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Abstract

We develop a methodology for writing interactive and object-based programs (in the sense of
Wegner) in dependently-typed functional programming languages. The methodology is implemented
in the ooAgda library. ooAgda provides a syntax similar to the one used in object-oriented
programming languages, thanks to Agda’s copattern matching facility. The library allows for the
development of graphical user interfaces (GUIs), including the use of action listeners.

Our notion of interactive programs is based on the IO monad defined by Hancock and Setzer,
which is a coinductive data type. We use a sized coinductive type which allows us to write corecursive
programs in a modular way. Objects are server-side interactive programs that respond to method
calls by giving answers and changing their state. We introduce two kinds of objects: simple objects
and IO objects. Methods in simple objects are pure, while method calls in IO objects allow for
interactions before returning their result. Our approach also allows us to extend interfaces and objects
by additional methods.

We refine our approach to state-dependent interactive programs and objects through which we can
avoid exceptions. For example, with a state-dependent stack object, we can statically disable the pop
method for empty stacks. As an example, we develop the implementation of recursive functions using
a safe stack. Using a coinductive notion of object bisimilarity, we verify basic correctness properties
of stack objects and show the equivalence of different stack implementations. Finally, we give a proof
of concept that our interaction model allows to write GUI programs in a natural way: we present a
simple drawing program, and a program which allows to move a small spaceship using a button.

Note. We recommend printing this paper in color.

1 Introduction

Functional programming is based on the idea of reduction of expressions. This is a good
notion for writing batch programs which take a fixed number of inputs to compute a fixed
number of outputs. Interactive programs, however, do not fit directly into this paradigm,
since they are programs which over time accept a possibly infinite number of inputs and
respond in sequence with a possibly infinite number of outputs. There are several ways
to overcome this. In functional programming, the main method currently used is Moggi’s
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IO monad (Moggi, 1991). The IO monad is a type (IO a) of computations depending
on a return type a. Its elements are interactive programs which possibly terminate with a
result of type a. It is an open-ended type: programming languages such as Haskell provide
various functions constructing atomic elements of (IO a) for various types a, and the
bindings >>= :: IO a -> (a -> IO b) -> IO b and return :: a -> IO a are
used to construct programs from these atomic operations.

In a series of articles (Hancock & Setzer, 2000b,a, 2005; Setzer & Hancock, 2004) Peter
Hancock and the third author of this article have developed a representation of interactive
programs in dependent type theory. This approach is based on the notion of a coalgebra.
The idea is that a (client-side) interactive program is represented by a possibly non-well-
founded tree. The nodes are labeled with commands being issued to the real world, and the
subtrees of a tree are labeled with responses from the real world to the respective command.
For instance, if a node is labeled with the command input a string, its subtrees would be
indexed over strings the user has entered; if the command is write a character, the response
would be an element of the singleton type Unit, so there is only one subtree.

Execution of an interactive program thus is no longer the simple reduction of an
expression. Instead, it is performed as follows: One computes a label from the root of
the tree. A corresponding program is executed in the real world. The real world returns a
corresponding response. Then, the subtree labeled with this response is chosen, and one
repeats the same procedure for the root of that subtree. Additionally, there are special
nodes called leaves, labeled by an element of the result type of the interactive program. If
we reach such a leaf, the program terminates returning the label. The monadic operations
bind and return can now be defined in a straightforward way as operations on such trees.

If we define trees by inductive data types (Agda keyword data), we obtain only well-
founded trees, which means trees which have no infinitely deep branches. Interactive
programs correspond to non-well-founded trees because they may run forever if never
terminated. A non-well-founded tree can be represented in Agda by a record which is
coinductive.

The programs discussed above were client-side interactive programs: they send a
command to the real world and then receive a response and continue. In contrast, graphical
user interfaces are server-side programs; they wait for an event—such as a click on a
button—which means they wait for a command from the real world, answer with a result
and then wait for the next command. Similarly, objects are ready to accept any call of a
method. In response, they return a result, and the object changes its state. Based on this
idea, the third author has developed (Setzer, 2006) the theory of defining object-based
programs (in the sense of Wegner (1987)) in dependent type theory. The interaction trees
of server-side programs and objects are functors of the form ΠΣ (meaning for all requests,
return some response), rather than ΣΠ (send some request and react to any response) as
for client-side programs.

The goal of this article is to substantially extend this theory and develop a methodology
for actually implementing interactive and object-based programs in Agda in a user-friendly
way. This will include object-based graphical user interfaces. We have developed the
library ooAgda (Abel et al., 2016), which allows writing objects and interactive programs
in a way that is very close to how it would be done in an object-based programming
language. At this stage, inheritance and subtyping are not available in ooAgda, so ooAgda



ZU064-05-FPR ooAgda 10 August 2016 11:16

Interactive Programming in Agda – Objects and Graphical User Interfaces 3

is currently an object-based library. Using illustrative examples, we will show how ooAgda
can be used for writing interactive programs which make use of objects. The simplest
example will be a program which interacts with a cell containing a string via its methods
put and get. Then, we will look at how to extend an object by adding more methods and
extending its implementation. Furthermore, we will look at state-dependent interactive
programs and objects. This allows us to write a safe stack, where popping is only allowed
if the stack is non-empty; by safe we mean we can avoid exceptions. We will introduce
bisimulation as equality, and show that the operations of put and get are inverse to each
other w.r.t. bisimulation. We also show the equivalence of different stack implementations.

So far, in dependent type theory, not many interactive programs have been written. We
prove that it is possible to write graphical interfaces by presenting two examples. The first
one is a simple drawing program. The second example will be a graphical user interface
having one button. In this example, we will make use of an object, which has action
listeners as methods, which in turn will be added to a button event and a repaint event. Note
that the focus here is not on developing advanced user interfaces, but to demonstrate that
one can use objects and action listeners to develop graphical user interfaces in dependently
typed programming.

The content of this article is as follows: In Sect. 2 we give a brief introduction into Agda.
In Sect. 3 we recapitulate the theory of coalgebras and their representation in Agda. Then
we review (Sect. 4) the theory of interactive programs in Agda. In Sect. 5 we introduce
objects in Agda and write a small interactive program which makes use of an object
representing a cell.

Guarded recursion (Coquand, 1994) allows only recursive calls of the following three
forms: direct recursive calls to the function being defined, an expression which was defined
before the function was defined, or constructors applied to the previous two possibilities.
In particular, we cannot use functions to combine elements of the coalgebra to form new
elements of it. This restricts modularity of programs since one cannot use an auxiliary
function in a corecursive call. Instead, one needs to define a new function simultaneously
with the function to be defined which computes the result of applying the auxiliary function
to its arguments. The function is defined exactly like the auxiliary function, repeating
essentially its definition. This makes programming tedious. In Sect. 6 we discuss how sized
types allow for corecursive programs to be written more naturally. With sized types, such
auxiliary functions are allowed in corecursive definitions provided they are size-preserving.

In Sect. 7 we give an example of how to extend an object by adding a new method. In
Subsect. 8.1 and 8.2 we introduce state-dependent objects and show how a stack can be
implemented which statically prevents pop-operations when empty. In 8.2.1 we develop a
small example of how to implement recursive functions using a safe stack. In Subsect. 8.3
we demonstrate how to define bisimilarity as equality on objects. This equality is used to
prove that the push and pop operations are inverse of each other. In Subsect. 8.4 we look
at how to define state-dependent interactive programs which will be used later to define a
more complex graphical user interface. In the last two sections, we will give examples of
how to define graphical user interfaces in Agda; in Sect. 9 we introduce a simple drawing
program; in Sect. 10 we introduce a graphical user interface in which we assign an action
listener to a button. There are 3 versions of this interface. In the most complex one, action
listeners are defined as in ordinary object-oriented programming: by creating an object
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which contains all the required action listeners as methods and associating them with the
button and the repaint event.

We finish with a review of related work (Sect. 11), which in includes a comparison of
our approach with Brady’s work in Idris, and a conclusion with an outlook on future steps
(Sect. 12).

Every line of Agda code provided in this paper has been type-checked by Agda and
rendered by the Agda LATEX-backend. However, we mostly omit administrative parts of the
code such as modules and namespace handling; thus, the code as printed in this article will
not be accepted by Agda as-is. Relative to the correctness of Agda itself, our code is type-
safe. However, we see the need for a more solid theoretical foundation for Agda’s sized
types (Sect. 6). The complete code, including advanced examples, can be found in Abel
et al. (2016). These examples compile to executable binaries using Agda 2.5 and GHC 7.8.

2 Introduction to Agda

Agda (AgdaTeam, 2016; Stump, 2016) is a theorem prover based on intensional Martin-
Löf type theory (Martin-Löf, 1984). Code can be compiled using the MAlonzo compiler
Agda Wiki (2011), which is a Monadic form of the Alonzo compiler (Benke, 2007);
therefore, Agda can also be seen as a dependently typed programming language. It is
closely related to the theorem prover Coq (2015). Furthermore, Agda is a total language,
which is guaranteed by its termination and coverage checker without which Agda would
be inconsistent. The current version of Agda is Agda 2, which was originally designed and
implemented by Ulf Norell in his PhD thesis (2007).

In Agda, there are infinitely many levels of types: the lowest one is called Set. The next
type level is called Set1, which has the same closure properties as Set but also contains Set
as an element. The next type level is called Set2, etc. Furthermore, we can quantify over
type levels, and obtain types (Set σ) depending on levels σ.

The main type constructors in Agda are dependent function types, inductive types,
and coinductive types. In addition, there exist record types, which are used for defining
coinductive types by their observations or elimination rules. Furthermore, there exists a
highly generalised version of inductive-recursive and inductive-inductive definitions.

Inductive data types are dependent versions of algebraic data types as they occur in
functional programming. They are given as sets A together with constructors which are
strictly positive in A. For instance, the even and odd numbers are given by the simultaneous
— as denoted by the keyword mutual — indexed inductive data types:

mutual
data Even : N → Set where
0p : Even 0
sucp : {n : N} → Odd n → Even (suc n)

data Odd : N → Set where
sucp : {n : N} → Even n → Odd (suc n)
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The expression (n : N) → A denotes a dependent function type, which is similar to a
function type, but A can depend on n. The expression {n :N} → A is an implicit version of
the previous construct. Implicit arguments can be omitted, provided they can be inferred by
the type checker. We can make a hidden argument explicit by writing, e.g., (sucp {n} p).
If there are several explicit or implicit dependent arguments in a type, one can omit “→”,
as illustrated in the following example: (a : A)(b : B) → C instead of (a : A) → (b : B) → C.
The elements of (Even n) and (Odd n) are those that result from applying the respective
constructors. Therefore, we can define functions by case distinction on these constructors
using pattern matching, e.g.

mutual
_+e_ : ∀ {n m} → Even n → Even m → Even (n + m)
0p +e p = p
sucp p +e q = sucp (p +o q)

_+o_ : ∀ {n m} → Odd n → Even m → Odd (n + m)
sucp p +o q = sucp (p +e q)

Here, ∀a → B is an abbreviation for (a : A) → B, where A can be inferred by Agda.
∀{a} → B is the same but for a hidden argument, while ∀{n m} → B abbreviates
∀{n}→ ∀{m}→ B. Agda supports mixfix operators, where “_” denotes the position of the
arguments. For instance, (0p +e p) stands for (_+e_ 0p p). The combination of mixfix
symbols together with the availability of Unicode symbols makes it possible to define Agda
code which is very close to standard mathematical notation.

Nested patterns are allowed in pattern matching. The coverage checker verifies
completeness and the termination checker ensures that the recursive calls follow a schema
of extended primitive recursion.

An important indexed data type is propositional equality x ≡ y (for x,y : A) which has as
constructor a proof of reflexivity:

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

This definition says that propositional equality is the least reflexive relation (modulo the
built-in definitional equality of Agda).

