Corrections to my article “Ordinal Systems”

Anton Setzer*

January 25, 2001

Unfortunately Markus Michelbrink, Hannover, Prof. H. Schwichtenberg, Munich, and myself have detected some mistakes in the article
of which one is a crucial cut-and-paste error in the definition of ordinal systems.

A corrected version is available via my home page (see below). The list of corrections follows.

Abstract, line 6 – 7
Replace
“transfinitely iterated fixed point theories [IDα]” by
“theories of transfinitely iterated inductive definitions [IDα].”

Def. 1.1 (a)
For clarification insert the following text after the paragraph defining what a class is:
“A binary relation \prec is a class. For binary relations \prec we define $r \prec s := \pi(r, s) \in \prec$, where π is a standard primitive recursive pairing function on the natural numbers having the usual properties.”
Add further before “Transfinite induction over (A, \prec) is in PRA reducible to transfinite induction over $(A_i, \prec_i) (i = 1, \ldots, n), \ldots” the following sentence:
“Let A be a class, \prec be a binary relation, both depending on unary free predicates A_i and binary free predicates $\prec_i (i = 1, \ldots, n).$”

Def. 1.1 (b)
This part has to be rewritten as follows:
“Assume B is a class and \prec is a binary relation, both depending on unary free predicates A_i and binary free predicates $\prec_i (i = 1, \ldots, m)$. (B, \prec) is an elementary construction from $(A_1, \prec_1), \ldots, (A_m, \prec_m)$, if the following holds: the formulas defining B, \prec are formulas of the language of PRA with bounded quantifiers only (i.e. quantifiers of the form $\forall x < t, \exists x < t$); PRA$^+$ proves that, if (A_i, \prec_i) are linear orderings $(i = 1, \ldots, m)$, so is (B, \prec); transfinite induction over (B, \prec) is PRA-reducible to transfinite induction over (A_i, \prec_i).”

Def. 1.1 (j)
“$\bigcup \{X \subseteq [A] \mid (X, \prec)$ well-ordered $\}$” instead of
“$\bigcap \{X \subseteq [A] \mid (X, \prec)$ well-ordered $\}$."

Def. 2.1 (d)
Replace in (OS 1) and (OS 3) “Arg” by “T”.

Sect. 2.2, line 9/10
Replace
“(more precisely the formula $\forall n \in \mathbb{N}(n \leq n \land \forall x \in T(x < n \leftrightarrow \exists y < n, x = 1))$ is provable in PRA),”
by
“(more precisely the formula $\forall n \in \mathbb{N}(n \leq n \land \forall x \in T(x < n \leftrightarrow \exists y < n, x = 1))$ is provable in PRA),”

*Department of Mathematics, Uppsala University email: setzer@math.uu.se, home page:
http://www.math.uu.se/~setzer
Lem. 22 (a), line 1/2 Omit “Let $b \in T$.”

Lem. 22 (a), line 4 Replace

“\(\forall \alpha, \beta < \gamma (\alpha < \beta \rightarrow a_{\alpha} \prec a_{\beta}) \)” by

“\(\forall \alpha, \beta < \gamma (\alpha < \beta \rightarrow a_{\alpha} \prec a_{\beta}) \)”.

Proof of Lem 22, (a), line 10 Replace

“\(k(b) \prec b \prec a \)” by

“\(k(b) \prec b \prec a \)”.

Lem. 28 (a) Replace

“\(\forall a \in T', k(a) \subseteq T \)” by

“\(\forall a \in T', k(a) \subseteq T \)”.

Lem 28 (b) line 1 Replace

“\(\forall a \in T'(f[k(a)] = k^0(f(a)) \land f[k(a)] = 1'(f(a))) \)” by

“\(\forall a \in T'(f[k(a)] = k^0(f(a)) \land f[k(a)] = 1(f(a))) \)”.