
Chapter 1

Functional Concepts in C++
Rose H. Abdul Rauf1, Ulrich Berger2, Anton Setzer2 3

Abstract: We describe a parser-translator program that translates typed λ-terms
into C++ classes so as to integrate functional concepts. We prove the correctness
of the translation of λ-terms into C++ with respect to a denotational semantics
using a Kripke-style logical relation. We also introduce a general technique for
introducing lazy evaluation into C++ and illustrate it by carrying out in C++ the
example of computing the Fibonacci numbers efficiently using infinite streams
and lazy evaluation.

1.1 INTRODUCTION

C++ is a general purpose language that supports object oriented programming as
well as procedural and generic programming, but unfortunately not directly func-
tional programming. We have developed a parser-translator program that trans-
lates typed λ-terms into C++ statements so as to integrate functional concepts.
The translated code uses the object oriented approach of programming that in-
volves the creation of classes for the λ-term. By using inheritance, we achieve
that the translation of a λ-abstraction is an element of a function type.

The paper is organised as follows: First, we introduce the translation and dis-
cuss how the translated code is executed including a description of the memory al-
location (Sect. 1.2). The correctness of our implementation is proved with respect
to the usual (set-theoretic) denotational semantics of the simply typed λ-calculus
and a mathematical model of a sufficiently large fragment of C++. The proof is
based on a Kripke-style logical relation between C++ values and denotational val-
ues (Sect. 1.3). In Sect. 1.4 we introduce a general technique for introducing lazy

1Faculty of Information System and Quantitative Science, University of Technology
MARA, 40450 Shah Alam, Selangor D.E., Malaysia; Email:
hafsah@tmsk.uitm.edu.my

2Department of Computer Science, University of Wales Swansea, Singleton Park,
Swansea SA2 8PP, UK; Email: {u.berger,a.g.setzer}@swansea.ac.uk

3Supported by EPSRC grant GR/S30450/01

1

evaluation into C++ by introducing a data type of lazy elements of an arbitrary
C++ type.

Related work. Several researchers [7], [8] have discovered that C++ can be
used for functional programming by representing higher order functions using
classes. Our representation is based on similar ideas. There are other approaches
that have made C++ a language that can be used for functional programming
such as the FC++ library [9] (a very elaborate approach) as well as FACT! [19]
(extensive use of templates and overloading) and [7] (creating macros that allow
creation of single macro-closure in C++). The advantages of our solution are that
it is very simple, it uses classes and inheritance in an essential way, it can be
used for implementing λ-terms with side-effects, and, most importantly, we have
a formal correctness proof.

The approach of using denotational semantics and logical relations for prov-
ing program correctness has been used before by Plotkin [12], Reynolds [14] and
many others. The method of logical relations can be traced back at least to Tait
[20] and has been used for various purposes, for example, for proving normaliza-
tion (Tait [20]), computational adequacy (Plotkin [12]) and completeness (Jung
and Tiuryn [5], Statman [18], Plotkin [13]). To our knowledge the verification
of the implementation of the λ-calculus in C++ (and related object-oriented lan-
guages) using logical relations is new.

There are other fragments of object-oriented languages in the literature which
are used to prove the correctness of programs. A well-known example is Feath-
erweight Java ([4]). The model for this language avoids the use of a heap, since
methods do not modify instance variables. In contrast, our model of C++ does
make use of a heap and is therefore closer to the actual implementation of C++.
Although our fragment of C++ does not allow for methods with side effects, it
could easily be extended this way and then used to verify programs in C++ using
side effects. This could be used, for instance, to prove the efficiency of the Lazy
construct introduced in Sect. 1.4.

Lazy evaluation in C++ has been studied extensively in the literature (see e.g.
[15], [9], [6]). To our knowledge, all implementations are restricted to lazy lists,
whereas we introduce a general type of lazy elements of an arbitrary type, which
not only corresponds to call-by-name (which is usually achieved by replacing a
type A by ()→ A), but also guarantees that elements are only evaluated once, as
required by true lazy evaluation. Note as well that there is no need to add a new
delay construct to C++ since our implementation of laziness makes use of the
existing language of C++ only.

1.2 TRANSLATION OF TYPED λ-TERMS INTO C++

In this section we describe how to translate simply typed λ-terms into C++ using
the object-oriented concepts of classes and inheritance.

The simply typed λ-calculus, λ-calculus for short, is given as follows: We
assume a set basetype of base types ρ,σ, . . ., and a set F of basic functions from
base types to base types. Any native C++ type can be used as a base type, and any

2

native C++ function without side effects can be used as a basic function. 4

Types are elements of basetype, and function types A→ B (if A,B are types).
Terms are of the form x (variables), λxAr (abstraction), r s (application),
f [r1, . . . ,rn] (function application; f ∈ F),5 where r,s,ri are terms. We treat con-
stants, c, as basic functions with no arguments, and write in this case c instead of
c[].

A context is a finite set of pairs Γ = x1 : A1, . . . ,xn : An (all xi distinct) which
is, as usual, identified with a finite map.