3 Coalgebras in Agda

The approach to interactive programs we employ in this article is based on (weakly)
terminal coalgebras. In this section, we recapitulate coalgebras and their definition in
Agda, first by example, then in the general case.
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3.1 Coalgebra by Example: Colists

Coalgebras are a versatile mathematical tool; for instance, they can model various classes
of transition systems. Here, we consider output automatons, which consist of a (not nec-
essarily) finite state set S and a transition function t : S→ (1+A×S). Given a state s : S,
the transition t s can either lead us to termination (type alternative 1) or emit some output
a : A and lead us into a successor state s′ : S (type alternative A×S). Defining the functor
F S = 1 + A× S, we say the pair (S, t) is an F-coalgebra. We may sometimes refer to
this coalgebra by simply S or t, when the other component is clear from the context of
discourse.

Let us call this functor ListF, for reasons that are apparent to the reader or will become
so in a short while, and define it in Agda as a disjoint sum type ListF with two constructors
nil and cons.

data ListF A S : Set where
nil : ListF A S
cons : (a : A) (s : S) → ListF A S

It should be clear that (ListFAS) is a faithful implementation of 1+A×S, with nil corres-
ponding to the left injection of the empty tuple, and (cons a s) to the right injection of the
pair (a,s).

A ListF-coalgebra is now a pair (S, t) of a type S and a function t : S→ ListF A S for a
fixed type A, and a transition will take us either to nil, meaning the automaton terminates,
or cons as′, meaning the automaton outputs a and enters the new state s′.

A ListF-coalgebra morphism from automaton t : S→ ListF A S to automaton t ′ : S′ →
ListF A S′ is a state map f : S→ S′ with two conditions:

1. Terminal states of t are mapped to terminal states of t ′, meaning that t ′ ( f s) = nil
whenever t s = nil.

2. Non-terminal states of t are mapped to corresponding non-terminal states of t ′ with
the same output, meaning that t ′ ( f s1) = cons a ( f s2) whenever t s1 = cons a s2.

These two conditions can be summarized as t ′ ( f s) = mapF f (t s) for all s : S, using the
functoriality witness mapF of ListF A.

mapF : ∀{A S S′} ( f : S → S′) → (ListF A S → ListF A S′)
mapF f nil = nil
mapF f (cons a s) = cons a ( f s)

Or, for the category-theory enthusiast, we can display this condition in form of a
commutative diagram:

S t //

f

��

ListF A S

mapF f

��
S′ t ′ // ListF A S′
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If we run an output automaton t, starting in state s, to completion, we obtain a possibly ter-
minating sequence, aka colist, of outputs a0,a1, . . . . We call this colist unfold t s : Colist A.
In Agda, the type of colists over A is defined as a recursive record type:

record Colist A : Set where
force : ListF A (Colist A)

An element l : Colist A is a lazily computed record with a single field force l :
ListFA (ColistA); one could also view it as an object with a single method force. Invocation
of this method via (force l) will yield either nil or (cons a l′) for an output a : A and a new
colist l′.

In this sense, the pair (ColistA, force) can be seen as a ListF-coalgebra; any colist l is
the state of an output automaton with force as the transition function. Colist A is even the
weakly terminal or weakly final coalgebra, as every coalgebra (S, t) can be mapped into it
via morphism (unfold t), so there exists a function, unfold t : S → Colist A, which makes
the diagram commute. If we take bisimulation on Colist as equality, then Colist is actually
terminal or final. This means that (unfold t) is the only function which makes this diagram
commute:

S t //

unfold t

��

ListF A S

mapF (unfold t)

��
Colist A

force
// ListF A (Colist A)

The (weak) finality witness unfold can be implemented in Agda as follows. Herein,
read the “with t s . . . ” followed by pattern matching as an additional case distinction over
(t s) : ListF A S. The three dots “...” indicate that the pattern from the previous line is
repeated, and “|” starts a pattern related to the term of the with construct:

unfold : ∀{A S} (t : S → ListF A S) → (S → Colist A)
force (unfold t s) with t s
... | nil = nil
... | cons a s′ = cons a (unfold t s′)

This definition is an instance of a function defined by copattern matching (Abel et al.,
2013). By itself, (unfold t s) does not reduce. Only when we subject it to projection force,
it reduces as given by the right hand side of the definition; in this case, to a case distinction
over (t s).

Agda’s termination checker accepts the recursively defined unfold: Since each recursive
call removes one use of force, the reduction cannot continue forever. In fact, this definition
follows the rules of guarded recursion (Coquand, 1994). Guarded recursion means in this
setting that we can define a function recursively as long on the left hand side we apply
at least one observation (here force) to the function applied to its arguments (of course
we need to cover all copatterns). On the right hand side of the recursive definition, one can
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have either an element of the coalgebra defined before, a recursive call of the function to be
defined, or constructors applied to such a recursive call. An example, which demonstrates
that we cannot allow arbitrary functions to be applied to the recursive call, would be the
black hole recursive definition f : A → Colist A, force ( f a)= force ( f a).

The above definition of unfold is equivalent to the generic force (unfold t s) =

mapF (unfold t) (t s) obtained from the commutative diagram. However, the latter falls
out of the scheme of guarded recursion and termination is less obvious. We will further
discuss this issue in Section 3.2.

As an application of unfold, we generate the Collatz sequence. It starts with some
number n. If n = 1, the sequence terminates. Otherwise, if n is even, it continues with
n/2, and if n is odd, then it continues with 3n+1.1 In the following code, “_” is the Agda
notation for an unused argument. The application (n divMod m) returns (result q r s), with
quotient q = n div m, remainder r = n mod m, and a proof s of n ≡ q ∗m+ r. Note also
that pattern matching is executed in sequence: The pattern (collatzStep n) is only reached
if n 6= 1.

collatzStep : N → ListF N N
collatzStep 1 = nil
collatzStep n with n divMod 2
... | result q zero _ = cons n q
... | _ = cons n (1 + 3 * n)

collatzSequence : N → Colist N
collatzSequence = unfold collatzStep

The collatzSequence is obtained as the output of an automaton with transition function
collatzStep, which directly implements the rules given before.

3.2 Coalgebras in General

We work in the category of types A : Set and functions f : A → B. Assume a functor F,
whose functoriality is witnessed by mapF, in Agda written as

F : Set → Set
mapF : ∀{A B} ( f : A → B) → (F A → F B)

Of course, mapF has to fulfill the functor laws to qualify as a functoriality witness, namely
mapFid= id and mapF( f ◦g) =mapF f ◦mapFg.

An F-coalgebra consists of a pair (S, t) of a type S of states and a transition function t
from a state s : S to t s : FS which typically may be some input or output with a (collection
of) successor state(s).

1 It is conjectured that (except for n = 0, which creates an infinite sequence of 0s), the resulting
sequence is always finite. But as of today, this conjecture has resisted all proof attempts.
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S : Set
t : S → F S

The (weakly) terminal F-coalgebra νF or the coinductive type obtained as the greatest fixed
point of F is represented using a coinductive record type in Agda:

record νF : Set where
force : F νF

Here, Agda requires F to be strictly positive. Projection force : νF → F νF is the
eliminator of the coalgebra νF. It defines the observations one can make on νF. Weak
terminality is witnessed by the function unfoldF t : S→ νF for any coalgebra (S, t) which
makes the following diagram commute:

S t //

unfoldF t

��

F S

mapF (unfoldF t)

��
νF

force
// F νF

Commutation means that the equation of morphisms

force◦unfoldF t =mapF (unfoldF t)◦ t (1)

holds. In Agda, we can implement unfoldF by taking the pointwise version of equation (1)
as the definition of unfoldF. 2

{-# TERMINATING #-}
unfoldF : ∀{S} (t : S → F S) → (S → νF)
force (unfoldF t s) = mapF (unfoldF t) (t s)

Taking the above equation as a rewrite rule preserves strong normalization of rewriting
in Agda, as unfoldF is only reduced under projection force and thus not its recursive
occurrence on the right hand side of this definition. However, Agda’s termination checker
(Abel & Altenkirch, 2002; Altenkirch & Danielsson, 2012) does not see that at this

2 Digression: In System F with products and (impredicative) existential types, the weakly terminal
coalgebra νF is definable (Matthes, 2002) requiring only the monotonicity witness mapF:

νF = ∃S. (S→ FS)×S
unfoldF t = λ s. (t,s)
force = λ (t,s). mapF (unfoldF t) (t s)

In contrast to Agda, Matthes’ monotone coinductive types do not need strict positivity of F but only
the monotonicity witness mapF. Whether this carries over to Agda’s predicative type theory needs
to be explored. We do not rely on monotone coinductive types, but instead use sized coinductive
types to justify the generic unfoldF.
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point, so we override its verdict by screaming TERMINATING! To the defense of Agda’s
termination checker we have to say that a specific implementation of mapF for B = νF of
the form mapF f x = force ( f something) would lead to the non-terminating reduction rule
force (unfoldF t s) −→ force (unfoldF t something). However, such an implementation of
mapF is ruled out by its polymorphic type. Indeed, unfoldF passes a type-based termination
check using sized types (Abel & Pientka, 2013), which we present in Section 6.

4 Interactive Programs in Agda

4.1 Interaction interfaces

Interaction of a program with, e.g., an operating system (OS), can be conceived as a
sequence of commands (elements of Command), given by the program to the OS, for
each of which the OS sends back a response (elements of Response). The type (R c) of
the response is dependent on the command (c : Command) that was given; thus, in Agda
we model Response as a type family of kind Command → Set. The set Command and the
indexed set Response form an interface for the interaction (Hancock & Setzer, 2000a). In
Agda, this is modeled as a record of sets, and its type IOInterface itself inhabits the next
type level Set1 above Set. Note that IOInterface : Set would require Set : Set, but the latter
is inconsistent by Girard’s paradox (Girard, 1972; Hurkens, 1995).

record IOInterface : Set1 where
Command : Set
Response : (c : Command) → Set

As an example, we define an interface ConsoleInterface of simple console programs. It
has only two commands:

data ConsoleCommand : Set where
getLine : ConsoleCommand
putStrLn : String → ConsoleCommand

The first command, getLine, has no arguments; putStrLn is invoked with one argument of
type String.

ConsoleResponse : ConsoleCommand → Set
ConsoleResponse getLine = Maybe String
ConsoleResponse (putStrLn s) = Unit

Upon command getLine, the OS responds with a Maybe String, meaning nothing if the
end of input has been reached, and just s when String s could be read from the console.
Command (putStrLn s) is always answered with the trivial response Unit, which could be
interpreted as success. Together, command and response types form a simple interaction
interface:
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ConsoleInterface : IOInterface
Command ConsoleInterface = ConsoleCommand
Response ConsoleInterface = ConsoleResponse

4.2 Interaction trees

From now on, we assume an arbitrary IOInterface

I = record { Command = C; Response = R }

Let (IO I A) be the type of programs which interact with the interface I and which,
in case of termination, return an element of type A. The operations of (IO I A) are given
below. Note that do follows the notation of earlier papers (Hancock & Setzer, 2000a) and
is different from Haskell’s do notation:

do : ∀{A} (c : C) ( f : R c → IO I A) → IO I A
return : ∀{A} (a : A) → IO I A
_>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B

The first operation, used in the form do c λ r → f r, allows to issue a command c, and
continue with f r after receiving the response r : Rc. Note Agda’s precedence for λ: We do
not have to parenthesize a trailing lambda-abstraction, i.e., do not need to write do c (λ r→
f r).

The other two operations are desirable so that (IO I) is a monad, i.e., interactive programs
can return a result or bind the result a : A of an interactive computation m and continue as
another interactive program (k a) via (m >>= λa→ k a). One can also show that (IO I)
fulfils the standard monad laws up to bisimulation.

