆ W|x. By Lemma 4.26 Ag(A).
(b): If a ∈ A ∩ y, then W(A ∩ y)|a ∼= W(A)|a ∼= A|a ∼= A ∩ y|a. ut

Lemma 4.29 (a) W is downward closed and upward closed bounded by W.
(b) ∀y, z ∈ W.∀x ∈ OT.(x =NF y + z ∨ x =NF ϕyz ∨ x =NF ψyz)→ x ∈ W.
(c) ∀x ∈ OT.Ωx ∈ W → Ωx+1 ∈ W.

Proof: (a) follows using Ag(W).
(b): Assume Ag(A), Ag(B), y ∈ A, z ∈ B. Then A,B v W, A ∪ B v W,
Ag(A∪B), y, z ∈ A∪B, y, z ∈ C := (A∪B)+, Ag(C), and if x =NF y+z, ϕyz
or x =NF ψyz, z � C, z ∈ C ⊆ W.
(c): If Ωx ∈ A, Ag(A), then Ωx+1 ∈ A

+, Ag(A+). ut

41

Lemma 4.30 Assume a ∈ M(W) ∩ I, B : P(N), τW(a) � B ⊆ W|a. Then
a ∈ W.

Proof: Let B̂ := (Σx : N.x ∈ B). By assumption there is some g : B̂ → P(N)
such that ∀y : B̂.Ag(gy) ∧ y0 ∈ gy. Let C : P(N), C := (

⋃
y:B̂(gy)) ∩ a. By

Lemma 4.28 follows Ag(C).
We show τW(a) ⊆ W: If y ∈ τW(a), then y ∈ Ca(W)∩a, y � x ∈ W for some
x ∈ B, x � a, y ∈ Ca(W)|x ⊆ τW(x) ∪ {x} ⊆ W.
We show C ∼=W∩a: “⊆” is obvious. “⊇”: Assume y ∈ W∩a. Then y ∈ τW(a),
y � z for some z ∈ B, z ∈ g(p(z, p)) v W for some p : z ∈ B, y ∈ W, therefore
y ∈ g(p(z, p)) ⊆ C.
We show ∀d ∈ W(C).d ≺ a → d ∈ C, (therefore W(C) ∩ a ⊆ C) by Ind(d ∈
W(C)).
Assume d according to induction, d ≺ a. Then τC(d) ⊆ C, d ∈ Cd(C), by
Lemma 4.7 (g) d̃ ∈ Cd(C)|d̃ ∼= Ca(C)|d̃ ∼= Ca(W)|d̃ ⊆ τW(a) ⊆ W, d+ ∈ W,
W ∩ d+ ∼= W(W) ∩ d+, W|d ∼= W(W)|d, C|d ∼= W|d ∼= W(W)|d ∼= W(C)|d,
d ∈W(C)|d ⊆ C and the induction is complete.
Let C ′ : P(N), C ′ := C ∪ {a}. W(C ′) ∩ a ∼= W(C) ∩ a ∼= C ′ ∩ a. τC

′

(a) ∼=
τW(a) ⊆ W ∩ a ∼= C ∼= C ′ ∩ a ⊆ W(C ′), a ∈ M(W)|a ∼= M(C ′)|a, therefore
a ∈W(C ′) ∩ C ′, W(C ′)|a ∼= C ′|a ∼= C ′, Ag(C ′), a ∈ C ′ ⊆ W. ut

Lemma 4.31 (a) ∀x ∈ W ∩ I.Ωx ∈ W.
(b) ψI0 ∈ W ∧ ∀x ∈ OT.ψIx ∈ W → ψI(x+ 1) ∈ W.

Proof: (a): We show ∀a ∈ W.a ≺ I → Ωa ∈ W by Ind(a ∈ W). Assume
a ∈ W according to induction, a ≺ I. We have to show Ωa ∈ W.
If a ∈ Fi, a = Ωa ∈ W.
Otherwise a ≺ Ωa =NF Ωa. Assume a ∈ A with A : P(N) such that Ag(A).
τW(a) ∼= τA(a).
Let B := {Ωy+1|y ∈ τ

A(a)}. By IH and Lemma 4.29 (c) B ⊆ W|Ωa, B : P(N).
If y ∈ τW(Ωa), ỹ ∈ τW(Ωa), ỹ = Ωc for some c, c ∈ τW(Ωa) ∩ a ⊆ τA(a),
y ≺ Ωc+1 ∈ B. a ∈ Ca(W) ⊆ CΩa(W), therefore Ωa ∈ CΩa(W), Ωa ∈ M(W).
By Lemma 4.30 we conclude Ωa ∈ W and therefore the assertion.
(b) Let for the proof of ψI0 ∈ W, c := 0, d := ψI0, e := 0, (and ψIe ∈ M(W))
and for the proof of ψIx ∈ W → ψI(x+1) ∈ W under the assumption ψIx ∈ W,
c := ψIx, d := ψI(x + 1), e := x + 1 (and ψIx ∈ CψIx(W), x ∈ CψIx(W),
e ∈ CψIx(W) ∩ CI(x) ⊆ CψIe(W), ψIe ∈ M(W)).
Let B := {Ωn

c+1 | n : N}. Then using (a) B ⊆ W, ∀y ∈ τW(d).∃n : N.y ≺
Ωn
c+1 ∈ B, d ∈ M(W). By Lemma 4.30 follows the assertion. ut

42

4.6 A Distinguished Class Containing I

The next goal is to show, (Lemma 4.38 (a)) that

W(W) ∩ I ∼=W ∩ I. (∗)

This allows us to show W(W) ∩ ΩI+1 is distinguished, and therefore we have
defined a distinguished class, namely W(W)∩ΩI+1, such that I ∈W(W)∩ΩI+1.
With this result it is easy to define distinguished classes containing ΩI+n. We
show (∗) by proving

AW(W) ∩ I ⊆ W. (∗)

In order to achieve this, by Lemma 4.31 (b) it suffices to show

ψIc ∈ A
W(W)→ ψIc ∈ W (∗∗.)