We let Type, Var, Term, Context denote the set of types, variables, terms and
contexts, respectively. The typing rules are as usual:

Γ,x : A ` x : A
Γ,x : A ` r : B

Γ ` λxAr : A→ B
Γ ` r : A→ B Γ ` s : A

Γ ` r s : B
Γ ` r1 : σ1 . . .Γ ` rk : σk

Γ ` f [r1, . . . ,rk] : ρ
(f a basic function of type σ1→ ··· → σk→ ρ)

We now show how to translate λ-terms into C++. The translation is essentially
the same as that given by the parsing function P introduced in Sect. 1.3 – the only
difference is that P will be developed in an abstract setting, whereas the translation
given in the following generates genuine C++ code.

Our translation generates new identifiers, which we need to disambiguate; in
order for this to work, we restrict ourselves to the translation of finitely many λ-
terms and types at a time. We first define an identifier name(a) : String for finitely
many a : Type. Here String is the set of strings.

• If A is a native C++-type, name(A) is a C++ identifier obtained from A. This
is A, if A is already an identifier, and the result of removing blanks and modi-
fying symbols not allowed in identifiers (e.g. replacing ∗ by x), in case A is a
compound type like long int or ∗ A.6

• name(A→ B) :=“C”∗name(A)∗“ ”∗name(B)∗“D”, where ∗ means concate-
nation. Here C stands for an open bracket, D for a closing bracket, and for
the arrow in this identifier. By using these symbols we obtain valid C++-
identifiers.7

4The translation given below makes sense as well for functions with side effects,
including those which affect instance variables of the classes used. However, in this case
we would go beyond the simply typed λ-calculus, and could not use the simple
denotational semantics of the λ-calculus in order to express the correctness of the
translation.

5Note that we do not have any product types and that native C++-functions are not
necessarily objects – they can even be constants such as integers – therefore f [r1, . . . ,rk]
cannot be subsumed by the rule for r s.

6This modification might result in name clashes, in which case one adds some string
like n for some integer n in order to disambiguate the names. Since we are translating
only finitely many λ-types at any time, this way of avoiding name clashes is always
possible.

7Again, we might need to disambiguate the identifiers as it was done for native C++
types.

3

For instance name(int→ int) =“Cint intD”, name((int→ int)→ int) =
“CCint intD intD”. In the following, we write CA BD instead of name(A→ B)
and CA BD aux instead of name(A→ B)∗” aux” (this type will be introduced
below), similarly for other types.

For every A ∈ Type we introduce a series of class definitions, after which
name(A) is a valid C++ type (assuming class definitions for any native C++ type
used):

• For native C++-types the sequence of class definitions is empty.

• The sequence of class definitions for A→ B consists of the class definitions
of A, the class definitions of B not contained in the class definitions of A and
additionally

class CA_BD_aux{
public: virtual B operator () (A x)=0;};

typedef CA_BD_aux * CA_BD;

So, CA BD aux is a class with one virtual method used as application, which
maps an element of type A to an element of type B. CA BD is a pointer to an
element of this class.

Now we define for every λ-term t a sequence of C++-class definitions and a C++-
term tC++, s.t. if t : A, then tC++ is of type name(A). 8

• If x is a variable, then the class definitions for introducing x are empty and
xC++ := x.

• Assume A = E → F , t = λxA.r. Assume the free variables of t are of type
x1 : A1, . . . ,xn : An and that t is a new identifier. Assume name(Ai) = Ai, xi
is the C++-representation for xi, name(E) = E, name(F) = F, and rC++ = r.
The class definition for t consists of the class definition for r together with

class t : CE_FD_aux{
public:
A1 x1;
...
An xn;
t(A1 x1,A2 x2, ... , An xn){

this->x1 = x1;
...
this->xn = xn;}

virtual F operator () (E x){
return r;};};

8Strictly speaking, tC++ depends on the choice of identifiers for λ-types and
C++-classes representing λ-terms. When defining the parse function P in Sect. 1.3, this
will be made explicit by having the dependency of this function on the context Γ and the
class environment C. Since in our abstract setting λ-types are represented by themselves,
P does not depend on the choice of identifiers for those types.

4

tC++ := new t(x1, ...,xn).

• Assume t = r s. Then the class definitions of t consist of the class definitions
for r, and the class definitions for s (where the class definitions corresponding
to λ-abstractions occurring in both r and s need to be introduced only once).9

Furthermore tC++ := (∗(rC++))(sC++).

• Assume t = f [r1, . . . ,rn]. Then the class definitions for t are the class defini-
tions for ri (again class definitions for λ-terms occurring more than once need
only to be introduced once). Furthermore, tC++ := f(rC++

1 , ...,rC++
n).

Note that a λ-abstraction is interpreted as a function of its free variables in the
form (new t(x1, . . . ,xn)). Hence, the evaluation of a λ-abstraction in an environ-
ment for the free variables is similar to a “closure” in implementations of func-
tional programming languages.