In principle, an interactive program can issue infinitely many commands. Consider for
instance, the program cat which echoes any input through the standard output:

cat : IO ConsoleInterface Unit
cat = do getLine λ{ nothing → return unit ; (just line) →

do (putStrLn line) λ _ →

cat }

In this code snippet, the pattern matching λ expression

λ{nothing → return unit; (just line) → · · ·}

denotes a function which makes a case distinction on whether the argument is nothing or
(just line).

The cat program issues the command getLine and terminates when it receives as
response nothing, because the end of input has been reached. When it receives (just line),
it issues the command (putStrLn line) and starts over. Potentially, it runs infinitely long,
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and statically it unfolds into an infinitely deep IO-tree. Thus, we model IO as a coinductive
type Setzer (2006):

record IO I A : Set where
constructor delay
force : IO′ I A

data IO′ I A : Set where
do′ : (c : Command I) ( f : Response I c → IO I A) → IO′ I A
return′ : (a : A) → IO′ I A

The declaration constructor delay is a just convenience which defines a lazy constructor
for IO, behaving like the following function:

delay′ : ∀{I A} → IO′ I A → IO I A
force (delay′ x) = x

In particular, we cannot match on coinductive constructors (in the same way as we cannot
match on defined functions).

With a little force, we define do and return in IO from do′ and return′ in IO’ by copattern
matching:

do : ∀{A} (c : C) ( f : R c → IO I A) → IO I A
force (do c f ) = do′ c f

return : ∀{A} (a : A) → IO I A
force (return a) = return′ a

The monadic bind operation is definable by corecursion, making IO I a monad for each
interface I, in the form of Kleisli triple (IO I, return, _>>=_):

_>>=_ : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B
force (m >>= k) with force m
... | do′ c f = do′ c λ x → f x >>= k
... | return′ a = force (k a)

The recursive call to ( f x >>= k) is justified, as one use of force has been consumed in
comparison to the left hand side (force(m >>= k)), and there are only applications of
the constructor do′ to the right hand side. Therefore, the right hand side requires more
applications of force before we need to make a recursive call.

However, the cat program is not strongly normalizing in its present form, since we can
unfold its definition recursively arbitrary many times. We need to redefine it using copattern
matching, so that at least one application of force is required before having the recursive
call. Furthermore, to get it through the termination checker, we need to replace do by do′,
so that the termination checkers sees that the recursive call is guarded by constructors:
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cat : IO ConsoleInterface Unit
force cat =
do′ getLine λ{ nothing → return unit ; (just line) → delay (
do′ (putStrLn line) λ _ →

cat )}

In the latter version, the recursive call to cat in the function body cannot be further
rewritten, as only (force cat) reduces. Compare this to the previous version where cat
alone already expands, leading to divergence under full reduction.

4.3 Running interactive programs

To run an IO-computation, which unfolds into a potentially infinite command-response
tree, we translate it into a NativeIO monad, which executes the commands. From the
perspective of Agda, the NativeIO monad is only axiomatically given by nativeReturn and
native>>=. If, further, we have a function tr : (c : C)→ NativeIO (Rc) which translates
the commands c of a specific interface C into NativeIO-computations of the appropriate
response type Rc, we can apply translateIO recursively.

{-# NON_TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO I A → NativeIO A
translateIO tr m = case (force m) of λ

{ (do′ c f ) → (tr c) native>>= λ r → translateIO tr ( f r)
; (return′ a) → nativeReturn a
}

This function is properly NON_TERMINATING, as the translated IO-tree might be
infinite. However, this will lead to an infinitely running NativeIO-program, which is the
intention.

An example program (using an obvious function translateIOConsole translating console
commands into native ones) is as follows:

main : NativeIO Unit
main = translateIOConsole cat

Note that (translateIOConsole cat) is an element of NativeIOUnit and therefore
already an executable program. One can think of translateIOConsole as a compiler or
an interpreter. To some extent we get something which is in between. If the function tr
is concretely given, the Haskell compiler can inline it and optimize the resulting instance
of translateIO. Therefore, what we get is more than interpretation. However, translateIO
cannot optimize the given IO-program; therefore, we get less than compilation.

Programs in Agda are translated into Haskell programs using the MAlonzo
compiler (Benke, 2007; Agda Wiki, 2011), which are then compiled into executable code.
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Data types and functions for processing native IO in Agda, including the type NativeIO
itself, are represented in Agda as postulated types and functions. We use the COMPILED
directive of Agda in order to associate corresponding Haskell types and functions with the
postulated ones. Especially, NativeIO is associated with the Haskell type IO. MAlonzo will
then translate those postulated types and functions into the corresponding Haskell ones.
Operations on NativeIO are therefore translated into corresponding Haskell operations on
IO.

One can consider translateIO as part of the compilation process. Therefore, programs
in Agda can be developed without using NON_TERMINATING programs. The use
of NON_TERMINATING appears only as an intermediate step during the compilation
process.

5 Objects in Agda

As explained in the introduction, the idea of objects in dependent type theory (Setzer, 2006)
is that they are server-side interactive programs: an object waits for method calls, then in
response to them, returns an answer and changes its state. Changing the state is represented
by returning an object with the modified state. Therefore, the interface of an object is given
by a set of methods (parametrized over the method arguments) and a set of responses for
each method.3 In Agda, this is written as

record Interface : Set1 where
Method : Set
Result : (m : Method) → Set

A (simple) object for interface I is a coalgebra that has one eliminator objectMethod.
For each method of I, objectMethod returns an element of the response type and the new
object after the method invocation:

record Object (I : Interface) : Set where
objectMethod : (m : Method I) → Result I m × Object I

An IO object is like a simple object, but the method returns IO applied to the result type of
a simple object. In other words, the method returns an IO program for a given IO interface
Iio, which, if terminating, returns a result of the same type as the corresponding simple
object.

record IOObject (Iio : IOInterface) (I : Interface) : Set where
method : (m : Method I) → IO Iio (Result I m × IOObject Iio I)

A constructor for an object with interface I and instance variables of type A1, . . . ,An will
be defined coinductively as a function

3 This data structure is also known as the type of containers (Abbott et al., 2003).
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f : A1 → · · · → An → Object I
objectMethod (f a1 · · · an) (m b1 · · ·bm) = (result , f a′1 · · · a′n)

where result is the value returned by the method invocation (m b1 · · ·bm), and a′1 · · ·a′n
are the instance variables of the updated object after the method has been executed. A
constructor for an IO object is defined in the same way as for simple objects, except that
on the right-hand side, we have an IO program that returns a value upon termination.

An example is a simple cell of elements of type A. It has two methods: get and (put a)
depending on a : A. Method get is intended to return the content of the cell, and has the
return type A, and (put a) sets the cell content to a and returns an element of the one
element type Unit, which corresponds to void in Java, meaning that no information is
returned. The interface in Java is given in Figure 1.

interface Cell<A> {
void put (A s);
A get ();

}

Fig. 1. Cell interface in Java

In Agda, the cell interface is coded as follows:

data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit

cellJ : (A : Set) → Interface
Method (cellJ A) = CellMethod A
Result (cellJ A) m = CellResult m

The cell class is of type IOObject, which has the previously defined ConsoleInterface as
an IOInterface and the interface of a cell, w.r.t. String, as object interface.

CellC : Set
CellC = IOObject ConsoleInterface (cellJ String)

A basic implementation of the cell interface in Java is displayed in Figure 2; the methods
log on standard output what is happening—for the sole purpose of demonstrating the IO
interface.

In Agda, simple cell objects are constructed by simpleCell, which implements the
methods.
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class SimpleCell<A> implements Cell<A> {

A content;

SimpleCell (A s) { content = s; }

public void put (A s) {
System.out.println("putting(" + s + ")");
content = s;

}

public A get () {
System.out.println("getting(" + content + ")");
return content;

}

public static void program () {
SimpleCell<String> c = new SimpleCell<String>("Start");
String s = System.console().readLine();
if (s == null) return; else {

c.put(s);
s = c.get();
System.out.println(s);
program();

}
}

public static void main (String[] args) {
program();

}
}

Fig. 2. Simple cell implementation in Java

simpleCell : (s : String) → CellC
force (method (simpleCell s) get) =
do′ (putStrLn ("getting (" ++ s ++ ")")) λ _ →

delay (return′ (s , simpleCell s))
force (method (simpleCell s) (put x)) =
do′ (putStrLn ("putting (" ++ x ++ ")")) λ _ →

delay (return′ (unit , simpleCell x))

A test program using simpleCell is defined as follows in Agda. It is very similar to the
original Java program, presenting an almost line-to-line translation. The main difference is
that in Agda, we have no mutable state; hence, we rely on continuation-passing style with
explicit state threading.
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{-# TERMINATING #-}

program : IOConsole Unit
force program =
let c1 = simpleCell "Start" in
do′ getLine λ{ nothing → return unit; (just s) →

method c1 (put s) >>= λ{ (_ , c2) →

method c2 get >>= λ{ (s′ , c3) →

do (putStrLn s′) λ _ →

program }}}

main : NativeIO Unit
main = translateIOConsole program

The pragma {-# TERMINATING #-} declares program as terminating, overriding the
answer from the termination checker. The termination checker says no because on the
right hand side of the coinductive definition there is an occurrence of a defined function
_>>=_ whereas guarded recursion allows only constructors.

In the next section, we will revisit this example using sized typing, and see that with
sized types it passes the termination check.

6 Sized Coinductive Types

In this section, we show how to use sized types to overcome major limitations of the
termination checker and enable the user to write modular IO-programs.

Sized types have been used for type-based productivity checking of corecursive
programs (Hughes et al., 1996; Barthe et al., 2004; Sacchini, 2013; Abel & Pientka, 2013).
Sect. 3 of Igried & Setzer (2016) contains a brief explanation of sized types for coinductive
types in Agda. For coinductive types like IO, we should rather speak of depth than of
size.4 The depth is how often one can safely apply force, and the depth of a fully defined
coinductive object is ∞. However, during the (co)recursive definition of an object, we want
to speak of depths less than infinity, to verify that on the way to the recursive calls, the
depth has increased by at least one. This ensures that the depth grows for each unfolding
of recursion, becoming ∞ in the limit.

First, let us define a sized version of the generic weakly terminal coalgebra νF from
Sect. 3. We can then fulfill our promise and justify the generic coiteration operation unfoldF
from the monotonicity witness mapF.

4 The term Size is more suitable for inductive types which are inhabited by trees. There, the size
tracked in the type is an upper bound on the height of the tree. In recursive calls, the height should
go down, guaranteeing termination. Note that for infinitely branching trees, the height might be
transfinite, so semantically sizes correspond to ordinals rather than to natural numbers. For the use
with coinductive types, sizes up to ω suffice, which we call ∞ in our syntax.
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record νF (i : Size) : Set where
constructor delay
force : ∀(j : Size< i) → F (νF j)

The quantification over j : Size< i is reminiscent of the approximation of the greatest
fixpoint by deflationary iteration (Sprenger & Dam, 2003; Abel, 2012; Abel & Pientka,
2013). The approximant ν iF is defined by induction on ordinal i as follows:

ν
iF =

⋂
j<i

F (ν jF)

The fact that ν iF is monotonically decreasing in i follows directly from the use of
intersection

⋂
j<i and is independent of the monotonicity of F . Agda still asks for strict

positivity of F , which anyway holds for the common coinductive types. Furthermore,
the monotonicity of F gives us the isomorphisms ν i+1F = F (ν iF) and ν∞F = F (ν∞F),
mediated by force and delay.5

The coiterator unfoldF can likewise be defined by induction on i, again by copattern
matching:

unfoldF : ∀{S} (t : S → F S) → ∀ i → (S → νF i)
force (unfoldF t i s) j = mapF (unfoldF t j) (t s)

The type of force guarantees j < i, thus, the recursive call (unfoldF t j) is justified. It gives
us a function of type S→ νF j which we map over the application (t s) : F S to obtain the
right hand side of the required type (F (νF j)). Note how the type of mapF ensures that a
result having the required depth j is returned. In particular, mapF cannot involve uses of
force, which would necessarily tamper with the depth annotation of νF.

