The IO Monad in Dependent Type Theory

Peter Hancock, Edinburgh, Scotland
pgh@dcs.ed.ac.uk
Anton Setzer, Uppsala, Sweden
setzer@math.uu.se
April 13, 1999

1. Definition of the IO Monad in type theory.
2. While, redirect and equality.
4. State-dependent IO.
5. Parallelism, Nondeterminism.
1. Definition of the IO Monad in Type Theory

Direction in Functional Programming

Design of programming languages based on dependent types.

Theoretical Problems:
- Practical structuring of programs.
 * Local variables.
 * Record types.
 Unproblematic.
- Polymorphism, subtyping.
- Input/output.

Models for input/output:
- Streams.
 Difficulties with infinitely many input/output devices
 Timing between input/output depends on evaluation strategy.
- The IO-monad.
Monad

A monad is a triple (M, η, \ast), where
- $M : \text{Set} \to \text{Set}$,
- $\eta : (A : \text{Set}, a : A) \to M(A)$,
- $\ast : (A : \text{Set}, B : \text{Set}, p : M(A), q : A \to M(B)) \to M(B)$,

with abbreviations
\[
\eta_a := \eta^A_a := \eta(A, a),
\]
\[
p \ast q := p \ast_{A, B} q := \ast(A, B, p, q),
\]

s.t. for $A, B, C : \text{Set}, a : A, p : M(A), q : A \to M(B), r : B \to M(C)$:
- $\eta_a \ast q = q(a)$.
- $p \ast \lambda x. \eta_x = p$.
- $(p \ast q) \ast r = p \ast \lambda x.(q(x) \ast r)$.
IO-Monad

IO-Monad = monad (IO, η, *) with interpretation:

- IO(A) = set of interactive programs which, if terminating, return an element a : A.
- ηa = program with no interaction, returns a.
- * = composition of programs.

Additional elements added like
input(d, A) : IO(A)
 input from device d an element a : A and return a.
output(d, A) : A → IO(1)
 for a : A output a on device d and return <> : 1.

IO-Monad in Haskell:
Small part of the program interactive.
Large part purely functional.
Problems of the IO-Monad:

- * cannot be a constructor.
 ⇒ Monads do not fit into the conceptual framework of Martin-Löf type theory.

- Equalities can hold only extensionally.
The IO-tree

A world w is a pair (C, R) s.t.
- $C : \text{Set (Commands)}$.
- $R : C \to \text{Set (responses to a command)}$.

Assume $w = (C, R)$ a world.

$\text{IO}_w(A)$ or shorter $\text{IO}(A)$ is the set of (possibly non-well-founded) trees with
- leaves in A.
- nodes marked with elements of C.
- nodes marked with c have branching degree $R(c)$.
$A : \text{Set}$

$\text{IO}_w(A) : \text{Set}$

$\text{leaf}(a) : \text{IO}_w(A)$

$c : C \quad p : R(c) \rightarrow \text{IO}_w(A)$

do$(c, p) : \text{IO}_w(A)$

Note: $\text{IO}_w(A)$ now parametrized w.r.t. w.
New operation execute:

Status:
- Like function “reduce to canonical form”.
- No construction inside type theory.

Let \(w_0 \) be a fixed world (real commands).

execute applied to \(p : \text{IO}_{w_0}(A) \) does the following:
- It reduces \(p \) to canonical form.
- If \(p = \text{leaf}(a) \) it terminates and returns \(a \).
- If \(p = \text{do}(c, q) \), then it
 - carries out command \(c \);
 - interprets the result as an element \(r : R(c) \);
 - then continues with \(q(r) \).

Essentially normalization of \(p \) but with interaction with the real world.
Definition of η, \ast

$\eta_a = \text{leaf}(a)$.
$\text{leaf}(a) \ast q = q(a)$.
$\text{do}(c, p) \ast q = \text{do}(c, \lambda x. (p(x) \ast q))$.

For well-founded trees monad laws provable w.r.t. extensional equality.

Additional function interact:

$\text{interact} : (c : C) \rightarrow \text{IO}(R(c))$.
$\text{interact}(c) = \text{do}(c, \lambda x. \text{leaf}(x))$.

$\text{interact}(c)$ executes command c and returns the result.
2. While, Redirect, Equality

2.1. While

Problem:
- Interactive programs should possibly have infinitely many interactions
 (no termination after finite amount of time).