We have developed a program which parses λ-terms and translates them into
C++. Our intention is to upgrade this to an extension of the language of C++ by
λ-types and -terms together with a parser program which translates this extended
language into native C++. For this purpose we introduce a syntax for representing
λ-types and -terms in C++. We use functional style notation rather than overload-
ing existing C++-notation, since we belief that this will improve readability and
acceptability of our approach by functional programmers. In our extended lan-
guage, we write A –> B for the function type A→ B, r ˆ̂ s for the application of
r to s,10and \A x.B s for λxA.s, if s : B. (If s is a term starting with λ, B will be
omitted). For instance, the term

t = (λ f int→int
λxint. f (f x)) (λxint.x+2) 3

is written in our extended C++ syntax as

(\int->int f. \int x. int fˆˆ(fˆˆx))ˆˆ(\int x. int x+2)ˆˆ3

We will use this extended syntax in our C++ implementation of lazy data struc-
tures (Sect. 1.4).

As an example, we show how the translation program transforms the term t
above into native C++ code. We begin with the class definitions for the λ-types:

class Cint_intD_aux
{ public : virtual int operator() (int x) = 0; };

typedef Cint_intD_aux* Cint_intD;

9A λ-abstraction is represented as a new instance of its corresponding class. Even if
the classes for two occurrences of the same λ-abstraction coincide, for each occurrence a
new instance is created. Therefore there is no problem, if a variable occurs as the same
name, but with different referential meaning in two identical λ-expressions.

10Note that we cannot r(s) here, since this notation will not translate into application,
but into (∗ r)(s).

5

class CCint_intD_Cint_intDD_aux
{ public : virtual Cint_intD operator()

(Cint_intD x) = 0; };

typedef CCint_intD_Cint_intDD_aux*
CCint_intD_Cint_intDD;

The class definition for t1 := λxint. f (f x) is

class t1 : public Cint_intD_aux{
public :Cint_intD f;
t1(Cint_intD f) { this-> f = f;};
virtual int operator () (int x)
{ return (*(f))((*(f))(x)); };
};

and tC++
1 = new t1(f). The class definitions for t0 := λ f int→intλxint. f (f x) and

t2 := λxint.2+ x (using identifiers t0, t2) are as follows:

class t0 : public CCint_intD_Cint_intDD_aux{
public :
t0() { };
virtual Cint_intD operator () (Cint_intD f)
{ return new t1(f); }
};

class t2 : public Cint_intD_aux{
public :
t2() { };
virtual int operator () (int x)
{ return x + 2; };
};

Finally
tC++ := (∗((∗(new t0()))(new t2())))(3);

When evaluating the expression tC++, first the application of t0 to t2 is eval-
uated. To this end, instances l0, l2 of the classes t0 and t2 are created first.
Then the operator() method of l0 is called. This call creates an instance l1 of
t1, with the instance variable f set to l2. The result of applying t0 to t2 is l1.

The next step in the evaluation of tC++ is to evaluate 3, and then to call the
operator() method of l1. This will first make a call to the operator method of
f, which is bound to l2, and apply it to 3. This will evaluate to 5. Then it will
call the operator method of f again, which is still bound to l2, and apply it to the
result 5. The result returned is 7.

We see that the evaluation of the expression above follows the call-by-value
evaluation strategy.11 Note that l0, l1, l2 were created on the heap, but have

11Note that this computation causes some overhead, since for every subterm of the form
λx.r a new object is created, which is in many cases used once, and can be thrown away

6

not been deleted afterwards. The deletion of l0, l1 and l2 relies on the use of
a garbage collected version of C++, alternatively we could use smart pointers in
order to enforce their deletion.

1.3 PROOF OF CORRECTNESS

We now prove the correctness of our C++ implementation of the λ-calculus. For
notational simplicity we restrict ourselves to the base type int of integers. By
“correctness” we mean that every closed term r of type int is evaluated by our
implementation to a numeral which coincides with the value of r. The value of
a term can be defined either operationally as the normal form w.r.t. β-reduction,
(λxAr)s→β r[s/x], and function reduction, f [n1, . . . ,nk]→ f n (n the value of f
at n1, . . . ,nk), or, equivalently, denotationally as the natural value in a suitable
domain of functionals of finite types. Since our calculus does not allow for re-
cursive definitions, the details of the operational and denotational semantics do
not matter: Operationally, any sufficiently complete reduction strategy (call-by-
value, call-by-name, full normalisation) will do, and denotationally, any Cartesian
closed category containing the type of integers can be used. For our purposes it
is most convenient to work with a denotational model, for example, the naive
set-theoretic hierarchy D of functionals of finite types over the integers12 (setting
Z = {. . . ,−2,−1,0,1,2, . . .} and X → Y = { f | f : X → Y}):

D(int) = Z, D(A→ B) = D(A)→ D(B), D =
[

A∈Type

D(A)

A functional environment is a mapping ξ : Var→ D. FEnv denotes the set of all
functional environments. If Γ is a context, then ξ : Γ means ∀x ∈ dom(Γ).ξ(x) ∈
D(Γ(x)).