In the sized version of IO, applying force to an IO-tree yields a function that expects a
size j < i and then yields an IO′-node, which can be either a do′ or a return′. The latter
is a leaf, and the former a node consisting of a command c and a (Responsec)-indexed
collection f of subtrees of that depth.

record IO (Iio : IOInterface) (i : Size) (A : Set) : Set where
constructor delay
force : {j : Size< i} → IO′ Iio j A

data IO′ (Iio : IOInterface) (i : Size) (A : Set) : Set where
do′ : (c : Command Iio) ( f : Response Iio c → IO Iio i A) → IO′ Iio i A
return′ : (a : A) → IO′ Iio i A

Again, this sized coinductive type is justified by deflationary iteration ν iF =
⋂

j<i F (ν jF).

In this case, the ith approximant ν iF of the greatest fixed point of F would be (IO Iio i A) for

5 force(delay t) = t holds definitionally in Agda; delay(force t)∼= t holds up to bisimilarity.
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some fixed Iio and A. The type transformation F would be IO′ in dependence of (IO Iio i A).
We can make the correspondence obvious by using nested recursion instead of mutual
recursion:

data F (X : Set) : Set where
do′ : (c : Command Iio) ( f : Response Iio c → X) → F X
return′ : (a : A) → F X

record νF (i : Size) : Set where
constructor delay
force : {j : Size< i} → F (νF j)

Sizes in types allow us to track the guardedness level of expressions independent of their
exact formulation. In particular, we can express the guardedness level of a function applied
to arguments in terms of the guardedness level of the arguments, rather than having to
assume that the function application is unguarded. With the same implementations as for
the unsized versions, we obtain the following sized typings for do, return, and _>>=_.

do : ∀ {i A} (c : C) ( f : R c → IO Iio i A) → IO Iio i A
return : ∀ {i A} (a : A) → IO Iio i A
_>>=_ : ∀ {i A B} (m : IO Iio i A) (k : A → IO Iio i B) → IO Iio i B

The typings of do and _>>=_ express that these functions are guardedness-preserving,
meaning that the output is (at least) as guarded as the least guarded input. The type of return
simply expresses that we can assume any guardedness for (return a). With subtyping, an
equivalent type would be ∀{i A}(a : A)→ IO Iio ∞ A, using the covariance IO Iio ∞ A ≤
IO Iio i A of the coinductive type IO in its size argument i≤ ∞.

To understand why the above typing is valid for _>>=_, we cast another glance at its
implementation. We have made the sizes explicit to see what is going on; however, they
can be inserted by Agda automatically. Unfortunately, to supply hidden arguments to an
infix operator like _>>=_, we have to fall back to prefix notation:

force (_>>=_ {i} m k) {j} with force m {j}
... | do′ c f = do′ c λ r → _>>=_ {j} ( f r) k
... | return′ a = force (k a) {j}

The call _>>=_ {i}m k constitutes an IO-tree of depth i which is defined by the effect of
its only elimination form force. Assuming we force it, obtaining a size j < i, we are obliged
to produce an IO′-node of size j. We do this by forcing the first given tree, m, of depth i,
by virtue of our size j < i. 6 We proceed by case-distinction on the resulting IO′-node. If

6 At this point, it is important to note that if we had no size j < i, we could not force it, or at least not
discriminate on the results of forcing it. In particular, if i = 0 then there is no size < i. However,
when we have successfully forced m>>=k, meaning that the latter actually evaluated to a delayed
node, we know its depth is not 0, and thus there exists a size j < i.



ZU064-05-FPR ooAgda 10 August 2016 11:16

20 Andreas Abel, Stephan Adelsberger, and Anton Setzer

it is (do′c f ), we execute command c and, after binding the response to r, continue with
a recursive call ( f r) >>= k at depth j, which is strictly smaller than the depth we started
with. Thus, the recursive call is justified. If it is (return′a), we continue with IO-tree (k a)
of size i, which we have to force to produce the desired IO′-node of size j.

For an IOObject, the notion of depth is how often we can apply one of its methods. The
result of applying a method to an IOObject of depth i is an unbounded IO-tree (depth ∞).
Its leaves contain the result of the method call and an IOObject of depth j < i resembling
the new state of this object after the method call (and the IO-actions).

record IOObject (Iio : IOInterface) (I : Interface) (i : Size) : Set where
method : ∀{j : Size< i} (m : Method I)

→ IO Iio ∞ (Result I m × IOObject Iio I j)

Sized types already allow us to write the simpleCell constructor slightly more elegantly,
using the defined return instead of the combination of delay and return′. Putting the
recursive call to simpleCell under function return is possible due to the polymorphic typing
of return : A→ IO Iio ∞ A which we use with type A = String×CellC j.

CellC : (i : Size) → Set
CellC = IOObject ConsoleInterface (cellJ String)

simpleCell : ∀{i} (s : String) → CellC i
force (method (simpleCell {i} s) {j} get) =
do′ (putStrLn ("getting (" ++ s ++ ")")) λ _ →

return (s , simpleCell {j} s)
force (method (simpleCell _) (put s)) =
do′ (putStrLn ("putting (" ++ s ++ ")")) λ _ →

return (unit , simpleCell s)

The program using simpleCell from Sect. 5 now passes the termination check without
modification to its definition. Only its type needs to be refined to exhibit the depth i that
will grow with each unfolding of the recursion.

program : ∀{i} → IO ConsoleInterface i Unit
force program =
let c1 = simpleCell "Start" in
do′ getLine λ{ nothing → return unit; (just s) →

method c1 (put s) >>= λ{ (_ , c2) →

method c2 get >>= λ{ (s′ , c3) →

do (putStrLn s′) λ _ →

program }}}

Both do and _>>=_ preserve the guardedness of the recursive call to program, and this is
communicated through the type system.
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7 Interface Extension and Delegation

So far we have shown the implementation in Agda for a single object. In this section we
will show the facets of having several objects and we implement reuse mechanisms based
on delegation.

For the purpose of illustration, we introduce the CounterCell class. It extends the
functionality of a SimpleCell and counts the number of times an element is stored and
retrieved. Further, it includes a method stats to print these statistics. Figure 3 depicts the
extended interface in Java.

interface StatsCell<A> extends Cell<A> {
void stats();

}

Fig. 3. StatsCell interface in Java

In Agda, CounterMethod extends the method definition of a SimpleCell, where super
lifts a CellMethod of SimpleCell; further, a constructor for the stats method is added:

data CounterMethod A : Set where
super : (m : CellMethod A) → CounterMethod A
stats : CounterMethod A

Instead of embedding the superclass interface CellMethod into CounterMethod, we could
have reused get and put as constructors for CounterMethod, as Agda supports constructor
overloading. However, embedding with super gives us benefits later. We can still get
nice names for the inherited methods (c indicates a CellMethod) by using Agda’s pattern
synonym facility:

pattern getc = super get
pattern putc x = super (put x)

The full object Interface in Agda is given by statsCellI, in which the result types for put
and get refer to SimpleCell and Unit represents void.

statsCellI : (A : Set) → Interface
Method (statsCellI A) = CounterMethod A
Result (statsCellI A) (super m) = Result (cellJ A) m
Result (statsCellI A) stats = Unit

Figure 4 shows the CounterCell in Java that is equivalent to our implementation in Agda.
Notably, we restrict the implementation to delegation as reuse mechanism as we cannot
fully express the subtype relationship between CounterCell and SimpleCell. In particular,
the Agda code explicitly states that put and get are defined in the interface of SimpleCell;
if we moved the methods to a super class of SimpleCell, we have to adapt our code. In Java,
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we can override any method without the need to specify in which particular superclass the
method is defined in.

class CounterCell<A> implements StatsCell<A> {

Cell<A> cell;
int ngets, nputs;

CounterCell (Cell<A> c, int g, int p) {
cell = c;
ngets = g;
nputs = p;

}

public A get() {
ngets++;
return cell.get();

}

public void put (A s) {
nputs++;
cell.put(s);

}

public void stats() {
System.out.println ("Counted "

+ ngets + " calls to get and "
+ nputs + " calls to put.");

}

public static void program (String arg) {
CounterCell<String> c = new CounterCell(new SimpleCell("Start"), 0, 0);
String s = c.get();
System.out.println(s);
c.put(arg);
s = c.get();
System.out.println(s);
c.put("Over!");
c.stats();
return;

}

public static void main (String[] args) {
program ("Hello");

}
}

Fig. 4. CounterCell implementation in Java

In Agda, the class CounterC is defined as a console object
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CounterC : (i : Size) → Set
CounterC = IOObject ConsoleInterface (statsCellI String)

The constructor counterCell specifies the functionality of the CounterCell class. The local
state includes an object of class CounterC (the class of a SimpleCell) and two natural
numbers for the get and put statistics. Each method may issue IO commands or call
methods of other objects; getc and putc delegate to the respective methods in SimpleCell
and return an object with the increased counter variable, whereas stats issues printing of
the statistics as IO command.

counterCell : ∀{i} (c : CellC i) (ngets nputs : N) → CounterC i

method (counterCell c ngets nputs) getc =
method c get >>= λ { (s , c′) →

return (s , counterCell c′ (1 + ngets) nputs) }

method (counterCell c ngets nputs) (putc x) =
method c (put x) >>= λ { (_ , c′) →

return (unit , counterCell c′ ngets (1 + nputs)) }

method (counterCell c ngets nputs) stats =
do (putStrLn ("Counted "
++ show ngets ++ " calls to get and "
++ show nputs ++ " calls to put.")) λ _ →

return (unit , counterCell c ngets nputs)

Finally, the test program is a one-to-one translation from the Java original. This time, it is
not recursive, so we do not have to worry about termination.

program : String → IO ConsoleInterface ∞ Unit
program arg =
let c0 = counterCell (simpleCell "Start") 0 0 in
method c0 getc >>= λ{ (s , c1) →

do (putStrLn s) λ _ →

method c1 (putc arg) >>= λ{ (_ , c2) →

method c2 getc >>= λ{ (s′ , c3) →

do (putStrLn s′) λ _ →

method c3 (putc "Over!") >>= λ{ (_ , c4) →

method c4 stats >>= λ{ (_ , c5) →

return unit }}}}}

main : NativeIO Unit
main = translateIO translateIOConsoleLocal (program "Hello")
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8 State-Dependent Objects and IO

8.1 State-Dependent Interfaces

We motivate stateful object interfaces with the implementation of a stack. A stack has two
operations: push places an object on the stack, and pop removes the top object and returns
it. Consider a stack interface in Java:

public interface Stack<E> {
void push(E e);

/** @throws EmptyStackException if the stack is empty **/
E pop() throws java.util.EmptyStackException;

}

A stack underflow happens when the pop method is called on an empty stack. In the
Java Development Kit (JDK), the pop method throws a runtime exception, which the
programmer is advised but not forced to catch.

In Agda, a safer version of a stack class can be defined, where the type system ensures
that a pop operation may only be performed on a non-empty stack. The interface depends
on the state of the stack, i.e., the number of elements that are on the stack:

StackStates = N

A state-dependent object interface in Agda7 is given by a value of the following record
type (superscript s indicates the state-dependency of the interface).

record Interfaces : Set1 where
States : Set
Methods : (s : States) → Set
Results : (s : States) → (m : Methods s) → Set
nexts : (s : States) → (m : Methods s) → (r : Results s m) → States

The set of methods depends on the state of the object, while the result depends on the
state and the invoked method. The nexts function determines the successive state after the
result of the method invocation has been computed.