In order to prove (∗∗), by Lemma 4.30 it suffices to show

ψIc ∈ A
W(W)→ CψIc(W) ∩ ψIc is in P(N). (∗ ∗ ∗)

We prove the stronger assertion that CW
I (c) := CI(c) ∩ CψIc(W) is a set (and

not only a class) under the premise of (∗ ∗ ∗). This can be shown by first
observing that CI(c) is the least set B such that

(A1) 0, I ∈ B;
(A2) B is closed under +, ϕ,Ω;
(A3) if d =NF ψκb, κ, b ∈ B, b ≺ c, then d ∈ B;
(A4) if a ∈ B ∩ I, then a ⊆ B.

(In [BS76], CI(a) was essentially defined like this). This can be modified to:
CI(c) is the least set B, such that

(B1) 0, I ∈ B;
(B2) if a, b ∈ B, d =′

NF a+ b ∨ d =NF ϕab ∨ d =NF Ωa, then d ∈ B;
(B3) if d =NF ψκb, I ≺ κ, κ, b ∈ B, b ≺ c, then d ∈ B;
(B4) ψI0 ⊆ B;
(B5) if b ∈ B ∩ CI(b) ∩ a, then ψIb ⊆ B.

From this we derive that (this will be essentially proved in the following – in
this formulation it is just no valid formula, whereas the former statements can
be proved easily, but are not needed here), that, if ψIc ∈ A

W(W), CW
I (c) is

the least class Y , such that

43

(D1) 0, I ∈ Y ;
(D2) if a, b ∈ Y , d =′

NF a + b, d =NF ϕab or d =NF Ωa then d ∈ Y ;
(D3) if κ, b ∈ Y , b ≺ c, I ≺ κ ∈ R, d =NF ψκb, then d ∈ Y ;
(D4) B :=W ∩ ψI0 ⊆ CW

I (c);
(D5) if b ∈ Y , b ∈ CI(b) ∩ c, then B := ψI(b + 1) ∩W ⊆ Y ;

where the “B” in (D4) and (D5) can always be chosen as a set. Further the
definition above is a continuous inductive definition, i.e. the closure ordinal is
ω. Using that in Martin-Löf’s type theory the axiom of choice holds, we can
introduce CW

I (c) as a set.

We introduce the operator Γc corresponding to the inductive definition:

Definition 4.32 Assume A : Cl(N). Then

Γc(A) := {0, I}

∪{d ∈ OT | ∃a, b ∈ A.d =′

NF a+ b ∨ d =NF ϕab ∨ d =NF Ωa}

∪{d ∈ OT | ∃κ, b ∈ A.b ≺ c ∧ I ≺ κ ∈ R ∧ d =NF ψκb}

∪(W ∩ ψI0)

∪
⋃

b∈A.b∈CI(b)∩c

(W ∩ ψI(b + 1))

We note that Γc(A) : Cl(N).

Definition 4.33 CW
I (c) := CI(c) ∩ CψIc(W), (which is : Cl(N)).

Lemma 4.34 Assume c ∈ OT, τW(ψIc) ⊆ W.
Then

(a) If A,B : Cl(N), A ⊆ B, then Γc(A) ⊆ Γc(B).
(b) Γc(C

W
I (c)) ⊆ CW

I (c).

Proof: (a): easy.
(b): For the parts corresponding to (D1)–(D3) this is easy. FurtherW∩ψI0 ⊆
CI(c) ∩ (ψIc ∩ W) ⊆ CI(c) ∩ CψIc(W), and if b ∈ CW

I (c), b ∈ CI(b) ∩ c, then
ψIb ∈ CI(c), W ∩ ψI(b + 1) ⊆ CI(c) ∩ (ψIc ∩W) ⊆ CW

I (c). ut

If A ⊆ CW
I (c), then Γc(A) can be defined as a set:

Lemma 4.35 Assume c : N, X : P(N), p : X ⊆ CW
I (c), q : c ∈ OT ∧

τW(ψIc) ⊆ W. Then we can define Γ′
p,q,c(X) : P(N), such that Γ′

p,q,c(X)Cl ∼=
Γc(X).

44

Proof: ψI0 ∈ W by Lemma 4.31 (b). If b ∈ X ⊆ CW
I (c), b ∈ CI(b) ∩ c,

then ψIb ∈ CW
I (c), ψIb ∈ τW(ψIc) ⊆ W, by Lemma 4.31 (b) ψI(b + 1) ∈

W. Therefore replace in the definition of Γc(A), W ∩ ψI0 by a (definable)
A : P(N) such that Ag(A) ∧ ψI0 ∈ A and W ∩ ψI(b + 1) by a A such that
Ag(A) ∧ ψI(b + 1) ∈ A, and we obtain Γ′

p,q,c(A). ut

We can now define (the type theoretical definition can be found in Sect. 5)
the iteration of Γc:

Assumption and Definition 4.36 Assume c : N, X : P(N), q : c ∈ OT ∧
τW(ψIc) ⊆ W,

(a) We assume (and will explicitly define this in Definition 5.8) that for n : N
we can define Γnc,q : P(N) such that Γ0

c,q
∼= ∅ and ∀n : N.Γn+1

c,q
∼= Γ(Γnc,q)

(here the n + 1 is the successor of n in N)
(b) Let Γωc,q : P(N), Γωc,q :=

⋃
n:N Γnc,q.