Add while-loop:

Assume:
- a set B
- an initial value $b : B$
- $q : B \rightarrow (\text{IO}(A) + \text{IO}(B))$.

$\text{while}_{B}(b, q) : \text{IO}(A)$ does the following:
- If $q(b)$ is in $\text{IO}(B)$ then it runs this program.
 If it terminates with leaf b', it continues with $\text{while}_{B}(b', q)$.
- If $q(b)$ is in $\text{IO}(A)$ then it run this program.
 When it stops it returns the result.
Problem:
Black hole recursion for trees which consist of leaves.

Therefore define set of trees which have at least one command at the root:

\[
\begin{align*}
A &: \text{Set} \\
\text{IO}^+(A) &: \text{Set} \\
a &: \text{IO}^+(A) \\
a^- &: \text{IO}(A) \\
c &: C \\
p &: R(c) \rightarrow \text{IO}(A) \\
\text{do}^+(c, p) &: \text{IO}^+(A) \\
\text{do}^+(c, p)^{-} &= \text{do}(c, p)
\end{align*}
\]
Definition of while

Assume $A, B : \text{Set}$.

\[
b : B \quad p : B \rightarrow (\mathcal{IO}(A) + \mathcal{IO}^+(B))
\]
\[
\text{while}_B(b, p) : \mathcal{IO}(A)
\]

- If $p(b) = i(q)$ then
 \[
 \text{while}(b, p) = q
 \]

- If $q(b) = j(q)$ then
 \[
 \text{while}(b, p) = q^- \ast \lambda b'. \text{while}(b', p)
 \]
2.2. Redirect

Assume
- $w = (C, R)$, $w' = (C', R')$ are worlds.
- $A : \text{Set}$,
- $p : \text{IO}_w(A)$.
- $q : (c : C) \rightarrow \text{IO}^+_w(R(c))$.

Define redirect($p, q) : \text{IO}_w(A)$:

redirect(leaf(a), $q) = \text{leaf}(a)$.
redirect(do(c, p), $q) = q(c)^\ast \lambda r.\text{redirect}(p(r), q)$.
2.3. Equality

Equality corresponding to extensional equality on non-well-founded trees:
Bisimulation (definition according I. Lindström):

\[p : \text{IO}(A) \quad q : \text{IO}(A) \]
\[\text{Eq}(p, q) : \text{Set} \]

\[p : \text{IO}(A) \quad q : \text{IO}(A) \quad n : \mathbb{N} \]
\[\text{Eq}'(n, p, q) : \text{Set} \]

\[\text{Eq}(p, q) = \forall n : \mathbb{N}. \text{Eq}'(n, p, q). \]

\[\text{Eq}'(n, \text{leaf}(a), \text{do}(c, p)) \]
\[= \text{Eq}'(n, \text{do}(c, p), \text{leaf}(a)) = \bot \]

\[\text{Eq}'(n, \text{leaf}(a), \text{leaf}(a')) = \text{I}(A, a, a'). \]

\[\text{Eq}'(0, \text{do}(c, p), \text{do}(c', p')) = \text{I}(C, c, c'). \]

\[\text{Eq}'(S(n), \text{do}(c, p), \text{do}(c', p')) = \]
\[\Sigma q : \text{I}(C, c, c'). \forall r : \text{R}(c). \text{Eq}(n, p(r), p'(\cdots r \cdots))). \]
• Eq is the natural extension of extensional equality to non-well-founded trees (if we take for I extensional equality).

• Monad laws w.r.t. Eq are provable.

• Two programs are equal w.r.t. Eq, if their IO-behaviour is identical.
 ⇒ Extensionally, for every IO-behaviour there is exactly one program.
 ⇒ IO-tree = suitable model of IO.
Problem: No normalization

Let $A = B = C = N$, $R(c)$ arbitrary.
Assume $f : N \rightarrow N$.
$p := \lambda n.\text{do}(f(n), \lambda x.\text{leaf}(n + 1)) : N \rightarrow \text{IO}(B)$
$q := \lambda p.\text{j}(p^+) : N \rightarrow (\text{IO}(A) + \text{IO}^+(B))$.