For every typed λ-term Γ ` r : A and every functional environment ξ : Γ the
denotational value [[r]]ξ ∈ D(A) is defined by

i) [[n]]ξ = n

ii) [[x]]ξ = ξ(x)

iii) [[r s]]ξ = [[r]]ξ([[s]]ξ)

iv) [[λxA.r]]ξ(a) = [[r]]ξ[x 7→ a]

v) [[f [~r]]] = [[f]]([[~r]]ξ)

where in the last clause [[f]] is the number-theoretic function denoted by f . Our
implementation of the λ-calculus is modelled in a similar way as e.g. in [1] us-
ing functions eval and apply, but, in order to model the C++ implementation as

afterwards. One could optimize this, however at the price of having a much more
complicated translation, and therefore a much more complex correctness proof of the
translation.

12Recursion can be interpreted in a domain-theoretic model [12].

7

truthfully as possible, we make the pointer structures for the classes and objects
explicit by letting the functions eval and apply modify these pointer structures via
side effects.

We model only the fragment of C++ that we used in Section 1.2 to translate the
simply typed λ-calculus into C++. Hence we assume that classes have instance
variables, one constructor, and one method corresponding to the operator()
method. The constructor has one argument for each instance variable and sets the
instance variables to these arguments. No other code is performed. The method
has one argument, and the body consists of an applicative term, where applicative
terms are simplified C++ expressions in our model. So, a class is given by a
context representing its instance variables, the abstracted variable of the method
and its type, and an applicative term.

Applicative terms are numbers, variables, function terms applied to applicative
terms, the application of one applicative term to another applicative term (which
corresponds to the method call in case the first applicative term is an object), or a
constructor applied to applicative terms.

When a constructor call of a class is evaluated, its arguments are first eval-
uated. Then, memory for the instance variables of this class is allocated on the
heap, and these instance variables are set to the evaluated arguments. The address
to this memory location is the result returned by evaluating this constructor call.
The only other possible result of the evaluation of an applicative term is a num-
ber, so values are addresses or numbers. Hence, the data sets associated with our
model of C++ classes are defined as follows (letting X +Y and X ×Y denote the
disjoint sum and Cartesian product of X and Y , X∗ the set of finite lists of elements
in X and X →fin Y the set of finite maps from X to Y):

Addr = a set of numbers denoting addresses of classes on the heap
Constr = a set of strings denoting constructors, i.e. class names
Val = Z+Addr
F = a set of names for arithmetic C++ functions
App = Z+Var+F×App∗+App×App+Constr×App∗

Context = Var→fin Type
Class = Context×Var×Type×App
VEnv = Var→fin Val
Heap = Addr→fin Constr×Val∗

CEnv = Constr→fin Class

Applicative terms (∈ App), which we write as n, x, f [a1, . . . ,an], (a b) and
c[a1, . . . ,an], correspond to the C++ constructs n, x, f(a1, ...,an), (∗ (a))(b) and
new c(a1, . . . ,an), while classes (∈ Class), written in the form (Γ;x : A;b) with
Γ = x1 : A1, . . . ,xn : An, correspond to a C++ class definition of the form

class c : CA_BD_aux{
public: A1 x1;

...
An xn;

c(A1 x1,A2 x2, ... , An xn){

8

this->x1 = x1;
...
this->xn = xn;}

virtual B operator () (A x){
return b;};};

The type B is omitted in (Γ;x : A;b) since it can be derived, and the class name c
is associated with the class through the class environment CEnv.

The fact that the parsing function as well as the functions eval and apply have
side effects on the classes and the heap can be conveniently expressed using a
partial state monad (the object part of which is)

MX (Y) := X ∼→ Y ×X

where X ∼→ Y ×X is the set of partial functions from X to Y ×X . Elements of
MX (Y) are called actions and can be viewed as elements of Y that may depend
on a current state x ∈ X and also may change the current state. Monads are a
category-theoretic concept whose computational significance was discovered by
Moggi [10]. We need to work with partial instead of total functions because the
operations eval and apply defined below do not yield defined results in general.
We will however prove that for inputs generated by translating well-typed λ-terms
the results will always be defined.

Using the monad terminology the functionalities of the parsing function P and
the operations eval and apply can now be written as

P : Context→ Term→MCEnv(App)
eval : CEnv→ VEnv→ App→MHeap(Val)

apply : CEnv→ Val→ Val→MHeap(Val)

Hence, parsing has a side effect on the class environment, while eval and apply
have side effects on the heap. The function P corresponds to the assignment
t 7→ tC++ introduced in Section 1.2, but makes the dependencies on the context
and the class environment explicit.

We use the following standard monadic notation (roughly following Haskell
syntax): Suppose e1 : MX (Y1), . . . , ek+1 : MX (Yk+1) are actions where ei may
depend on y1 : Y1, . . . , yi−1 : Yi−1. Then

do{y1← e1 ; . . . ; yk← ek ; ek+1} : MX (Yk+1)

is the action that maps any state x0 : X to (yk+1,xk+1) where (yi,xi) ' ei xi−1,
for i = 1, . . . ,k + 1 (' denotes the usual “partial equality”). We also allow let-
expressions with pattern matching within a do-construct (with the obvious mean-
ing). We adopt the convention that computations are “strict”, i.e. the result of a
computation is undefined if one of its parts is. Furthermore, we use the standard
monadic notations

return : Y →MX (Y) return y x = (y,x)
mapM : (Z→MX (Y))→ Z∗ mapM f ~a = do{y1← f a1 ; . . .