Lemma 4.37 Assume c : N, X : P(N), q : c ∈ OT ∧ τW(ψIc) ⊆ W. Then
Γωc,q
∼= CW

I (c).

Proof: We will omit the index c, q in this proof.
“⊆” Γn ⊆ CW

I (c) follows by induction on n : N using Lemma 4.34.
“⊇” We show

∀x ∈ CW

I (c). x ∈ Γ(∅)

∨∃x1, x2 ∈ CW

I (c).({x1, x2} ⊆ CW

I (c) ∧

length(x1) < length(x) ∧ length(x2) < length(x) ∧

∀X : P(N).{x1, x2} ⊆ X → x ∈ Γ(X)) .

Then, using that n < m → Γn ⊆ Γm (which follows directly from Lemma
4.34) follows by induction on length(x) that ∀x ∈ CW

I (c)∃n : N.x ∈ Γn.
Case x =′

NF a+ b or x =NF ϕab or (x =NF Ωa ∧ a = b). Then a, b ∈ CW
I (c), let

x1 := a, x2 := b.
Case x =NF ψκb, I ≺ κ, b ≺ c. Then κ, b ∈ CW

I (c), let x1 := κ, x2 := b.
Case x ≺ ψI0. By Lemma 4.31 (b) ψI0 ∈ W, x ∈ CψIc(W) ∩ ψIc ∩ ψI0 ⊆
W ∩ ψI0 ⊆ Γ(∅).
Otherwise ψI0 � x ≺ I, x ≺ ψIc, x ∈ CψIc(W) ∩ ψIc ∼= τψIc(c) ⊆ W, x−Fi =NF

ψIb for some b, ψIb � d ≺ ψI(b + 1), length(b) < length(ψIb) ≤ length(x),
therefore x ∈ CW

I (c), ψIb = x−Fi ∈ CψIc(W) ∩ ψIc ⊆ W, ψIb ∈ M(W), ψIb ∈
CψIb(W), b ∈ CψIb(W)∩CI(b) ⊆ CψIc(W)∩CI(c) ∼= CW

I (c) by Lemma 4.7 (e),
x ∈ ψI(b + 1) ∩W, let x1 := x2 := b. ut

45

Lemma 4.38 (a) If ψIc ∈ A
W(W), then ψIc ∈ W.

(b) AW(W) ∩ I ⊆ W.
(c) W ∩ I ∼= W(W) ∩ I.

Proof: (a): Assume c ∈ CI(c), ψIc ∈ A
W(W). Then for some q Γωc,q

∼= CI(c)∩
CψIc(W) holds. Let A : P(N), A := Γωc,q ∩ I. Then A ∼= ψIc ∩ CψIc(W) ∼=
τW(ψIc) ∼= ψIc ∩ W. ψIc ∈ A

W(W), ∀x ∈ τW(ψIc).x � x ∈ A, therefore by
Lemma 4.30 ψIc ∈ W.
(b): If x ∈ AW(W) ∩ I, then x−Fi ∈ Cx(W) ∩ x ⊆ W or x−Fi = x ∈ AW(W),
by (a) again x−Fi ∈ W, by Lemma 4.31 (b) x+Fi ∈ W, x ∈W(W)|x+Fi ⊆ W.
(c): W ⊆ W(W), and by Ind(y ∈ W(W)), using (b) follows ∀y ∈ W(W).y ≺
I→ y ∈ W. ut

4.7 Proving Well-ordering up to ψΩ1
ΩI+n

Definition 4.39 W0 :=W ∩ I, WS(i) := W(Wi) ∩ ΩI+1·S(i).
In the following we write I + i instead of I + 1 · i, similar for j, S(j), S(i) etc.
instead of i.

Lemma 4.40 For all i ≺ ω Ag(Wi) ∧ ΩI+i ∈ WSi ∧Wi
∼=WSi ∩ ΩI+i.

Proof: Meta Induction on i : N:
i = 0: By Lemma 4.38 (c) W0

∼= W(W) ∩ I ∼= W(W0) ∩ I ∼=W1 ∩ I. Therefore
Ag(W0) ∧ W0

∼= W1 ∩ ΩI. Further I ∈ CI(W), and by an easy induction on
length(x) follows for all ∀x ∈ τ(I)W ∼= CI(W) ∩ I.x ∈ W ∩ I ∼=W0 ⊆W(W0),
therefore ΩI = I ∈W(W0) ∩ ΩI+1

∼=W1.

i = j+1:Wj
∼=Wj+1∩ΩI+j . ThereforeWj+1

∼= W(Wj)∩ΩI+j+1
∼= W(Wj+1)∩

ΩI+j+1
∼=Wj+2∩ΩI+j+1, therefore Ag(Wi). Further ΩI+j+1 ∈ CΩI+j+1(W), and

if x ∈ τWj+1(ΩI+j+1), follows by induction on length(x) immediately x ∈
Wj+1 ∩ ΩI+j+1, x ∈ W(Wj+1), and therefore ΩI+j+1 ∈ W(Wj+1) ∩ ΩI+(j+2)

∼=
Wj+2. ut

Theorem 4.41 For all n ∈ N and each of the theories T = MLJ, ML[TD],
MLJ,aux, ML[TD],aux the following holds:
T ` ∀X : P(N).(∀y ∈ OT.(∀x ≺ y.x ∈ X)→ y ∈ X)→ ∀y ≺ ψΩ1

ΩI+n.y ∈ X.