To model state-dependent methods, StackMethods needs to be indexed by the size of
the stack. The pop method is only available when the size is non-zero, i.e., of the form
suc n (successor of some natural number n). In Agda, this is realized by an indexed data
type, aka inductive family (Dybjer, 1994).

data StackMethods (A : Set) : (n : StackStates) → Set where
push : ∀ {n} → A → StackMethods A n
pop : ∀ {n} → StackMethods A (suc n)

7 Also known as indexed container (Altenkirch & Morris, 2009).
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Pushing to a stack has no return value (Unit), while the result of popping from a stack of
As is an element of type A.

StackResults : (A : Set) → (s : StackStates) → StackMethods A s → Set
StackResults A _ (push _) = Unit
StackResults A _ pop = A

The next state after a push operation is a stack with an increased size (i.e., state (suc n)),
while pop leads to a decreased size.

stackNexts : ∀ A n (m : StackMethods A n) (r : StackResults A n m) → StackStates

stackNexts _ n (push _) _ = suc n
stackNexts _ (suc n) pop _ = n

The previous definitions allow us to assemble the state dependent interface for stack
objects:

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A
Results (StackInterfaces A) = StackResults A
nexts (StackInterfaces A) = stackNexts A

8.2 State-Dependent Objects

An object for interface I is a coalgebra which has one eliminator objectMethod which for
each method of I returns an element of the response type and the adapted object:

record Objects (I : Interfaces) (s : States I) : Set where
objectMethod : (m : Methods I s) →

Σ[ r ∈ Results I s m ] Objects I (nexts I s m r)

Since the type of the returned object depends, via nexts, on the returned result r, we need
to type the returned pair via a Σ-type, defined in Agda’s standard library. Here Σ[ x ∈ A ] B
denotes Σ A (λx → B), where Σ A C is the dependent product type defined as a record with
fields proj1 : A and proj2 : C proj1.

Note Objects is given as a ΠΣ-type rather than ΣΠ. This is a very general form of
polynomial functors as known from the theory of Petersson-Synek trees (Petersson &
Synek, 1989) and indexed containers (Hancock et al., 2013) (see also Setzer (2016)).

The state-dependent version of an IO object is:
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record IOObjects (Iio : IOInterface) (I : Interfaces) (s : States I) : Set where
method : (m : Methods I s) →

IO Iio ∞ (Σ[ r ∈ Results I s m ] IOObjects Iio I (nexts I s m r))

IOObjects is a straightforward adaption to state-dependency of IOObject from Sect. 5.
The IO version of a stack object could additionally log its activity on an output channel.
However, in the following we restrict it to the non-IO version for clarity of exposition.

The simplest implementation of a stack object is just a wrapper of its data, a stack
implemented as a vector (Vec A n) of elements in type A, where n is the current stack
size.

stack : ∀{A}{n : N} (as : Vec A n) → Objects (StackInterfaces A) n
objectMethod (stack as) (push a) = unit , stack (a :: as)
objectMethod (stack (a :: as)) pop = a , stack as

In the case of method pop, in principle, we have two cases for the content on the stack:
First, the stack is non-empty, i.e., of the form a :: as where a is the top element and as is the
rest. This case is handled by the second clause. The other case, the stack being empty, i.e.,
of the form [], is ruled out by the dependent typing: method pop expects n to be a successor,
but [] : Vec A 0 enforces n = 0. This allows Agda to conclude that this case is impossible,
and no clause has to be written for it. Especially no exception handling is needed.

Objects that may flexibly depend on runtime values may not only be suitable for ensuring
runtime invariants, but may also help model extensions of object-oriented programming;
for instance, method dispatch may depend on another dimension. Consider context-
oriented programming (Hirschfeld et al., 2008), where the behavior of an object depends
on a given execution context that can be activated dynamically at runtime.

8.2.1 Example of Use of Safe Stack

We consider an example of the use of safe stacks, where type theoretic rules prevent the use
of pop when it is empty. A stack machine for evaluating the Fibonacci numbers iteratively
using a safe stack serves as an illustration. This is essentially the result of computing
the recursive definition of the Fibonacci numbers (which is of course inefficient) using a
stack. This definition can easily be generalised to other recursive functions. The presented
example is an adaption of Sect. 5.1.4. of Abelson et al. (1996).

The stack machine consists of a state, a number n : N, and a stack of size n. The state is
either an expression (fib m) to be evaluated or a value (val k) to be returned. The elements
of the stack are expressions with a hole •, into which k is to be inserted, once the stack
above it has been emptied, and the state has become a value (val k). These elements are
of the form (•+fib m), which means that (fib m) has to be added to the result k, or k′ +•,
which means that the result k has to be added to k′.
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data FibState : Set where
fib : N → FibState
val : N → FibState

data FibStackEl : Set where
_+• : N → FibStackEl
•+fib_ : N → FibStackEl

FibStack : N → Set
FibStack = Objects (StackInterfaces FibStackEl)

FibStackmachine : Set
FibStackmachine = Σ[ n ∈ N ] (FibState × FibStack n)

The function reduce carries out a one-step reduction, returning either a new stack
machine or the value computed, i.e. an element of the disjoint union of the two sets. If
the state is (val k), then this expression is used to reduce the top element on the stack. If the
state is (fib m), then the machine is supposed to compute (fib m). In case of m = m′+2 we
have (fib (m′+1)) as the next state, which when evaluated will be inserted into the whole
of the element (•+fib m′) pushed onto the stack, computing fib (m′+1)+fib m′. Note that
we never pop from the stack when it is empty.

reduce : FibStackmachine → FibStackmachine ] N
reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)
reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (•+fib m)) B λ { (_ , stack1) →

inj1 ( suc n , fib (suc m) , stack1) }
reduce (0 , val k , stack) = inj2 k
reduce (suc n , val k , stack) =

objectMethod stack pop B λ { (k′ +• , stack1) →

inj1 (n , val (k′ + k) , stack1)
; (•+fib m , stack1) →

objectMethod stack1 (push (k +•)) B λ { (_ , stack2) →

inj1 (suc n , fib m , stack2) }}

In the above, we used the function _B_ which can be used to make a method call and—
depending on the result—continue with a next operation. We also used anonymous pattern
matching in λ-expressions, where the cases are separated by “;”.

_B_ : ∀{A B : Set} → A → (A → B) → B
a B f = f a
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The function computeFibRec applies iteratively reduce until it returns a result. We know
it is TERMINATING. But, since we did not calculate how often we should iterate this
operation, we have to override the termination checker.

{-# TERMINATING #-}
computeFibRec : FibStackmachine → N
computeFibRec s with reduce s
... | inj1 s′ = computeFibRec s′

... | inj2 k = k

fibUsingStack computes the Fibonacci function:

fibUsingStack : N → N
fibUsingStack m = computeFibRec (0 , fib m , stack [])

8.3 Reasoning About Stateful Objects

8.3.1 Bisimilarity

Henceforth, we assume an arbitrary I : Interfaces and use O for the type of objects of this
interface. Assume

I = record { States = S; Methods = M; Results = R; nexts = next }
O = Objects I

In Agda the equality used in type checking is definitional equality, which is a decidable
equality based on equality of normal forms up to α,η-equality. It is not extensional: for
instance, functions are equal if they have the same normal form, not if they return equal
values for equal arguments. The standard generic propositional equality in Agda is Martin-
Löf’s intensional equality type. One can define extensional propositional equality types,
but the preservation of such equalities by functions needs to be proved for each instance
needed.

The natural extensional equality on coalgebras is bisimilarity, which means that two
elements of coalgebras are bisimilar, if all eliminators return equal results for equal
arguments. Since the result type of an eliminator might refer to the coalgebra, this results
in a recursive definition. Because the coalgebra is defined coinductively, it is natural to
define the bisimilarity coinductively as well. Essentially, this means that two elements of
a coalgebra are bisimilar, if, after repeatedly applying eliminators until one obtains an
element of a type which was defined before the coalgebra was introduced, one obtains
equal results. Adapted to objects, this means that two objects are bisimilar if they yield the
same responses if subjected to the same method calls, which is a recursive definition to be
understood coinductively.
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To express bisimilarity in Agda, let us first define a relation ΣR R on dependent pairs
(a,b),(a′,b′) ∈ Σ AB that holds iff the first components a,a′ ∈ A are identical and the
second components b,b′ ∈ B a are related by R a : (b b′ : B a)→ Set.

data ΣR {A : Set} {B : A → Set} (R : ∀{a} (b b′ : B a) → Set)
: (p p′ : Σ[ a ∈ A ] B a) → Set

where
eqΣ : ∀{a}{b b′ : B a} → R b b′ → ΣR R (a , b) (a , b′)

We can establish ΣR R (a,b) (a,b′) using constructor eqΣ, provided we have a proof of
(R b b′). This enables us to define the bisimilarity relation coinductively in a very similar
way to how we have defined objects.

record _≅_ {s : S} (o o′ : O s) : Set where
bisimMethod : (m : M s) →

ΣR (_≅_) (objectMethod o m) (objectMethod o′ m)

A bisimilarity derivation o∼= o′ for two objects o,o′ ∈ Os at the same state s is an infinite
proof tree which we can, by bisimMethod, query for its node sitting on branch m : M s for a
valid method call m. This node will consist of an eqΣ constructor certifying the identity of
responses and holding a subtree for the equality of the objects after the method invocation.

Reflexivity of bisimilarity is shown corecursively; the proof, as the statement, is rather
trivial.

refl≅ : ∀{s} (o : O s) → o ≅ o
bisimMethod (refl≅ o) m = let (r , o′) = objectMethod o m

in eqΣ (refl≅ o′)

To show that o is bisimilar to itself, we subject it to an arbitrary method call m. Trivially,
there is only one result r, which is equal to itself. By the coinduction hypothesis, the new
object o′ is bisimilar to itself, thus, eqΣ is sufficient to establish bisimilarity.

8.3.2 Verifying stack laws

In this section, we show that two stack laws hold for our implementation of a stack by
a vector. Both hold in Agda by computation, so reflexivity of bisimilarity is sufficient to
prove them.

The first law states that for an arbitrary stack st constructed from a vector v of elements
of type E, if we first push an arbitrary element e and then pop from the stack, we get back
e and the original stack.
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pop-after-push : ∀{n} {v : Vec E n} {e : E} →

let st = stack v
(_ , st1) = objectMethod st (push e)
(e2 , st2) = objectMethod st1 pop

in (e ≡ e2) × (st ≅ st2)

pop-after-push = refl , refl≅ _

In Agda, the proof is trivial by expansion of the definition of our stack implementation:
First, st1 computes to stack (e :: v), then the pair (e2, st2) computes to (e, stack v), and
both goals hold by reflexivity.

The second law concerns the opposite order of these operations. If we first pop and
element from stack st constructed from the non-empty vector e :: v, and then push the
popped element, we end up with the same stack st.

push-after-pop : ∀{n} {v : Vec E n} {e : E} →

let st = stack (e :: v)
(e1 , st1) = objectMethod st pop
(_ , st2) = objectMethod st1 (push e1)

in st ≅ st2

push-after-pop = refl≅ _

Again, this lemma is proven by computation.

8.3.3 Bisimilarity of different stack implementations

Alternatively to a vector, we can store the stack contents in a finite map implemented
naively as a pair of a number n : N which denotes the stack size, and a function f : N→ E
which gives direct access to the stack elements, with f 0 standing for the top element and
f (n−1) for the bottom element. The value of f k for k≥ n is irrelevant. We can transform
such a finite map into a vector through the function (tabulate n f ), which computes the
vector f 0 :: f 1 :: · · · :: f (n−1) :: [] and will be used to relate the finite maps and vectors
later.

tabulate : ∀ (n : N) ( f : N → E) → Vec E n
tabulate 0 f = []
tabulate (suc n) f = f 0 :: tabulate n λ m → f (suc m)

The object stackF n f implements a stack represented by the finite map (n, f ). Pushing a
new element e onto the stack will result in increasing the stack size to (suc n) and changing
the function f to a new function f ′ such that top position 0 maps to the new element e and
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position m+ 1 maps to ( f m). Basically, we have shifted the old stack content to make
space for the new element e in position 0.

stackF : ∀ (n : N) ( f : N → E) → Objects (StackInterfaces E) n
objectMethod (stackF n f ) (push e) = _ , stackF (suc n) λ

{ 0 → e
; (suc m) → f m }

objectMethod (stackF (suc n) f ) pop = f 0 , stackF n ( f ◦ suc)

Popping from the stack returns the top element f 0 and changes the stack size from (suc n)
to n and the representing function from f to f ◦ suc.