while$(0, q)$
\[\rightarrow \text{while'}(p(0), q) \]
\[\rightarrow \text{do}(f(0), \lambda x.\text{while'}(\text{leaf}(1), q)) \]
\[\rightarrow \text{do}(f(0), \lambda x.\text{while'}(p(1), q)) \]
\[\rightarrow \text{do}(f(0), \lambda x.\text{do}(f(1), \lambda y.\text{while'}(\text{leaf}(2), q))) \]
\[\rightarrow \ldots \]
\[\rightarrow \text{do}(f(0), \lambda x.\text{do}(f(1), \lambda y.\text{do}(f(2), \lambda z.\ldots))) \]

Consequence: with intensional equality type-checking undecidable.
3. Normalizing version

Add while as a constructor.

Problem: while refers to $\text{IO}(A) + \text{IO}^+(B)$. Therefore while needs to be defined simultaneously for all sets.

Restrict A, B to be elements of a universe. (Restriction of B would suffice).

Assume
\[U : \text{Set}, \ T : U \to \text{Set}. \]
Assume $w = (C, R)$ is a world.

For $\bar{A} : U$ let $A := T(\bar{A})$ similarly for \bar{B}, \bar{C}.
\[
\frac{\hat{A} : U}{\text{IO}_w(\hat{A}) : \text{Set}} \quad \frac{\hat{A} : U}{\text{IO}_w^+(\hat{A}) : \text{Set}}
\]

\[
p : \text{IO}^+(\hat{A})
\]

\[
p^{-} : \text{IO}(\hat{A})
\]

\[
a : A
\]

\[
\text{leaf}(a) : \text{IO}(\hat{A})
\]

\[
c : C \quad p : R(c) \rightarrow \text{IO}(\hat{A})
\]

\[
do^+(c, p) : \text{IO}^+(\hat{A})
\]

\[
do^+(c, p)^- = do(c, p)
\]

\[
\hat{B} : U \quad b : B \quad p : B \rightarrow (\text{IO}(\hat{A}) + \text{IO}^+(\hat{B}))
\]

\[
\text{while}_{\hat{B}}(b, p) : \text{IO}(\hat{A})
\]

(The rule with occurrences of \((+)\) denotes two rules:
One where everywhere \((+)\) is replaced by \(+\) and one where \((+)\) is omitted).
Let $\text{IO}^{(+)}_{\text{wf}}(A)$ be the set $\text{IO}^{(+)}(A)$ as defined in this section.

Let $\text{IO}^{(+)}_{\text{nonwf}}(A)$ be $\text{IO}^{(+)}(A)$ as defined before.

Define $\text{emb}^{(+)}_A : \text{IO}^{(+)}_{\text{wf}}(\bar{A}) \to \text{IO}^{(+)}_{\text{nonwf}}(A)$:

- $\text{emb}(\text{leaf}(a)) = \text{leaf}(a)$.

- $\text{emb}^{(+)}(\text{do}^{(+)}(c, p)) = \text{do}^{(+)}(c, \lambda x.\text{emb}(p(x)))$.

- $\text{emb}(\text{while}_{\bar{B}}(b, p)) = \\
 \text{while}_B(b, \lambda x.\text{emb}'(p(x))) \\
\text{with } \text{emb}'(i(p)) = i(\text{emb}(p)), \\
 \text{emb}'(j(p)) = j(\text{emb}^+(p))$.

Now η, \ast, redirect, Eq on $\text{IO}^{(+)}_{\text{nonwf}}(A)$ can be mimicked by corresponding operations on $\text{IO}^{(+)}_{\text{wf}}(A)$.

19
Decompose:

Define decompose : $\text{IO}_w(A) \rightarrow$
\[A + \sum c : C.(R(c) \rightarrow \text{IO}_w(A)) \]
s.t.

If $\text{emb}(p) = \text{leaf}(a)$,
\[\text{decompose}(p) = i(a). \]

If $\text{emb}(p) = \text{do}(c, q)$,
\[\text{then decompose}(p) = j(c, q') \text{ where } q' \text{ s.t.} \]
\[\text{emb}(q'(x)) = q(x). \]

Execute(p) does now the following:

- If $\text{decompose}(p) = i(a)$, then terminate with result a.
- If $\text{decompose}(p) = j(<c, q>)$, then carry out command c, get response r and continue with $q(r)$.