Proof: We argue first in the theories with “aux”. Assume the premise of the
assertion. Then X : P(N) and Prog(X), therefore by Lemmata 4.21 (c) and
4.40WSn∩Ω1 ⊆ X. By Lemma 4.40 ΩI+n ∈ WSn and Ω1 ∈ W∩R∩I ⊆ WSn∩R,
therefore by Lemma 4.23 (b) ψΩ1

ΩI+n ∈ WSn. ByWSn∩Ω1 v OT we conclude

46

∀y : N.y ≺ ψΩ1
ΩI+n → y ∈ X.

The assertion for theories “without the aux” follows by Lemma 3.8 (a). ut

Corollary 4.42 The proof theoretic strength of MLJ, ML[TD], MLJ,aux,
ML[TD],aux and of the extensional version of it is ψΩ1

(ΩI+ω).

Proof: The lower bound follows by Theorem 4.41 and since the extensional
version is an extension of ML[TD]. The upper bound for the extensional version
(and therefore of ML[TD] and ML[TD],aux, too) can be found in [Set96c] and by
a straightforward modification of that embedding one gets the upper bounds
for MLJ and MLJ,aux. ut

5 The Type Theoretic Constructions used in the Well-ordering
Proofs

5.1 Definition of Ca(A)

We will code finite sets of natural numbers as natural numbers. This makes
the definition of Pfin(Pfin(N)) easy.

Definition 5.1 (a) We assume some coding of finite sets of natural numbers
as lists of natural numbers, which are again coded as elements of the
natural numbers. This should be done in such a way, that the set of
codes for finite subsets of N, written as Pfin(N), is a decidable subset
of the natural numbers, and that the element-relation a ∈fin A and the
subset-relation A ⊆fin B for A : Pfin(N), B : Pdec(N) or B : Pfin(N)
are decidable. (We usually omit the superscript fin). If A : Pdec(N), we
define Pfin(A) := {y | y ∈ Pfin(N)∧y ⊆fin A}, which should be a decidable
subset of N.
We assume that the operations ∼=fin,∪fin,∩fin can be defined as operations
on Pfin(N) and that for for a1, . . . , an : N the term {a1, . . . , an}fin is an
element of Pfin(N). Further we assume all the usual properties of such an
implementation.

(b) For A,B : Pfin(Pfin(N)), let A ⊗ B := {K ∪ L | K ∈ A ∧ L ∈ B},
A⊗ B : Pfin(Pfin(N)).

(c) For A : Pfin(N), a ∈ OT, let A � a := {K ∈ A | K ⊆fin a}, A � a :
Pfin(Pfin(N)).

Remark 5.2 (a) (∃K ∈ A ⊗ B.K ⊆fin C) ⇔ (∃K ∈ A.K ⊆fin C) ∧ (∃K ∈
B.K ⊆fin C).

(b) (∃K ∈ A � a.K ⊆fin C)⇔ ∃K ∈ A.K ⊆fin C ∩ a.

47

Definition 5.3 We define Ka(b) : Pfin(Pfin(N)) for a, b : OT by recursion on
length(b).
Ka(d) := ∅, if d 6∈ OT ∨ a 6∈ OT.
Otherwise:
Ka(0) := Ka(I) := {∅}.
If d =NF ϕbc or d =′

NF b + c then Ka(d) := (Ka(b)⊗ Ka(c)) ∪ ({{d}} � a).
If d =NF Ωb then Ka(d) := Ka(b) ∪ ({{d}} � a).

If d =NF ψκc, Ka(b) :=
{

(Ka(κ)⊗ Ka(c)) ∪ ({{d}} � a) if a ≺ κ
{{d}} otherwise.

Definition 5.4 Assume A : Cl(N). Ca(A) := {y ∈ OT | ∃L ∈ Ka(y).L ⊆fin

A}. Obviously, Ca(A) is a class, correctly defined from A : Cl(N).

Lemma 5.5 Assume A : Cl(N).

(a) Ca(A) ⊆ OT.
(b) 0, I ∈ Ca(A).
(c) ((d =NF ϕbc ∨ d =′

NF b + c ∨ (d =NF Ωb ∧ b = c)) ∧ d ∈ OT) → (d ∈
Ca(A)⇔ d ∈ A ∩ a ∨ {b, c} ⊆ Ca(A)).

(d) Assume d =NF ψκc.
If a ≺ κ, then d ∈ Ca(A)⇔ d ∈ A ∩ a ∨ {κ, c} ⊆ Ca(A).
If κ � a, then d ∈ Ca(A)⇔ d ∈ A ∩ a.

Proof: by Remark 5.2. ut

5.2 Definition of W(A)

W(A) will be defined in such a way that it fulfills the properties in Assump-
tion 4.10, which express: W(A) is the least set of ordinal terms B, such that
AA(B) ⊆ B. We define this by using the W-type as follows: WA

1 will be a tree,
each node of which has as index a natural number a (which will be usually
an ordinal term), and as branching degree τ̂A(a), which is Σx : N.x ∈ τA(a),
the collection of elements in τA(a). An ordinal term a is in W(A), if there
exists a correctly defined tree (which means, that at every node the p(b, p)-th
subtree has index b), the root of which has index a. The tree just considered
is a verification, that a belongs to

⋂
{Y |AA(Y) ⊆ Y }.