→MX (Y ∗) . . . ; yk← f ak ; return (y1, . . . ,yk)}

9

as well as

read : X →MX→finY (Y), read x m' (m x,m)
add : Y →MX→finY (X), add y m' (x,m[x 7→ y]) where x = fresh(m)

Here, fresh is a function with the property that if m : X →fin Y , then fresh(m) ∈
X \dom(m) 13. With these notations the definitions of P, eval and apply read as
follows

P Γ u = return u, if u is a number or a variable
P Γ f [~r] = do{~a←mapM (P Γ)~r ; return f [~a]}
P Γ (r s) = do{(a,b)←mapM (P Γ) (r,s) ; return (a b)}

P Γ (λxA.r) = do{a← P Γ[x 7→ A] r ; c← add(Γ;x : A;a) ;
return c[dom(Γ)]}

eval C η n = return n

eval C η x = return (η x)
eval C η f [~a] = do{~n←mapM (eval C η)~a ; return [[f]](~n)}

eval C η (a b) = do{(v,w)←mapM(eval C η) (a,b) ; apply C v w}
eval C η c[~a] = do{~v←mapM (eval C η)~a ; add (c,~v)}
apply C h v = do{(c,~w)← read h ; let (~y : ~B;x : A;a) = C c ;

eval C [~y,x 7→ ~w,v] a}
apply C n v = /0

where /0 is the undefined action, i.e. the partial function with empty domain14.

Lemma 1.1. (1) P Γ r is total and if P Γ r C = (a,C′), then C ⊆C′.

(2) If eval C η a H = (v,H ′), then H ⊆ H ′.

(3) If apply C v w H = (v′,H ′), then H ⊆ H ′.

Proof. Property (1) is direct by induction on the term r. Properties (2) and (3) can
be proved by a straightforward simultaneous induction on the definitions of eval
and apply, i.e. by “fixed point induction” [21]. ut

Due to the complexity of C++ it would be a major task, which would require
much more man power than was available in our project, to formally prove that
our mathematical model, given by eval and apply, coincides with the operational
semantics of C++.15 (Note that other models of fragments of object-oriented lan-
guages in the literature face the same problem and their correctness w.r.t. real

13In our applications X will be a space of addresses which we assume to be infinite, i.e.
we assume that the allocation of a new address is always possible.

14It would be more appropriate to let apply C n v result in an error, but, for simplicity,
we identify errors with non-termination.

15The formalisation of the semantics of Java in [17] was a major project, and still this
book excludes some features of Java like inner classes. Note that C++ is much more
complex than Java.

10

languages is therefore usually not shown.) However, when going through the
definitions we observe that the evaluation function eval is indeed defined in ac-
cordance with the expected behaviour of C++: An integer n is evaluated by itself,
and a variable is evaluated by returning its value in the current environment η.
The application of a native C++ function to arguments a1, . . . ,an is carried out by
first evaluating a1, . . . ,an in sequence, and then applying the function f to those
arguments. (a b) corresponds in C++ to the construct (∗ (a))(b). First a and b
are evaluated. Because of type correctness, a must be an element of the type of
pointers to a class, and the value of a will therefore be an address on the heap.
On the heap the information about the class used and the values of the instance
variables of that class are stored. Then (∗ (a))(b) is computed by evaluating the
body of the method of the class in the environment where the instance variables
have the values as stored on the heap, and the abstracted variable has the result
of evaluating b. This is what is computed by eval C η (a b) (which makes use of
the auxiliary function apply). The expression c[~a], which stands for the C++ ex-
pression new c(a0, . . . ,an), is evaluated by first computing a0, . . . ,an in sequence.
Then new storage on the heap is allocated. Note that in our simplified setting, the
constructor of c simply assigns to the instance variables the values of a0, . . . ,an.
Consequently, the intended behaviour of C++ is that it stores on the heap the in-
formation about the class used and the result of evaluating a0, . . . ,an, which is
what is carried out by eval.

The formal correctness proof for the translated code with respect to our math-
ematical model of (a fragment of) C++ is based on a Kripke-style logical relation
between a C++ value (∈ Val×Heap) and a denotational value (∈ D(A)). The
relation is indexed by the class environment C and the type A of the term. The
relation

∼C
A⊆ (Val×Heap)×D(A),

where A ∈ Type,C ∈ CEnv, is defined by recursion on A as follows:

(v,H)∼C
int n :⇐⇒ v = n

(v,H)∼C
A→B f :⇐⇒ ∀C′ ⊇C,∀H ′ ⊇ H,∀(w,d) ∈ Val×D(A) :

(w,H ′)∼C′
A d =⇒ apply C′ v w H ′ ∼C′

B f (d)

Note that the formula apply C′ v w H ′ ∼C′
B f (d) above states that apply C′ v w H ′ is

defined and the result is in relation∼C′
B with f (d). The formula evalC′′ η a H ′∼C′′

A
[[r]]ξ in the theorem below is to be understood in a similar way. We also set

(η,H)∼C
Γ ξ :⇔ dom(Γ)⊆ dom(η)∩dom(ξ)∧∀x ∈ dom(Γ)(η(x),H)∼C

Γ(x) ξ(x)

The main result below corresponds to the usual “Fundamental Lemma” or
“Adequacy Theorem” for logical relations:

Theorem 1.2. Assume Γ ` r : A, P Γ r C = (a,C′), C′′ ⊃C′ and ξ : Γ. Then for all
(η,H) ∈ VEnv×Heap:

(η,H)∼C′′
Γ ξ =⇒ eval C′′ η a H ∼C′′

A [[r]]ξ.