20
Result:

- All derivable terms are strongly normalizing.

- Therefore in the beginning and after every IO-command execute will terminate either completely or carry out the next IO-command.

- However, execute might carry out infinitely many IO-commands.

- Notion of “strongly-normalizing IO-programs”.
4. State-dependent IO

For simplicity we will work with non-well-founded trees.

Now let set of commands depend on the state of knowledge.

States = “objective knowledge” about the devices.

The state is influenced by commands, e.g.
- open a new window.
- switch on a printer.
- test whether the printer is switched on.

A world is now a quadruple \((S, C, R, ns)\) s.t.
- \(S : \text{Set (set of states)}\).
- \(C : S \to \text{Set (set of commands)}\).
- \(R : (s : S, C(s)) \to \text{Set (set of responses)}\).
- \(ns : (s : S, c : C(s), r : R(c, s)) \to S\) (next state).

Let \(w = (S, C, R, ns)\) be a world.
\[A : S \to \text{Set} \quad s : S \]
\[\text{IO}(A, s) : \text{Set} \]

Assume \(A : S \to \text{Set} \).

\[s : S \quad a : A(s) \]
\[\text{leaf}(a) : \text{IO}(A, s) \]

\[s : S \]
\[c : C(s) \]
\[p : (r : R(s, c)) \to \text{IO}(A, ns(s, c, r)) \]
\[\text{do}(c, p) : \text{IO}(A, s) \]
\[\frac{s : S \quad a : A(s)}{\tilde{\eta}_a^A(s) : \text{IO}(A, s)} \]

\[\tilde{\eta}_a^A(s) = \text{leaf}(a). \]

\[
\frac{s : S \\
p : \text{IO}(A, s) \\
B : S \to \text{Set} \\
q : (s : S, a : A(s)) \to \text{IO}(B, s)}{p \overset{s, B}{\sim} q : \text{IO}(B, s)}
\]

\[
\text{do}(c, p) \overset{s, B}{\sim} q = \text{do}(c, \lambda r. (p(r) \overset{s, B}{\sim} q)).
\]

\[
\text{leaf}(a) \overset{s, B}{\sim} q = q(s, a).
\]
Corresponding monad

Consider $\mathbb{I}O : (S \rightarrow \text{Set}) \rightarrow (S \rightarrow \text{Set})$.

$$\eta : (A : S \rightarrow \text{Set}, a : (s : S) \rightarrow A(s)) \rightarrow \mathbb{I}O(A),$$
$$\eta^A_a := \lambda s.\tilde{\eta}^A_{a(s)}(s).$$

$$\mu : (A : S \rightarrow \text{Set}, p : \mathbb{I}O(\mathbb{I}O(A))) \rightarrow \mathbb{I}O(A),$$
$$\mu^A(p) := \lambda s.(p(s)^{\mathbb{I}O(A)}_s, A(\lambda s, q.q)).$$

$$\text{map} : (A, B : S \rightarrow \text{Set},$$
$$f : (s : S, a : A(s)) \rightarrow B(s),$$
$$p : \mathbb{I}O(A))$$
$$\rightarrow \mathbb{I}O(B),$$
$$\text{map}^{A,B}(f, p) := \lambda s.(p(s)^{A,B}_s, \lambda s, a.\text{leaf}(f(s, a))).$$

This yields a monad on presheaves over the discrete category S.

25
Corresponding \(*\)-operation:

\[* : (A, B : S \rightarrow \text{Set}, \]
\[p : \text{IO}(A), \]
\[q : (s : S, A(s)) \rightarrow \text{IO}(B(s))) \]
\[\rightarrow \text{IO}(B), \]
\[(p *_{A,B} q)(s) = p(s) *_{s}^{A,B} q. \]
While

$\text{IO}^+(A, s)$ defined as before.

\[B : S \to \text{Set} \]
\[s : S \]
\[b : B(s) \]
\[q : (s : S, b : B(s)) \to (\text{IO}(A, s) + \text{IO}^+(B, s)) \]
\[\text{while}_{B,s}(b, q) : \text{IO}(A, s) \]

If $q(s, b) = i(p)$ then
\[\text{while}_{B,s}(b, q) = p. \]