Definition 5.6 (a) τ̂A(a) := Σy : N.y ∈ τA(a),
(b) WA

1 := (Wx : N.τ̂A(x)).
(c) CorA(t) := (∀u : WA

1 .u � t→ (index(u) ∈ M(A) ∧
∀v : τ̂A(index(u)).index(pred(u)v) = v0)).

(d) W(A) := {y | ∃v : WA
1 .CorA(v) ∧ index(v) = y}.

48

Remark 5.7 (a) W(A) is a class, τ̂A(s), WA
1 are types correctly defined from

A,B : Cl(N) and a : N.
CorA(t) is a type, correctly defined from A : Cl(N) and t : WA

1 .
(b) W(A) ⊆ M(A).
(c) ∀x : N.∀y : τ̂A(x)→WA

1 .CorA(sup(x, y))↔
(x ∈ M(A) ∧ ∀v : τ̂A(x).CorA(yv) ∧ index(yv) = v0).

(Assumption 4.1 applies except for the last statement, where the leading
W in WA

1 must not be underlined).

Proof of (c): “→”: if v : τ̂A(x), u � yv, then u ≺ sup(x, y), therefore from
CorA(sup(x, y)) we can infer CorA(yv), further index(sup(x, y)) = x,
index(yv) = index(pred(sup(x, y))v) = v0.
“←” follows similarly, using u � sup(x, y)↔ (u = sup(x, y) ∨ ∃v : τ̂A(x).u �
yv). ut

Proof that W(A), as defined in Definition 5.6 fulfills the conditions of As-
sumption 4.10:
Assumption 4.10 (a): If x ∈ AA(W(A)), then x ∈ M(A) and τA(x) ⊆ W(A),
therefore there exist y : τ̂A(x)→WA

1 and p : ∀u : τ̂A(x).Cor(yu)∧index(yu) =
u0.
Let w := sup(x, y). By Remark 5.7 (c) follows Cor(w), index(w) = x, x ∈
W(A).
Assumption 4.10 (b): Assume AA(B) ∩ W(A) ⊆ B. We show ∀u : WA

1 .
CorA(u) → index(u) ∈ B, by induction on WA

1 from which follows the as-
sertion.
Assume x : N, y : τ̂A(x) → WA

1 , and ∀v : τ̂A(yv).CorA(yv)→ index(yv) ∈ B.
Assume CorA(sup(x, y)). Then x = index(sup(x, y)) ∈ M(A). By Remark 5.7
(c) and the IH we get for v : τ̂A(x), that v0 = index(yv) ∈ B, therefore,
if u ∈ τA(x), u ∈ B, x ∈ AA(B), x = index(sup(x, y)) ∈ W(A), therefore
index(sup(x, y)) = x ∈ B and we are done. ut

5.3 Definition of Γncq

Definition 5.8 Assume c : N, q : (c ∈ OT ∧ τW(ψIc) ⊆ W), A : P(N),
p : A ⊆ CW

I (c).
By simultaneous induction on n : N we define Γnc,q : P(N) and Pn

c,q : Γnc,q ⊆
CW

I (c). (Then Γnc,q fulfills the assertion of Assumption 4.36 (a)). We omit the
indices c, q for simplification in the following:
Γ0 := ∅, P0 is a proof of ∅ ⊆ CI

W
(c).

Γn+1 := Γ′Pn,q,c(Γ
n), Pn+1 is the proof we obtain by Γn+1 ∼= Γ′Pn,q,c

(Γn) ∼=
Γ(Γn) ⊆ Γ(CW

I (c)) ⊆ CW
I (c).

49

A Proof of Lemma 1.10

Definition A.1 Assume α, β ∈ Ord.

C0(α, β) := β ∪ {0, 1, I}

Cn+1(α, β) := β ∪ {0, 1, I}

∪ {ρ | ∃γ, δ ∈ Cn(α, β).

ρ =NF ϕγδ ∨ ρ =NF γ + δ ∨ ρ =NF Ωγ}

∪ {ψπξ | π, ξ ∈ Cn(α, β), π ∈ R, ξ < α}

Cn
κ(α) := Cn(α, ψκα).

Lemma A.2
⋃
n<ω Cn(α, β) = C(α, β).

Lemma A.3 (Lemma 2.7 of [BS88]) If α < β and for all α ≤ δ < β δ 6∈
Cπ(α) holds, then Cπ(β) = Cπ(α) and ψπβ = ψπα.

Proof: “⊇” is trivial, for “⊆” we prove by induction on n ∀γ ∈ Cn
π(β).γ ∈

Cn
π(α). The only difficult case is γ = ψκδ, δ < α, κ, δ ∈ Cn−1

π (β). But in this
case δ < β, and we are done. ut

Lemma A.4 (Lemma 2.8 of [BS88]) If β = min{ξ | α ≤ ξ ∈ Cπ(α)}, then
Cπ(α) = Cπ(β), ψπα = ψπβ, and β ∈ Cπ(β).