Given a finite map (n, f ) which tabulates to a vector v, we obtain bisimilar stack objects
(stackF n f ) and (stack v). After we push a new element e we can invoke the coinduction
hypotheses on the new stack objects provided that their data is still in correspondence,
(tabulate (suc n) f ′ ≡ (e :: v)). By definition of tabulate the heads of these vectors are
both e, and the equality of their tails is the assumption p.

impl-bisim : ∀{n f } v (p : tabulate n f ≡ v) → stackF n f ≅ stack v

bisimMethod (impl-bisim v p) (push e) =
eqΣ (impl-bisim (e :: v) (cong (_::_ e) p))

bisimMethod (impl-bisim (e :: v) p) pop rewrite cong head p =
eqΣ (impl-bisim v (cong tail p))

Here (cong head p) has type f 0 ≡ e, where f is the hidden argument. The syntax
rewrite cong head p makes an implicit case distinction on (cong head p), which in this
example equates f 0 with e.

When popping from a non-empty stack whose vector representation is e :: v, we first
have to show the equality of the result component, f 0 ≡ e. This equation is obtained
from p : tabulate (suc n) f ≡ (e :: v) by applying head on both sides. After rewriting
with this equation, we can proceed with eqΣ and apply the coinduction hypothesis with
tabulaten( f ◦ suc)≡ v, which we get from p by applying tail on both sides.

8.4 State-Dependent IO

State-dependent interactive programs are defined in a similar way as state-dependent
objects, except for replacing Methods by Commands and Results by Responses. Later, we
will use state dependent IO in a situation where the components have different type levels
(Set vs Set1). We, therefore, define the operations polymorphically in the finite type levels
σ, γ, ρ, which from now we consider fixed but arbitrary. Levels have the lowest element
lzero, successor operation lsuc and the maximum operation t. 8

8 Note that Set α has type Set (lsucα) and (α : Level)→ Setα has type Setω, which is a universe
above any Setα . Universe Setω only exists internally in Agda as the type of level-polymorphic
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record IOInterfaces : Set (lsuc (σ t γ t ρ )) where
States : Set σ

Commands : States → Set γ

Responses : (s : States) → Commands s → Set ρ

nexts : (s : States) → (c : Commands s) → Responses s c → States

State-dependent IO programs are defined in a similar way as state-dependent Objects:

record IOs (i : Size) (A : S → Set α) (s : S) : Set (lsuc (α t σ t γ t ρ )) where
constructor delay
forces : {j : Size< i} → IOs′ j A s

data IOs′ (i : Size) (A : S → Set α) : S → Set (lsuc (α t σ t γ t ρ )) where
dos′ : {s : S} → (c : C s) → ( f : (r : R s c) → IOs i A (next s c r) )

→ IOs′ i A s
returns′ : {s : S} → (a : A s) → IOs′ i A s

returns : ∀{i}{A : S → Set α} {s : S} (a : A s) → IOs I i A s
forces (returns a) = returns′ a

dos : ∀{i}{A : S → Set α} {s : S}
(c : C s) ( f : (r : R s c) → IOs I i A (next s c r)) → IOs I i A s

forces (dos c f ) = dos′ c f

Translation into NativeIO is as before, however the type level ρ of Responses has to be
lzero. Furthermore, the result type needs to be independent of s and in Set:

translateIOs : ∀{A : Set }{s : S}
→ (translateLocal : (s : S) → (c : C s) → NativeIO (R s c))
→ IOs I ∞ (λ s → A) s
→ NativeIO A

9 A Drawing Program in Agda

In this section we will introduce a graphics library in Agda and implement a proof-
of-concept drawing program with it. The library is using Hudak’s SOE Haskell library
(Hudak, 2016). The GUI interface in the Agda library has commands for creating,
changing, and closing GUI components, and for checking for GUI events such as key
pressed (together with the character pressed) or mouse move event (together with the new

universes, it cannot be written by the user. It is needed in type theoretic rules which require to
associate a type for any A occurring in a typing judgement a : A.
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point). The library will refer to data types representing GUI-related data such as a type
Window of windows. All these commands and types will be translated in Haskell functions
and types using the SOE library.

data GraphicsCommands : Set where
getWindowEvent : Window → GraphicsCommands
openWindow : String → Maybe Point → N → N

→ RedrawMode → Maybe Word32
→ GraphicsCommands

closeWindow : Window → GraphicsCommands
drawInWindow : Window → Graphic → GraphicsCommands

GraphicsResponses : GraphicsCommands → Set
GraphicsResponses (getWindowEvent _) = Event
GraphicsResponses (openWindow _ _ _ _ _ _) = Window
GraphicsResponses (closeWindow _) = Unit
GraphicsResponses (drawInWindow _ _) = Unit

GraphicsInterface : IOInterface
Command GraphicsInterface = GraphicsCommands
Response GraphicsInterface = GraphicsResponses

IOGraphics : Size → Set → Set
IOGraphics i = IO GraphicsInterface i

Graphics commands are translated into native IO commands by a function
translateNative, which replaces each command by a native function.

translateNative : (c : GraphicsCommands) → NativeIO (GraphicsResponses c)

We define now a simple drawing program, which opens a window and draws a trace of
where the mouse moves. After having started, the state of the program is given by the last
point up to which the drawing has already been carried out. After the first mouse movement
event at point p, the drawing consists of a single point at position p. Initially there is no
such point. So we define the state as

State = Maybe Point

The loop of the program checks for any window event, which are handled by
winEvtHandler. If key ’x’, representing a request to terminate the program, was pressed,
the program closes the window and terminates. If, after we have started (state (just p1)),
a mouse movement event with point p2 occurs, a line is drawn from p1 to p2, and the
state is updated to (just p2). If the same mouse movement event occurs in the initial state
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nothing, no line is drawn, but as before the state is updated to (just p2). In all other cases,
winEvtHandler calls the loop function without changing the state.

mutual

loop : ∀{i} → Window → State → IOGraphics i Unit
force (loop w s) = do’ (getWindowEvent w) λ e →

winEvtHandler w s e

winEvtHandler : ∀{i} → Window → State → Event → IOGraphics i Unit
winEvtHandler w s (Key c t) = if charEquality c ’x’ then (do (closeWindow w) return)

else loop w s
winEvtHandler w s (MouseMove p2) = case s of

λ{ nothing → loop w (just p2)
; (just p1) → do (drawInWindow w (line p1 p2)) λ _ →

loop w (just p2) }
winEvtHandler w s _ = loop w s

The main program opens a window and then runs the loop. This program is then
translated into a native IO program:

program : ∀{i} → IOGraphics i Unit
program =
do (openWindow "Drawing Prog" nothing 1000 1000 nativeDrawGraphic nothing) λ win →

loop win nothing

translateIOGraphics : IOGraphics ∞ Unit → NativeIO Unit
translateIOGraphics = translateIO translateNative

main : NativeIO Unit
main = nativeRunGraphics (translateIOGraphics program)

10 A Graphical User Interface using an Object

10.1 Graphical User Interfaces with Event Handlers

So far our interactive programs were client-side programs: the program issues commands
and receives responses. In the drawing program in section 9 we ran a loop which was
checking for any events that had occurred and modified the program state accordingly.
When dealing with more complex graphical user interfaces this becomes inefficient. A
better way is to use event listeners.

In object-oriented programming languages such as Java, when creating a graphical user
interface, one uses commands which create GUI elements such as frames, buttons and text
fields, and commands for placing them usually within previously created GUI elements.
For instance, one can place a button within a frame.
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These GUI elements are associated with events, which are usually triggered by user
interaction. For example, once we have created a button, a button click event is created,
which is activated whenever the button is pressed. Moreover, there are events triggered by
the user interface itself, such as the paint event that signals that a window’s contents needs
to be repainted. Events are handled by event listeners or event handlers. An event handler
is an interactive program that is executed whenever the event is triggered and is provided
with parameters accordingly. For instance, when a mouse click event is triggered, one
obtains the coordinates of the location of the mouse click. An event handler also has other
parameters which are implicit, such as the device context. When the event is triggered, the
event handler is applied to these arguments.

In object-oriented programming such as Java, the event handlers are usually invoked
as methods of several objects. This allows communication between the event handlers.
In 10.2, we will introduce an example of a spaceship controlled by a button. The
coordinates of the spaceship are changed when a button is pressed. The paint event handler
then uses these coordinates to draw the spaceship at a different location.

10.2 wxHaskell

In this section we will translate our IO programs into native IO programs, which then
translate into Haskell programs by making use of the Haskell library wxHaskell (Leijen,
2004; wiki.haskell, 2016). This library is suitable for creating GUIs since it has good
support for server-side programs based on action handlers. Here “server-side” refers to the
notion put forth by Hancock & Setzer (2005); Setzer & Hancock (2004). The wxHaskell
library offers bindings for wxWidgets, and an object-oriented (C++) widget toolkit to build
GUIs. For each method in C++ there is a wrapper function in C with a pointer to a struct
representing an object. The Haskell library binds to the C functions. As the C++ methods
assume access to a mutable state, wxHaskell makes use of mutable variables. Our examples
use mutable variables based on Concurrent Haskell (Jones et al., 1996). In our Agda code,
we do not focus on modeling the inheritance relationship between widgets that is present
in the C++ library. In wxHaskell, inheritance relationships are modeled as phantom types;
however, as it relies on unsafe object casts, it is only an approximation that does not fully
represent subtyping of object-oriented programming languages (see the related work of
phantom types in section 11).

wxHaskell provides some basic data types such as the device context DC, frame Frame
and button Button. Additionally, it provides functions for creating and placing GUI
elements. GUI elements have properties, using syntax such as

frame [text := "Frame Title"]

for creating a frame with the title “Frame Title”. Event handlers are associated with GUI
elements by using syntax such as

set myframe [on paint := prog]

which sets the onpaint method (in underlying C++ terms) for frame myframe to program
prog, where prog is an element of IO () in Haskell. In order to share information between
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event handlers, mutable variables are used. As multiple events may occur in parallel, we
use variables based on Concurrent Haskell (Jones et al., 1996):

A mutable location MVar a is either empty or contains a value. There are commands for
creating a mutable location, putting a value into the location, and taking a value out of the
location:

newMVar :: a -> IO (MVar a)
putMVar :: MVar a -> a -> IO ()
takeMVar :: MVar a -> IO a

A thread putting a variable blocks until the variable is empty, and then puts a value
into that location. If it is taking a variable, it blocks until the variable is non-empty, and
then reads the value, leaving the location empty. The dispatch function in the next section
utilizes Haskell’s MVar semantics to implement thread-safe communication. The Agda
Var type corresponds to the Haskell MVar type and, e.g., nativePutVar is a wrapper for
putMVar in Haskell.