If $q(s, b) = j(p)$ then
\[\text{while}_{B,s}(b, q) = p^- \ast \lambda s', b'. \text{while}_{B,s'}(b', q). \]
Redirect

Assume
- \(w = (S, C, R, ns) \), \(w' = (S', C', R', ns') \)
 are worlds.
- \(A : S \rightarrow \text{Set}, \)
- \(\text{Rel} : S \rightarrow S' \rightarrow \text{Set}, \)
- \(q : (s : S, c : C(s), s' : S', \text{Rel}(s, s')) \)
 \(\rightarrow \text{IO}^+_w(\lambda s''.(\sum r : R(s, c).\text{Rel}(ns(s, c, r), s''))), s') \),
- \(s : S \),
- \(s' : S' \),
- \(\text{rel} : \text{Rel}(s, s') \),
- \(p : \text{IO}_w(A, s). \)

Define
\(\text{redirect}_{w, w'}(A, \text{Rel}, q, s, s', \text{rel}, p) \)
\(: \text{IO}^+_w(\lambda s''.\sum s : S.(\text{Rel}(s, s'') \land A(s))) \)

by
\[\text{redirect}_{w,w'}(A, \text{Rel}, q, s, s', \text{rel}, \text{leaf}(a)) = \text{leaf}(<s, \text{rel}, a>). \]

\[\text{redirect}_{w,w'}(A, \text{Rel}, q, s, s', \text{rel}, \text{do}(c, p)) = q(s, c, s', \text{rel})^{-*} \lambda s'', <r, \text{rel}'>. \]
\[\text{redirect}_{w,w'}(A, \text{Rel}, q, ns(s, c, r), s'', \text{rel}', p(r)). \]

29
execute

Let \(w_0 = (S_0, C_0, R_0, ns_0) \) be a standard world, \(s_0 : S \) be a state which corresponds to the existence of knowledge about the environment. Assume \(p : IO_{w_0}(A, s_0) \).

execute applied to \(p \) normalizes \(p \) by carrying out commands as before.

(If one has a program which requires a certain state \(s \) of the environment, compose before it a program, which starts from the initial state, and making tests of the environment tries to move to state \(s \); if it fails it terminates. Execute the result).
5. Parallelism, Non-determinism

Non-determinism
Additional constructor of IO, of the same form as do.
$R(s, c)$ is now the answer of the oracle, which does non-deterministic choice.
Modify $\text{IO}^+(A, s)$ s.t. every execution has at least one “real” command.
Parallelism
Add to our world:
A set of parallel commands
\[NC : S \rightarrow \text{Set}, \]
an index set of processes for every command
\[ND : (s : S, c : NC(s)) \rightarrow \text{Set}, \]
a world for every process
\[NW : (s : S, c : NC(s), d : ND(s, c)) \rightarrow \text{world} \]
a result type of each process
\[NR : (s : S, c : NC(s), d : ND(s, c), \]
\[s' : NW(s, c, d).S) \rightarrow \text{Set}, \]
a next state depending on the final states of all processes,
\[Nns : (s : S, \]
\[c : NC(s), \]
\[s' : (d : ND(s, c)) \rightarrow NW(s, c, d).S, \]
\[r : (d : ND(s, c)) \rightarrow NR(s, c, d, s'(d))) \rightarrow S. \]
Processes can communicate via commands in their worlds.

New constructor

\[
\text{parallel} : (s : S, \\
 c : NC(s), \\
 p : (d : ND(s, c)) \to IO_{w(s,c,d)}(NR(s, c, d)), \\
 np : (s' : (d : ND(s, c)) \to w(s, c, d).S, \\
 r : (d : ND(s, c)) \to NR(s, c, d, s'(d)) \\
 \to IO_w(A, ns(s, c, s', r))) \\
\to IO_w(A, s).
\]

Further construction: Parallelism with dependency only on the first process which stops.

(Then \(Nns\) will have type:

\[
Nns : (s : S, c : NC(s), d : ND(s, c), \\
 s' : NW(s, c, d).S, r : NR(s, c, d, s')) \\
\to S).
\]

and parallel is defined accordingly).
Conclusion

- Inductive definition of the IO-monad by IO-trees.

- Parameterized over worlds (over input/output).

- New constructions: run, redirect.

- Extensions to state-dependent command sets.

- Nondeterminism, parallelism.