Proof: Lemma A.3. ut

Lemma A.5 (Corresponds to Lemma [BS88] 2.11.)
Assume π, γ, γ0 ∈ Cn

κ(α), κ ≤ π ∧ β ≤ α. Then
δ := min{ξ | γ ≤ ξ ∈ Cπ(β)} ∈ Cn

κ(α),
δ′ := min{ξ | γ ≤ ϕγ0ξ ∈ Cπ(β)} ∈ Cn

κ(α),

Proof: Induction on n.
Case γ < ψκα: Subcase γ < ψπβ: δ = γ, δ′ ≤ γ < ψπβ.
Subcase ψπβ ≤ γ: ψπβ ≤ γ < ψκα ≤ κ ≤ π. Since Cπ(β) ∩ π = ψπβ,
π ∈ Cπ(β), follows δ = π, π ∈ Cn

κ(α). δ′ < ψπβ or δ′ = π, δ′ ∈ Cn
κ(α).

Case γ = 0, 1, I: δ = γ, δ′ ∈ {0, I}.
In all other cases n = n′ + 1.
Case γ =NF γ1 + γ2, γi ∈ Cn′

π (β): Let δi be chosen for γi. If γ ≤ δ1, δ = δ1.
Otherwise γ1 ≤ δ1 < γ1 + γ2, δ1 = γ1 + ρ ∈ Cπ(β), 0 ≤ ρ < γ2, therefore
δ1 =NF γ1 + ρ, γ1 ∈ Cπ(β). Therefore γ1 + γ2 ≤ δ ≤ γ1 + δ2, δ = γ1 + ρ

50

with γ2 ≤ ρ ≤ δ2, ρ ∈ Cπ(β), ρ = δ2, we easily check that δ2 ∈ A, therefore
δ = δ1 + δ2 ∈ Cn

κ(β). δ′ = δ′1 or δ′ = δ′1 + 1, where δ′1 ∈ Cn′

κ (α) by the second
IH for γ1.
Case γ =NF ϕγ1γ2, γi ∈ Cn′

π (β): Let δi be determined for γi. Then γ ≤ ϕδ1δ2.
If γ ≤ δi, δ = δi. Assume δi < γ (i = 1, 2). Then δi ≤ δ ≤ ϕδ1δ2, therefore
δ 6∈ G, otherwise δ = max{δ1, δ2}.
If δ =NF δ3 + δ4, we had γ ≤ δ3 < δ, δ3 ∈ Cπ(β), a contradiction. Therefore
δ =NF ϕδ3δ4, γ ≤ δ ≤ ϕδ1δ2. If δ3 < γ1, we had γ ≤ δ4 < δ, δ4 ∈ Cπ(β), a
contradiction. Therefore γ1 ≤ δ3 ∈ Cπ(β), δ1 ≤ δ3. If δ1 < δ3, by ϕγ1γ2 ≤ ϕδ3δ4
and γ1 < δ3 follows γ2 ≤ ϕδ3δ4, δ2 ≤ ϕδ3δ4, γ ≤ ϕδ1δ2 ≤ ϕδ3δ4, ϕδ1δ2 = ϕδ3δ4,
δ = δ2 ∈ Cn′

κ (α). Otherwise δ1 = δ3, δ4 = δ′2 ∈ Cn′

κ (α) by the second IH for
γ0 := δ3.
Second part in this case: If γ0 < γ1, then δ′ = δ, if γ0 = γ1, then δ′ = δ2, and
if γ0 > γ1, choose δ′2 for γ2, δ = δ′2.
In all cases, where γ ∈ G, follows immediately δ ∈ G, δ ′ ∈ {0, δ} and the
assertion in the second case.
Case γ = ψγ1γ2, γi ∈ Cn

κ(α). The case γ ∈ Cπ(β) is trivial, let therefore γ < δ.
Let δi be chosen for γi.
Subcase γ1 < δ1: γ1 6= I, δ = δ1. Subcase γ1 = δ1 = δ or γ = δ: easy. Assume
now γ1 = δ1, γ < δ < γ1:
Subcase γ1 6= I: Then δ = ψγ1δ3, by γ < δ, γ2 < δ3 < β ≤ α it follows
δ3 ∈ Cπ(β), therefore δ2 ≤ δ3, and by minimality and since ψπδ2 ≤ ψπδ3,
δ = ψπδ2 ∈ Cn

κ(α).
Subcase γ1 = I. If δ =NF Ωδ3 , γ ≤ δ3 ∈ Cπ(β), a contradiction, and if δ = ψδ3δ4
with δ3 6= I, γ ≤ δ−3 < δ, δ−3 ∈ Cπ(β), again a contradiction, therefore δ = ψIδ4,
and as in the subcase before follows the assertion.
Case γ =NF Ωγ1 : Let δ1 be chosen for γ1. If γ ≤ δ1, δ = δ1. Otherwise fol-
lows δ ∈ G, δ 6= ψδ3δ4 with δ3 6= I (otherwise γ ≤ δ−3). Therefore δ = I or
=NF Ωδ3 (therefore δ3 = δ1) or δ = ψIδ3 (but in this case γ ≤ Ωδ1 < δ, a
contradiction). ut

Proof of Lemma 1.10: (a): “⊇” is obvious.
“⊆”: We show Cn

κ(α) ⊆ C′n+1
κ (α) by induction on n : N. Here the only difficulty

is the case γ = ψπβ ∈ Cn+1
κ (α), π, β ∈ Cn

κ(α), β < α. If π ≤ κ or π = I∧ψIβ <
κ, then γ ≤ ψκα, otherwise follows by Lemma A.5 β0 := min{ξ | β ≤ ξ ∈
Cπ(β)} ∈ Cn