11

Proof. The proof is by induction on the typing judgement Γ` r : A. In the proof we
will use the properties (1) and (2) of Lemma 1.1 as well as the following property
of the relation ∼C

A, which is clear by definition, and which in the following will
be referred to as “monotonicity”:

If (v,H)∼C
A d and H ⊆ H ′ and C ⊆C′, then (v,H ′)∼C′

A d.

We now consider the four possible cases of how Γ ` r : A can be derived.

Γ,x : A ` x : A. We have P(Γ,x : A) x C = return x C = (x,C). Assume C′ ⊇
C, ξ : (Γ,x : A) and (η,H) ∼C′

Γ,x:A ξ. We need to show eval C′ η x H ∼C′
A [[x]]ξ.

Since eval C′ η x H = (η(x),H) and [[x]]ξ = ξ(x) ∈ D(A), and the assumption
(η,H)∼C′

Γ,x:A ξ entails (η(x),H)∼C′
A ξ(x), we are done.

Γ ` λxAr : A→ B, derived from Γ,x : A ` r : B. P Γ λxAr C = (c[dom(Γ)],C′)
where P(Γ,x : A) r C = (a,C1), with C1⊇C by (1), c = fresh(C1) and C′=C1[c 7→
(Γ;x : A;a)]) ⊇ C. Assume C′′ ⊇ C′, ξ : Γ and (η,H) ∼C′′

Γ
ξ. We need to show

eval C′′ η c[dom(Γ)] H ∼C′′
A→B [[λxAr]]ξ. We have eval C′′ η c[dom(Γ)] H = (h,H1)

where~v = map η dom(Γ) (the usual map function), h = fresh(H) and H1 = H[h 7→
(c,~v)]). In view of the definition of ∼C′′

A→B we assume C′′′ ⊇ C′′, H ′ ⊇ H1 and
(w,H ′) ∼C′′′

A d. We need to show apply C′′′ h w H ′ ∼C′′′
B [[r]]ξ[x 7→ d]. Clearly,

apply C′′′ h w H ′ = eval C′′′η1 a H ′ where η1 = [dom(Γ),x 7→~v,w]. Furthermore,
(η1,H ′)∼C′′′

Γ,x:A ξ[x 7→ d], by the assumptions (η,H)∼C′′
Γ

ξ and (w,H ′)∼C′′′
A d and

monotonicity. Using the induction hypothesis we obtain eval C′′′ η1 a H ′ ∼C′′′
B

[[r]]ξ[x 7→ d] since P(Γ,x : A) r C = (a,C1) and C1 ⊇C′′′.

Γ ` r s : B, derived from Γ ` r : A→ B and Γ ` s : A. By (1), P Γ r C = (a,C1)
with C ⊆ C1 and P Γ s C1 = (b,C2) with C1 ⊆ C2. Therefore, P Γ (r s) C =
(a b,C2). Assume C′ ⊇C2, ξ : Γ and (η,H)∼C′

Γ
ξ. We need to show

eval C′ η (a b) H ∼C′
A [[r s]]ξ. By induction hypothesis and (2), eval C′ η a H =

(v,H1) for some H1 ⊇ H with (v,H1)∼C′
A→B [[r]]ξ and, using monotonicity,

eval C′ η a H1 = (w,H2) for some H2 ⊇ H1 with (w,H2)∼C′
A [[s]]ξ. Hence,

apply C′ v w H2 ∼C′
B [[r]]ξ([[s]]ξ) and we are done, since

eval C′ η (a b) H = apply C′ v w H2 and [[r s]]ξ = [[r]]ξ([[s]]ξ).

Γ ` f [r1, . . . ,rk] : int, derived from Γ ` ri : int, i = 1, . . . ,k. By (1), P Γ r1 C =
(a1,C1) with C⊆C1 and P Γ s Ci+1 = (ai+1,Ci+1) with Ci ⊆Ci+1, i = 1, . . . ,k−1.
Hence, P Γ f [~r] C = (f [~a],Ck). Assume C′ ⊇ Ck, ξ : Γ and (η,H) ∼C′

Γ
ξ. We

need to show eval C′ η f [~r] H ∼C′
int [[f [~r]]]ξ. By induction hypothesis and (2),

eval C′ η a1 H = (n1,H1) for some n1 ∈ Z and H1 ⊇ H with (n1,H1) ∼C′
int [[r1]]ξ,

i.e. n1 = [[r1]]ξ. Similarly, using monotonicity and (2), for i = 1, . . . ,k−1 we have
eval C′ η ai+1 Hi = (ni+1,Hi+1) for some ni+1 ∈ Z and Hi+1 ⊇ Hi with ni+1 =
[[ri+1]]ξ. It follows eval C′ η f [~r] H = ([[f]][~n],Hk) = ([[f [~r]]]ξ,Hk). ut

Corollary 1.3 (Correctness of the implementation). Assume ` r : int and let
C ∈ CEnv. Then P /0 r C = (a,C′) for some C′ ⊇C. Furthermore, for any heap H,

12

any environment η and any C′′ ⊇C′ we have

eval C′′ η a H = (n,H ′)

where n is the value of r and H ′ is some extension of H.