10.3 A Library for Object-Based GUIs in Agda

We will handle variables by forming a list of variables. Since a variable depends on its
type—an element of Set—a list of variables is an element of the next type level Set1 above
Set.

data VarList : Set1 where
[] : VarList
addVar : (A : Set) → Var A → VarList → VarList

We form the product of the set of variables in a VarList. In our example below, we have
only one variable of type A. In order to obtain it as product A instead of A × Unit, we add
a special case for the singleton list:

prod : VarList → Set
prod [] = Unit
prod (addVar A v []) = A
prod (addVar A v l) = A × prod l

The function takeVar reads in sequence all the variables, empties them, and returns the
product. If a variable is empty, it waits until it is non-empty, before taking it. The function
putVar writes all the variables, leaving them non-empty. If a variable is non-empty, it waits
until it is empty, before putting the value. At the time of writing, Agda requires to expand
the pattern in the third case from (addVar A v l) to (addVar A v (addVar B v’ l )), but we
hope this will be fixed in a future implementation of Agda.

takeVar : (l : VarList) → NativeIO (prod l)
takeVar [] = nativeReturn unit
takeVar (addVar A v []) = nativeTakeVar {A} v
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takeVar (addVar A v (addVar B v′ l)) =
nativeTakeVar {A} v native>>= λ a →

takeVar (addVar B v′ l) native>>= λ rest →

nativeReturn ( a , rest )

putVar : (l : VarList) → prod l → NativeIO Unit
putVar [] _ = nativeReturn unit
putVar (addVar A v []) a = nativePutVar {A} v a
putVar (addVar A v (addVar B v′ l)) (a , rest) =
nativePutVar {A} v a native>>= λ _ →

putVar (addVar B v′ l) rest

We have two levels of IO interfaces: The level 1 interface GuiLev1Interface is used for
creating and modifying GUI elements without making use of event handlers. It does not,
however, allow the use of variables. We omit its definition, which is similar to the one given
in Sect. 9.

The main program uses the level 2 interface, which extends the level 1 interface and has
commands for adding event handlers that refer to programs written for the level 1 interface.
This means that it negatively refers to the set of all level 1 IO programs. In order for this
to be possible, the set of level 1 programs need to be defined (and therefore the level 1
interface be finished) before we can define the level 2 interface. If we allowed the level 2
interface to refer to itself we would get an inconsistent type theory (essentially we need the
principle Set : Set). Therefore we could not use Agda for verification.

Because of this, we separate level 1 and level 2 interfaces: The level 1 interface has
no event handler. The level 2 interface extends the level 1 interface by the possibility of
adding event handlers, which refer to level 1 programs. This is the reason why we call them
“level 1” and “level 2”, because level 2 programs can refer to the collection of all level 1
programs.

Event handlers are expected to be executed as independent threads, possibly in parallel.
In order to communicate between them, we add to the level 2 interface the ability to create
and use variables that represent the shared state between the event handlers. Event handlers
access the shared variables, modify them and update the shared variables.

A first approximation for the type of an event handler referring to variable list l is

eventHandler : prod l → IO GuiLev1Interface (prod l)

When translated into a native IO program, the event handler will read the state of all
variables, obtaining value a : prod l. Then it will execute program (eventHandler a) which,
when terminating, returns an element a’ : prod l which will then be written back to the
variables.

Some modifications are needed: One is that eventHandler has two kinds of additional
parameters: (1) Some are to be executed when it is first created. Let the types of those
parameters be B1, . . . , Bn. (2) Furthermore, we have some parameters which are used each
time eventHandler is activated. Let their types be C1, . . . , Cn. The reason for the other
modification is that one event handler might trigger events which other event handlers then
handle. For this to work, one might need to update the variables before this trigger event is
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activated, so that the other handlers triggered make use of the updated state. The solution is
to have a list of event handlers instead of having just one event handler. The event handlers
in such a list will be executed in sequence. After each event handler in this list has been
executed, the variables are updated. As a consequence, event handlers from other threads
from now on will make use of the updated state. Therefore, we can update the state in one
event handler of the list, and trigger an event in a later event handler of the list. A handler
that refers to the revised state will handle the triggered event. Using these considerations,
we obtain that the type of an event handler is as follows:

eventHandler : B1 → · · · Bn → List ( prod l → C1 → · · · Cn

→ IO GuiLev1Interface (prod l))

The level 2 interface GuiLev2Interface will be a state-dependent IO interface. The state
of GuiLev2Interface is the list of variables obtained up to now, i.e. VarList : Set1:

GuiLev2State : Set1

GuiLev2State = VarList

The level 2 interface has as commands level 1 commands, a command for creating a
variable, and commands for adding a button handler, and an onPaint handler. The type of
event handlers is as discussed before. The type of event handlers will refer to the variables
created up to now; therefore, the commands for setting an event handler will depend on
this state. Since the type of variables is an element of Set, the type of commands will be
an element of Set1.

data GuiLev2Command (s : GuiLev2State) : Set1 where
level1C : GuiLev1Command → GuiLev2Command s
createVar : {A : Set} → A → GuiLev2Command s
setButtonHandler : Button

→ List (prod s → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s

setOnPaint : Frame
→ List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s))
→ GuiLev2Command s

The responses for level 1 commands are the corresponding level 1 responses. The
response for the create variable command is the variable which was created. For all other
commands the response is empty (an element of Unit). The type of responses is an element
of Set:

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set
GuiLev2Response _ (level1C c) = GuiLev1Response c
GuiLev2Response _ (createVar {A} a) = Var A
GuiLev2Response _ _ = Unit
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When creating a new variable, the return type will be a new variable; adding the new
variable to the list of variables then updates this state. Otherwise the state will remain
unchanged. Here we have an example of a state-dependent interface where the next state
not only depends on the command executed, but also on the response returned.

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)
→ GuiLev2Response s c
→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s
GuiLev2Next s _ _ = s

Combining the above we obtain the resulting interface, which is an element of the second
type level Set2:

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State
Commands GuiLev2Interface = GuiLev2Command
Responses GuiLev2Interface = GuiLev2Response
nexts GuiLev2Interface = GuiLev2Next

When translating an event handler, which refers to variables l, into NativeIO, we obtain
a list of functions of type

f : prod l → NativeIO (prod l)

The function dispatch will translate each of these functions into an element of NativeIO,
which takes the variables, obtains a value a, executes f, and then writes back the variable.

dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit
dispatch l f = takeVar l native>>= λ a →

f a native>>= λ a1 →

putVar l a1

Dispatch will be used for writing event handlers which are possibly executed in parallel.
Any dispatched handler of the form (dispatch l f) will empty the variables initially. No other
dispatched handler then starts, because it waits until the variables are non-empty. When
the first dispatched handler has finished, it writes the variables, allowing other dispatched
handlers (which run in parallel) to start. Therefore, the execution of dispatched handlers of
different threads is mutually exclusive. This is necessary since any intermediate changes
of the state are not shared between threads.

The dispatching of a list of such functions is obtained by dispatching each individual
function in sequence. Therefore, updates to the variables in one element of the list are
shared to all other event handlers before executing the next element of the list. Since
the variables are then non-empty, other threads accessing the variables at this point might
interrupt execution and change the variables. Therefore, reading the variables again after
having written them is necessary, since they may have changed.
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dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit
dispatchList l [] = nativeReturn unit
dispatchList l (p :: rest) = dispatch l p native>>= λ _ →

dispatchList l rest

We define translateLev1Local : (c : GuiLev1Command) → NativeIO (GuiLev1Response
c) similarly to as we did in Sect. 9. The translation of level 2 commands makes use of the
dispatch function. Since the event handlers are lists of functions, we need to apply the level
1 translation to each of the elements of this list by using the operation map.

translateLev2Local : (s : GuiLev2State)
→ (c : GuiLev2Command s)
→ NativeIO (GuiLev2Response s c)

translateLev2Local s (level1C c) = translateLev1Local c
translateLev2Local s (createVar {A} a) = nativeNewVar {A} a
translateLev2Local s (setButtonHandler bt proglist) =
nativeSetButtonHandler bt
(dispatchList s (map (λ prog → translateLev1 ◦ prog) proglist))

translateLev2Local s (setOnPaint fra proglist) =
nativeSetOnPaint fra (λ dc rect → dispatchList s
(map (λ prog aa → translateLev1 (prog aa dc rect)) proglist))

translateLev2 : ∀ {A s} → IOs GuiLev2Interface ∞ (λ _ → A) s → NativeIO A
translateLev2 = translateIOs translateLev2Local

Note that the translation of (setButtonHandler bt proglist) uses nativeSetButtonHan-
dler which creates a new thread running a handler. The handler waits for a button event. If
the button event happens the handler code is executed.

10.4 Example: A GUI controlling a Space Ship in Agda

We are going to introduce a program displaying a small spaceship controlled by buttons
in Agda. This example is based on the Haskell program of the asteroids game (Leijen,
2004; github, 2015). We will demonstrate only one button in this paper, which moves
the spaceship to the right by a fixed amount. We will define three versions, which differ
by the type of shared variables. These versions correspond to different methodologies of
writing event handlers. The first one uses the datatype of integers Z as its shared state. It
represents the x-coordinate of the spaceship. The second one uses an object for storing the
shared state. Here we simply wrap Z into a cell object. More advanced examples would
make use of more complex objects. Finally, the third one follows the common approach in
object-oriented programming, namely to define the event handlers as methods of a common
object.

All versions will define three event handling functions: onPaint, which handles the
onpaint event for drawing the spaceship; moveSpaceShip, which is the first part of the
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button handler, which updates the state so that next time the spaceship is drawn its
coordinates have changed; and callRepaint, which triggers a repaint event. The button
will be handled by the two handlers moveSpaceShip and callRepaint in sequence. When
the button event is triggered, first moveSpaceShip moves the spaceship by updating and
sharing the state of the spaceship with new updated coordinates. Then the callRepaint
handler will trigger a repaint event which triggers the paint function to repaint the
spaceship with the new coordinates.

It turns out that in all three versions the types of the event handling functions are —
except for the type of the shared variable — the same. Furthermore, the definitions of the
main program are identical. We will therefore define it at the end.

In the first version, the event handlers will read the x-coordinate, an element of Z, and
return the updated coordinate. Here +_ is the constructor for Z embedding N into Z. We
define the type of the shared variable and its initial value:

VarType = Z

varInit : VarType
varInit = (+ 150)

The event handling functions are as follows:

onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType
onPaint z dc rect = do (drawBitmap dc ship (z , (+ 150)) true) λ _ →

return z

moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
moveSpaceShip fra z = return (z + (+ 20))

callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType
callRepaint fra z = do (repaint fra) λ _ → return z

In the second version we define the variable via an object. Here, we will take the example
of a simple cell, containing an integer with constructor cellZC.

VarType = Object (cellJ Z)

cellZC : (z : Z ) → VarType
objectMethod (cellZC z) get = ( z , cellZC z )
objectMethod (cellZC z) (put z′) = ( unit , cellZC z′ )

varInit : VarType
varInit = cellZC (+ 150)
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The event handlers are defined as before, but now they call methods of the simple cell
object for getting and setting the coordinate. We omit their types since these are identical
for all 3 versions of this program

onPaint c dc rect =
let (z , c1) = objectMethod c get in
do (drawBitmap dc ship (z , (+ 150)) true) λ _ →

return c1

moveSpaceShip fra c =
let (z , c1) = objectMethod c get

(_ , c2) = objectMethod c1 (put (z + (+ 20)))
in return c2

callRepaint fra c = do (repaint fra) λ _ → return c

The third version makes use of an object, which has methods onPaintM,
moveSpaceShipM, callRepaintM corresponding to the first 3 event handling functions.

data GraphicServerMethod : Set where
onPaintM : DC → Rect → GraphicServerMethod
moveSpaceShipM : Frame → GraphicServerMethod
callRepaintM : Frame → GraphicServerMethod

GraphicServerResult : GraphicServerMethod → Set
GraphicServerResult _ = Unit

GraphicServerInterface : Interface
Method GraphicServerInterface = GraphicServerMethod
Result GraphicServerInterface = GraphicServerResult

GraphicServerObject : ∀{i} → Set
GraphicServerObject {i} = IOObject GuiLev1Interface GraphicServerInterface i

graphicServerObject : ∀{i} → Z → GraphicServerObject {i}
method (graphicServerObject z) (onPaintM dc rect) =

do (drawBitmap dc ship (z , (+ 150)) true) λ _ →

return (unit , graphicServerObject z)
method (graphicServerObject z) (moveSpaceShipM fra) =

return (unit , graphicServerObject (z + (+ 20)))
method (graphicServerObject z) (callRepaintM fra) =

do (repaint fra) λ _ →

return (unit , graphicServerObject z)

VarType = GraphicServerObject {∞}
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varInit : VarType
varInit = graphicServerObject (+ 150)

The event handlers will now simply call the methods of the shared object. The methods’
result type is IO (Unit × GraphicServerObject), namely the product of the response type
Unit of the methods and of the object itself. We map it using mapIO and the function proj2
to GraphicServerObject i.e. to VarType.