κ(α) ⊆ C′n+1
κ (α), by Lemma A.4 ψπβ = ψπβ0, β0 ∈ Cπ(β0). If

β = β0, β0 < α. Otherwise β 6∈ Cπ(β0) = Cπ(β), if π 6= I, by κ < π β /∈ Cκ(β0),
since β ∈ Cκ(α), β0 < α, and, if π = I, κ < ψIβ, and from β 6∈ Cπ(β0) and
ψκβ0 < ψπβ0 we infer β 6∈ Cκ(β0) and again β0 < α. Therefore γ ∈ C′n+2

κ (α).
(b) “⊇” is obvious. “⊆”: We show by induction on α, side-induction on ρ
ρ < ψκα→ ρ ∈ C′(α, κ− + 1) and the assertion follows.
If ρ ≤ κ−, this is obvious, and, if ρ =NF ρ1 + ρ2 or ρ =NF ϕρ1ρ2, or ρ =NF Ωρ1 ,
this follows by side-IH. Otherwise ∃δ.δ ∈ Cκ(δ) ∧ δ < α ∧ ρ = ψκδ. Then
δ ∈ Cκ(δ) = C′(δ, κ− + 1) ⊆ C′(α, κ− + 1) by IH, ψκδ ∈ C′(α, κ− + 1).

51

(c): CΩ1
(I+) = C′(I+, 1) = C′(I+, 0). ut

B The Order-type of the Ordinal Notation System

In this section we show that the ordinal functions in OT correspond to the
those defined in Sect. 1. It is based on proofs in [Buc86].

Definition B.1 For a ∈ OT we define an ordinal o(a) ∈ Ord:
o(0) := 0, o(I) := I, o((a1, . . . , an)) := o(a1) + · · ·+ o(an), o(ϕ′ab) := ϕo(a)o(b),
o(Ω′

a) := Ωo(a), o(ψab) := ψo(a)o(b).

We will prove the following lemma:

Lemma B.2 (a) CΩ1
(I+) = {o(x) | x ∈ OT}.

(b) If a ∈ OT such that a ≺ Ω1, then o(a) = ordertype({x ∈ OT | x ≺ a},≺).
(c) ψΩ1

I+ = ordertype({x ∈ OT | x ≺ Ω1},≺).

Proof: At the end of this section.

Lemma B.3 Assume a, b ∈ OT, u ∈ R.

(a) o(a) ∈ CΩ1
(I+).

(b) a ∈ G⇔ o(a) ∈ G, similarly for Lim, Suc,A,R, Fi. (the first G is a subset
of OT, the second G a subset of the ordinals, note the difference in the
fonts).

(c) Go(u)(o(a)) = {o(x) | x ∈ Gu(a)}.
(d) a ≺ b⇒ o(a) < o(b).

Proof: (by induction on length(a) + length(u)), simultaneously for (a) –(d):
1. a =NF ψbc: Then Gb(c) ≺ c and b, c ∈ OT.
(a) By IH o(b), o(c) ∈ CΩ1

(I+) and Go(b)(o(c)) = {o(x) | x ∈ Gb(c)} < o(c).
By Lemma 1.13 follows o(c) ∈ I+∩Co(b)(o(c)) and therefore o(a) = ψo(b)o(c) ∈
CΩ1

(I+).
(b) trivial.
(c) Immediate by IH and definition of Gu(a).
(d) follows by side-induction on length(b) using the usual properties of the
ordinals 0, I, of the functions +, ϕ, Ω·, and Lemma 1.5(a), (b), (c), (f), (g).
2. All other cases follow immediately, using in (c) again side induction on
length(b).

Lemma B.4 For all α ∈ C′n(I+, 0) exists a ∈ OT such that b = o(a).

52

Proof: If α = 0, I, this is immediate, if α =′
NF γ + δ, or α =NF ϕγδ or

α =NF Ωγ , this follows by IH for γ, δ and if b =NF ψκδ, especially Gκ(δ) < δ,
follows κ = o(r) for some r ∈ R, δ = o(d) for some d ∈ OT, Gr(d) < d by
Lemma B.3, b = o(ψrd) with ψrd ∈ OT. ut

Proof of Lemma B.2: (a) is proven. Further {o(x) | x ≺ Ω′
0 ∧ x ∈ OT} =

CΩ1
(I+) ∩ Ω1 = ψΩ1

I+, o(·) is an order preserving map {x | x ≺ Ω′
0 ∧ x ∈

OT} −→ ψΩ1
I+,

and for a ≺ Ω′
1, {o(x) | x ≺ a ∧ x ∈ OT} = CΩ1

(I+) ∩ o(a) = o(a), again o(·)
is an order preserving isomorphism. ut

References

[Acz77] P. Aczel. The strength of Martin-Löf’s intuitionistic type theory with
one universe. In S. Miettinen and J. Väänänen, editors, Proceedings of
the symposium on mathematical logic (Oulu, 1974), University of Helsinki,
1977. Report no. 2, Dept. of philosophy.

[Bar75] J. Barwise. Admissible Sets and Structures. An Approach to Definability
Theory. Springer, Berlin, Heidelberg, New York, 1975.

[BB85] E. Bishop and D. Bridges. Constructive Analysis. Springer, Berlin,
Heidelberg, New York, 1985.

[Bee85] M. J. Beeson. Foundations of Constructive Mathematics. Metama-
thematical Studies. Springer, Berlin, Heidelberg, New York, 1985.

[BFPS81] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated Inductive
Definitions. Recent Prooftheoretical Studies, volume 897 of Springer
Lecture Notes in Mathematics, 1981.