Remark. The proof of Theorem 1.2 is rather “low level” since it mentions and
manipulates the class environment and the heap explicitely. It would be desirable,
in particular with regard to a formalisation in a proof assistant, to lift the proof
to the same abstract monadic level at which the functions P, eval and apply are
defined. A framework for carrying this out might be provided by suitable versions
of Moggi’s Computational λ–Calculus, Pitts’ Evaluation Logic [11] and special
logical relations for monads [2].

1.4 LAZY EVALUATION IN C++

Haskell is famous for its programming techniques using infinite lists. A well-
known example are the Fibonacci numbers, which are computed efficiently by
using the following code:

fib = 1:1:(zipWith (+) fib (tail fib))

This example requires that we have infinite streams of natural numbers, and relies
heavily on lazy evaluation. We show how to translate this code into efficient C++
code, by using lazy evaluation. The full code for the following example, in which
we have translated λ-types and -terms into original C++, is available from [16].

The standard technique for replacing call-by-value by call-by-name is to delay
evaluation by replacing types A by ()→ A where () is the empty type (i.e. void).
However, according to the slogan “lazy evaluation = call-by-name+sharing”
(which we learnt from G. Hutton [3]) lazy evaluation means more than delaying
evaluation: it means as well that a term is evaluated only once. In order to obtain
this, we define a new type Lazy(A). This type delays evaluation of an element of
type A in such a way that, if needed, the evaluation is carried out – however, only
once. Once the value is computed, the result is stored in a variable for later reuse.
Note that this is a general definition, which is not restricted to lazy streams.The
definition is as follows (we use the extended C++ syntax for λ-terms and -types
introduced in Sect. 1.2, esp. r ˆ̂ t for application, \ for λ, and –> for→):

template<typename X> class lazy{
bool is_evaluated;
union {X result;

() -> X compute_function;};
public:
lazy(()-> X compute_function){
is_evaluated = false;
this->compute_function = compute_function;};

X eval(){
if (not is_evaluated){

13

result = compute_function ˆˆ ();
is_evaluated = true;};

return result;};};
#define Lazy(X) lazy<X>*

Note that without support by the extended syntax the code above would be much
longer and considerably more complicated.

Using the class lazy we can now easily define lazy streams of natural num-
bers (lazy lists, i.e. possibly terminating streams, can be defined similarly, but
require the usual technique based on the composite design pattern for formalis-
ing algebraic data types as classes by introducing a main class for the main type
which has subclasses for each constructor, each of which stores the arguments of
the constructor)

template<typename X>class lazy_stream{
public: Lazy(X) head;

Lazy(lazy_stream<X>*) tail;
... Constructor as usual ... }

#define Lazy_Stream(X) lazy_stream<X>*

We define an operation which takes a function of type ()→ X and returns the
corresponding element of type Lazy(X):

template<typename X> Lazy(X) create_lazy
(()-> X compute_function){

return new lazy<X>(compute_function);};

In order to deal with the example of the Fibonacci numbers, one needs to
define the operators used in the above mentioned definition of fib:

• lazy_cons_lazy<X> computes the cons-operation on streams and returns
lazily a lazy stream:

template<typename X>Lazy(Lazy_Stream(X)) lazy_cons_lazy
(Lazy(X) head,
Lazy(Lazy_Stream(X)) tail){

return create_lazy
(\ () x.new lazy_stream<X>(head,tail))};};

• lazy_tail<X> computes the tail of a stream lazily (we define here only its
type):

Lazy(Lazy_Stream(X)) lazy_tail<X>
(Lazy(Lazy_Stream(X)) s)

• lazy_zip_with<X> computes the usual zip with function (i.e.
zip with(f , [a,b, ..], [c,d, ..]) = [f a c, f b d, . . .]; we define here only its type):

Lazy(Lazy_Stream(X)) lazy_zip_with<X>
(X -> X -> X f,
Lazy(Lazy_Stream(X)) s0,
Lazy(Lazy_Stream(X)) s1)

14

The definition of lazy tail and lazy zip with is straightforward, once one
has introduced a few combinators for dealing with Lazy(X).