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip fra obj = mapIO proj2 (method obj (moveSpaceShipM fra))

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

The main program, which is identical for all three versions, does the following: It creates
a frame and a button, adds the button to the frame, creates a variable of type VarType
initialized by varInit and sets the button handler and the onPaint handler to the event
handlers defined. The program is then translated into a NativeIO program:

program : ∀{i} → IOs GuiLev2Interface i (λ _ → Unit) []
program = dos (level1C makeFrame) λ fra →

dos (level1C (makeButton fra)) λ bt →

dos (level1C (addButton fra bt)) λ _ →

dos (createVar varInit) λ _ →

dos (setButtonHandler bt (moveSpaceShip fra :: [ callRepaint fra ])) λ _ →

dos (setOnPaint fra [ onPaint ])
returns

main : NativeIO Unit
main = start (translateLev2 program)

11 Related Work

Typestate-oriented programming (Garcia et al., 2014) is an extension of object-oriented
programming (Strom & Yemini, 1986). It models state-dependent interfaces and object
behaviour in imperative object-oriented programming. The states are given by a finite
number of type states. Executing a method may change the state of an object. Although
typestate-oriented programming can express the full range of object-oriented programming
including aliases, it lacks a notion of dependent states that can be statically verified. Thus,
the approach may catch only some errors statically, while still resorting to runtime checks
or assertions (Garcia et al., 2014) to cover all errors. Furthermore, objects with an infinite
number of states (such as our stack example with the state being the number of elements
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on the stack) are out of the scope of typestate-oriented programming and other approaches
to typestate.

Abadi and Cardelli (1996) introduce the ζ -calculus, which is similar to the λ -
calculus, but for objects. There is a special second order quantifier called Self quantifier
ζ (X)ϕ(X) := µY.∃X <: Y.ϕ(X). This allows to type objects and classes which make self-
referential calls. Dependent types are not studied in their approach.

Coinduction in type theory. In the context of Nuprl’s extensional type theory, simple
coinductive types (Mendler et al., 1986) such as streams have been considered as greatest
fixed-points of functors, using, in modern terminology, the following introduction rule:

Γ,n : N ` e : Fn(>)
Γ ` e : νF

In talking about the finite approximations Fn(>) of the coinductive type νF , it resembles
sized types. However, in extensional type theory type checking is undecidable. Corecursive
definitions have to be justified by proof, here by induction on the natural number n, whereas
in Agda’s sized types are built into the core language. One could, of course, say that Agda’s
sized types give the information needed to create such proofs.

Coquand (1994) introduces coinductive types via constructors as non-wellfounded
trees—in contrast to the coalgebraic approach to define them via their destructors (Hagino,
1989; Setzer, 2012; Abel et al., 2013). Coquand’s work contains the definition of
productivity of corecursive definitions and the guarded-by-constructors criterion to ensure
productivity. This also extends to proofs as “guarded induction principle”, but has limited
expressivity, which is overcome by sized types as described in this article.

Coinductive types have been added to Coq’s Calculus of Inductive Constructions
following Coquand’s proposal (Giménez, 1996). In Giménez’ thesis, it was already noted
that dependent pattern matching on coinductive data breaks subject reduction.

Gimenez also suggested a type-based productivity check (Giménez, 1998) with similar
proposals occurring at around the same time (Hughes et al., 1996; Amadio & Coupet-
Grimal, 1998). Since then, sized types have seen thorough theoretical exploration (Barthe
et al., 2004; Blanqui, 2004; Barthe et al., 2008; Abel, 2008, 2007; Sacchini, 2013) and
several prototypical implementations (Barthe et al., 2005; Abel, 2010; Sacchini, 2015).

Component-based programming Hancock and Hyvernat (2006) and Granström (2012)
(see also the component-based programming language IPL (Granström, 2016)) have
suggested the use of interactive programs in component-based programming. A component
is a combination of a server-side and a client-side program: It receives a request from the
server and then interacts with the client-side until it has computed a response, which is then
returned to the server-side. After the request ends, the component waits for the next server
request. In this sense, an IOObject is a component having the object interface as a server-
side interface and the IO-interface as a client-side interface. CounterCell (Sect. 7) can be
considered as a component which communicates with a CellC object on its client-side.
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Isabelle has many advantages since it integrates powerful automated theorem provers,
especially Sledgehammer. Its built-in equality for coalgebras is already bisimilarity,
making proofs much easier. However, it lacks dependent types. Strict positivity is more
restrictive than in Agda which allows inductive-recursive (Dybjer & Setzer, 2003) and
inductive-inductive definitions (Nordvall Forsberg & Setzer, 2010), which only make sense
using dependent types. Lochbihler and Züst (2014) demonstrated how to use Isabelle as a
functional programming language. Their type of interactive programs makes use of a type
similar to our IO monad. Because of the lack of dependent types, this type has only one
command with one type of arguments, and one result type. That could easily be generalised
to finitely many methods, but not to the full generality in this paper. Blanchette et al.
(2015) introduce friendly functions which are allowed on the right-hand side of corecursive
definitions. They play a similar rôle to that of size preserving functions in our settings.
However, size preserving functions seem to be more general.

Software Transactional Memory. The STM monad (Harris et al., 2008; hack-
age.haskell.org, 2016) allows to combine a series of actions such as writing and reading
variables into one transaction. If such a transaction is interrupted, the transaction is rolled
back to the state it was before it was executed. IO actions are not allowed inside such
transactions. For this reason, the STM monad is not suitable for our approach, and we use
manual locking via MVars instead.

Functional Reactive Programming (FRP) is another approach for writing interactive
programs in functional programming languages. The idea is that input and output are given
by input and output streams, and one has operations for creating new streams from existing
ones. The elements of the input streams change as the input changes, which is then reflected
in the elements of the streams defined from it, including the output streams. Therefore the
output reacts in response to the input. In connection with dependent types, FRP has been
studied from the foundational perspective (Sculthorpe & Nilsson, 2009) and for verified
programming (Jeffrey, 2013).

Phantom Types for Modeling Inheritance Relationships wxHaskell offers bindings to
the C++ GUI-library wxWidgets. The Haskell bindings model inheritance relationships
(e.g., between widget classes in C++) as phantom types. However, wxHaskell cannot fully
represent subtyping of object-oriented programming languages, as it relies on unsafe object
casts. Phantom types are types with an additional type parameter which is not used by its
constructors. For instance, we can state

data isPerson x
data isStudent x
data isPhDStudent x

If we had existential quantifiers over types, one could define

Person = ∃x.isPerson x
Student = ∃x.isPerson (isStudent x)
PhDStudent = ∃x.isPerson (isStudent (isPhDStudent x))
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and then obtain: if a : Student then a : Person and if a : PhDStudent then a : Student and
a : Person.

However, Haskell does not have existential quantifiers, so instead one defines

Person = isPerson ()

Student = isPerson (isStudent ())
PhDStudent = isPerson (isStudent (isPhDStudent ()))

Now, an element of Student is no longer an element of Person but we can define an
upcasting function

upcast : Student→ Person

As we can equally define downcast : Person → Student, the definition is unsafe.
Furthermore, Student and Person are type synonymes, so they do not really have different
constructors or (as objects) methods. One can distinguish them by having operations such
as

studentNumber : Student→ N

which is a postulated function and gets its implementation only from the corresponding C
code. In this sense, this use of phantom types is unsafe, meaning we do not really have a
type hierarchy but are using potentially unsafe casts which are not type-checked.

Algebraic effects and Idris. In the dependently typed programming language Idris, Brady
has created an effects library based on algebraic effects (Brady, 2014). Algebraic effects
were introduced in Bauer & Pretnar (2015). Effects can be considered as a version of state
dependent IO.

The type Effect of effects is a predicate on the sets Result, incoming InResource, and
outcoming resources OutResource : Result → Set. Written in Agda syntax, this reads as
follows:

Effect : Set1

Effect = (Result : Set) → (InResource : Set) → (OutResource : Result → Set) → Set

This can be considered as a state-dependent interface: The states are Set, the commands
for a state s are the effects for which the result component is s, the responses are the Result
component of the effect, and the next state is determined by the OutResource component:

effectToIOInterfaces : Effect → IOInterfaces

States (effectToIOInterfaces eff) = Set
Commands (effectToIOInterfaces eff) s =

Σ[ Result ∈ Set ] (Σ[ outR ∈ (Result → Set) ] (eff Result s outR))
Responses (effectToIOInterfaces eff) s (result , outR , op) = result
nexts (effectToIOInterfaces eff) s (result , outR , op) = outR

In order to handle several effects in parallel, Brady introduces the type EFFECT, which
consists of a state and a state-dependent interface, which can be simplified to
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EFFECT = Set × Effect

Then, he defines a second level of state-dependent interfaces Eff, which, as before, are
state-dependent interfaces, but with (List EFFECT) as state. This type is not a closed data
type but open for new commands to be registered, similar to IO in Haskell.

Furthermore, Brady introduces handlers, which are defined by referring to the predicate
based data type Effect. If we replace this type by a set interface with the components States,
C, R, and next, we obtain the following type of a handler, which depends on an operation
M : Set → Set:

(A : Set) → (s : States) → (c : C s) → ( f : (r : R s c) → next s c r → M A) → M A

Using a handler, an IO program for the corresponding interface with return type A can be
evaluated to an element of M A essentially by evaluating the handler for each effect. This
allows, for instance, to write effectful programs having as effects an exception with return
type A, and evaluate them to an element of Maybe A.

Brady introduces some very elegant syntax for defining and programming with Effects.
As in Bauer & Pretnar (2015), he allows expressions of normal data types to be formed
from effectful programs (Brady uses a ! notation). This means that Idris code looks very
similar to ML code where we have terms with side effects. However, this requires strict
evaluation and that the order of evaluation is fixed.

12 Conclusion

We have seen how to introduce interactive programs and objects in Agda. We demonstrated
how to program with them, including introducing graphical user interfaces with action
listeners. We have seen the importance of state-dependent interactive programs and objects.
One true example of a state-dependent interactive program was the creation of variables,
where the new state depends not only on the issued command but also on the response given
by the real world, namely the variable which was created. The example in Sect. 10 solved
a problem in Agda: The original implementation in Haskell is rather low-level and requires
the direct modification of variables. Our program solves this issue by using a shared object
which can be accessed by the action listeners while they are executed. This is very close to
the way this is actually implemented in standard object-oriented languages.

Our approach is a first step towards introducing object-orientation into dependent
type theory. However, object-orientation consists of much more than simple objects.
We have not shown how to define objects calling each other recursively; some work
is already available in the third author’s work (Setzer, 2006). The problem is to find
a definition in such a way that it passes the termination checker – a method calling
itself immediately would result in black hole recursion. We have introduced a first step
towards inheritance, namely to extend an object by additional methods reusing the original
method implementations. However, future work is required to develop a methodology for
overwriting existing methods. Proper inheritance would require a more expressive form
of subtyping as it is currently implemented in Agda. The most challenging problem at this
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moment seems to be how to define objects dynamically on the heap. This would need some
notion of pointers.

We hope that this article is a step towards having a programming language which has
both dependent types and object-orientation. This would allow to combine both of these
advanced programming paradigms, and to create a language in which programming is
considerably easier and safer.
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