[BS76] W. Buchholz and K. Schütte. Die Beziehungen zwischen den
Ordinalzahlsystemen Σ und Θ̄(ω). Arch. math. Log., 17:179 – 190, 1976.

[BS88] W. Buchholz and K. Schütte. Proof Theory of Impredicative Subsystems
of Analysis. Bibliopolis, Naples, 1988.

[Buc75] W. Buchholz. Normalfunktionen und konstruktive Systeme von
Ordinalzahlen. In J. Diller and G.H. Müller, editors, Proof Theory
Symposion, Kiel 1974, volume 500 of Springer Lecture Notes in
Mathematics, pages 4 – 25, 1975.

[Buc86] W. Buchholz. A new system of proof-theoretic ordinal functions. Ann.
Pure Appl. Log., 32:195 – 207, 1986.

[Buc90] W. Buchholz. Wellordering proofs for systems of fundamental sequences.
Draft, München, 1990.

53

[Buc92] W. Buchholz. A simplified version of local predicativity. In P. Aczel,
H. Simmons, and S. S. Wainer, editors, Proof Theory. A selection of
papers from the Leeds Proof Theory Programme 1990, pages 115 – 147,
Cambridge University Press, Cambridge, 1992.

[Fef75] S. Feferman. A language and axioms for explicit mathematics. In J. N.
Crossley, editor, Algebra and Logic. Proc. 1974, Monash Univ Australia,
volume 450 of Springer Lecture Notes in Mathematics, pages 87 – 139,
1975.

[Gir87] J.-Y. Girard. Proof Theory and Logical Complexity. Bibliopolis, Napoli,
1987.

[GR94] E. Griffor and M. Rathjen. The strength of some Martin-Löf type
theories. Arch. math. Log., 33:347 – 385, 1994.

[Jäg83] G. Jäger. A well-ordering proof for Feferman’s theory T0. Arch. math.
Log., 23:65 – 77, 1983.

[JP82] G. Jäger and W. Pohlers. Eine beweistheoretische Untersuchung
von (∆1

2 − CA) + BI und verwandter Systeme. Sitzungsberichte
der Bayerischen Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse, pages 1 – 28, 1982.

[ML75] P. Martin-Löf. An intuitionistic theory of types: predicative part. In H.E.
Rose and J. Sheperdson, editors, Logic Colloquium ’73, pages 73 – 118,
North-Holland, Amsterdam, 1975.

[ML82] P. Martin-Löf. Constructive mathematics and computer programming.
In L.J. Cohen, J. Los, H. Pfeiffer, and K.-P. Podewski, editors, Logic,
Methodology and Philosophy of Science VI, pages 153–175, North-
Holland, Amsterdam, 1982.

[ML84] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Naples, 1984.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
type theory. An Introduction. Oxford University-Press, Oxford, 1990.

[Pal92] E. Palmgren. Type-theoretic interpretation of iterated, strictly positive
inductive definitions. Arch. math. Log., 32:75–99, 1992.

[Poh89] W. Pohlers. Proof Theory. An introduction, volume 1407 of Springer
Lecture Notes in Mathematics, 1989.

[PSH90] E. Palmgren and V. Stoltenberg-Hansen. Domain interpretations of
Martin-Löf’s partial type theory. Ann. Pure Appl. Log., 48:135 – 196,
1990.

[Rat93] M. Rathjen. How to develop proof–theoretic ordinal functions on the
basis of admissible ordinals. Mathematical Logic Quarterly, 39(1):47 –
54, 1993.

[Schü77] K. Schütte. Proof Theory. Springer, Berlin, Heidelberg, New York, 1977.

54

[Schü88] K. Schütte. Eine beweistheoretische Abgrenzung des Teilsystems
der Analysis mit Π1

2-Separation und Barinduktion. Sitzungsberichte
der Bayerischen Akademie der Wissenschaften, mathematisch-natur-
wissenschaftliche Klasse, 1988.

[Schw92] H. Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons, and
S. S. Wainer, editors, Proof Theory. A selection of papers from the Leeds
Proof Theory Programme 1990, pages 79 – 113, Cambridge University
Press, Cambridge, 1992.

[Set93] A. Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-
type and one universe. PhD thesis, Universität München, 1993.

[Set96a] A. Setzer. Extending Martin-Löf type theory by one Mahlo-universe.
Submitted, 1996.

[Set96b] A. Setzer. A model for a type theory with Mahlo universe. Draft, 1996.

[Set96c] A. Setzer. An upper bound for the proof theoretical strength of Martin-
Löf Type Theory with W-type and one Universe. 33pp. Draft, 1996.

[Set97a] A. Setzer. An introduction to well-ordering proofs in Martin-Löf’s type
theory. Submitted, 1997.

[Set97b] A. Setzer. Translating set theoretical proofs into type theoretical
programs. In G. Gottlob, A. Leitsch, and D. Mundici, editors,
Computational Logic and Proof Theory, volume 1289 of Springer Lecture
Notes in Mathematics, pages 278 – 289, 1997.

[Tak87] G. Takeuti. Proof Theory. North–Holland, Amsterdam, second edition,
1987.

[TD88] A. Troelstra and D. van Dalen. Constructivism in Mathematics. An
Introduction, Vol. II. North-Holland, Amsterdam, 1988.

[Tro87] A. Troelstra. On the syntax of Martin-Löf’s type theories. Theoretical
Computer Science, 51:1 – 26, 1987.

55