Now we can define the stream of Fibonacci numbers as follows (plus is
λx,y.x+ y, one_lazy is the numeral 1 converted into an element of
Lazy(int), create_lazy transforms elements of type ()->A into
Lazy(A), and eval evaluates an element of type Lazy(A) to an element of
type A):

()-><Lazy_Stream(int)> fib_aux =
\() x. Lazy_Stream(int)

eval(
lazy_cons_lazy(
one_lazy,
lazy_cons_lazy(
one_lazy,
lazy_zip_with(
plus,
create_lazy(this),
lazy_tail(create_lazy(this))))));

Lazy_Stream(int) fib = eval(create_lazy(fib_aux))

Note that here we were using the keyword this in the definition of fib_aux.
This is how a recursive call should be written. If we instead put fib_aux here,
C++ will, when instantiating fib_aux, first instantiate fib_aux as an empty
class, and then use this value when evaluating the right hand side. Only when
using this we obtain a truely recursive definition.

When evaluated, one sees that the nth element of fib computes to fib(n)
and this computation is the efficient one in which previous calls of fib(k) are
memoized. Replacing Lazy(X) by () –> X, results in an implementation of the
Fibonacci numbers which is still correct, but requires exponential space since
memoization is lost (on our laptop we were not able to compute fib(25)).

Generalization. The above technique can easily be generalized to arbitrary
algebraic types, in fact to all class structures available in C++. If, for example,
one replaces in a tree structure all types by lazy types, then only a trunk of the tree
structure is evaluated and kept in memory, namely the trunk which has been used
already by any function accessing this structure.

1.5 CONCLUSION

In this paper we have shown how to introduce functional concepts into C++ in
a provably correct way. The modelling and the correctness proof used monadic
concepts as well as logical relations. We also have shown how to integrate lazy
evaluation and infinite structures into C++.

This work lends itself to a number of extensions, for example, the integration
of recursive higher-order functions, polymorphic and dependent type systems as
well as the combination of larger parts of C++ with the λ-calculus. The accurate
description of these extensions would require more sophisticated, e.g. domain-

15

theoretic constructions and a more systematic mathematical modelling of C++. It
would be as well be interesting to expand our fragment of C++ in order to deal
with side effects. This would allow for instance to prove that our lazy construct
actually gives rise to an efficient implementation of the Fibonacci function.

We believe that if our approach is extended to cover full C++, we obtain a
language in which the worlds of functional and object-oriented programming are
merged, and that we will see many examples, where the combination of both lan-
guage concepts (e.g. the use of λ-terms with side-effects) will result in interesting
new programming techniques.

16

REFERENCES

[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of computer
programs. MIT Press, 1985.

[2] J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types.
In Julian C. Bradfield, editor, Proceedings of the 16th International Workshop on
Computer Science Logic (CSL’02), volume 2471 of Lecture Notes in Computer Sci-
ence, pages 553–568, Edinburgh, Scotland, UK, September 2002. Springer.

[3] G. Hutton. Programming in Haskell. Cambridge University Press, Cambridge, UK,
2006.

[4] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A mini-
mal core calculus for Java and GJ. In Loren Meissner, editor, Proceedings of the 1999
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[5] A. Jung and J. Tiuryn. A new characterization of lambda definability. In M. Bezem
and J. F. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of
Lecture Notes in Computer Science, pages 245–257. Springer, 1993.

[6] R. M. Keller. The Polya C++ Library. Version 2.0. Available via
http://www.cs.hmc.edu/∼keller/Polya/, 1997.

[7] O. Kiselyov. Functional style in C++: Closures, late binding, and lambda abstrac-
tions. In ICFP ’98: Proceedings of the third ACM SIGPLAN International conference
on Functional programming, page 337, New York, NY, USA, 1998. ACM Press.

[8] K. Läufer. A framework for higher-order functions in C++. In COOTS, 1995.

[9] B. McNamara and Y. Smaragdakis. Functional programming in C++. In ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international conference on Functional pro-
gramming, pages 118–129, New York, NY, USA, 2000. ACM Press.

[10] E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[11] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order Workshop,
Banff 1990, Workshops in Computing, pages 162–189. Springer, 1991.

[12] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

[13] G. D. Plotkin. Lambda definability in the full type hierarchy. In R. Hindley and
J. Seldin, editors, To H.B. Curry: Essays in Combinatory Logic, lambda calculus and
Formalisms, pages 363 – 373. Academic Press, 1980.

[14] J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP’83, pages
513–523. North-Holland, 1983.

[15] S. Schupp. Lazy lists in C++. SIGPLAN Not., 35(6):47–54, 2000.

[16] A. Setzer. Lazy evaluation in C++. http://www.cs.swan.ac.uk/
∼csetzer/articles/additionalMaterial/
lazyEvaluationCplusplus.cpp, 2006.

[17] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine – Definition,
Verification, Validation. Springer, 2001.

17

[18] R. Statman. Logical relations and the typed lambda-calculus. Information and Con-
trol, 65:85 – 97, 1985.

[19] J. Striegnitz. FACT! – the functional side of C++.
http://www.fz-juelich.de/zam/FACT.

[20] W. W. Tait. Intensional interpretation of functionals of finite type. Journal of Symbolic
Logic, 32:198 – 212, 1967.

[21] G. Winskel. The formal semantics of programming languages: an introduction. MIT
Press, Cambridge, MA, USA, 1993.

18

