A Finite Axiomatization
of Inductive-Recursive Definitions

Peter Dybjer*and Anton Setzer!
May 16, 2005

Abstract

Induction-recursion is a schema which formalizes the principles for intro-
ducing new sets in Martin-Lof’s type theory. It states that we may inductively
define a set while simultaneously defining a function from this set into an arbi-
trary type by structural recursion. This extends the notion of an inductively
defined set substantially and allows us to introduce universes and higher order
universes (but not a Mahlo universe). In this article we give a finite axiomati-
zation of inductive-recursive definitions. We prove consistency by constructing
a set-theoretic model which makes use of one Mahlo cardinal.

1 Introduction

In this article we present an elegant, uniform method for introducing large sets
in type theory. We draw on experience from proof theory, category theory, and
set theory to formulate a compact, completely formal theory of inductive-recursive
definitions, and to prove its consistency.

Induction-recursion is a schema for introducing new sets in type theory devel-
oped by Dybjer [7]. All the usual sets in Martin-Lo6f’s type theory and practically all
sets (data types), which are defined in analogy with it, are instances of this schema.
Applications of induction-recursion include not only a variety of type-theoretic ana-
logues of large cardinals (inaccessible cardinals, hyper-inaccessible cardinals, etc)
but also various powerful notions needed for the type-theoretic formalization of
metamathematics (such as reducibility predicates and logical relations for depen-
dent types). Induction-recursion can also provide novel ways to formalize simple
concepts such as the set of lists with distinct elements [7].

The original presentation of induction-recursion was as an external schema [7].
In this article we internalize this concept. The new theory has a special type of
codes for inductive-recursive definitions. New sets defined by induction-recursion
are introduced by deriving codes in this type. Therefore we achieve full precision of
the concept of an inductive-recursive definition. The meta-theory becomes easier,
as will be demonstrated by building a full function space model.

Ordinary dependent type theory with generalized inductive definitions (that
is, Martin-Lof’s type theory without universes) has a natural full function space
interpretation in classical set theory [1, 8]. As shown by our construction of a
set-theoretic model the step from inductive to inductive-recursive definitions in
type theory is roughly analogous to moving from ordinary ZF set theory to ZF set
theory with a Mahlo cardinal. The proof-theoretic strength of type theory increases
accordingly when inductive-recursive definitions are added. The consistency of the

*Department of Mathematics and Computing Science, Chalmers University of Technology.
Email: peterd@cs.chalmers.se
TDepartment of Mathematics, Uppsala University. Email: setzer@math.uu.se

theory is shown without assuming the positivity restriction on parameters needed
for Dybjer’s original realizability model of inductive-recursive definitions [7].

The new theory explains that induction-recursion can be viewed as a very general
reflection principle: given finitely many (possibly infinitary) operations on a type D,
we can construct by simultaneous induction-recursion a universe U with decoding
function T : U — D, which reflects each of the D-operations. This reflection
principle can be expressed formally by a diagram which extends the initial algebra
diagram used for categorical semantics of inductively defined sets. The resulting
theory has been implemented in the Half system, a proof assistant for Martin-Lof’s
type theory developed by Coquand and Synek, see Cederquist [4].

Plan of the paper. In Section 2 we present Martin-Lof’s Logical Framework. In
Section 3 we recall how to use initial algebras for giving categorical semantics of
inductive types in the simply typed lambda calculus. In Section 4 we discuss the
step from induction to induction-recursion and how we need to modify the notion of
an endofunctor ® and of an initial ®-algebra in order to capture the formal rules for
induction-recursion. We then show how to give a finite axiomatization of inductive-
recursive definitions by introducing a type of codes for such modified endofunctors.
In Section 5 we show how to recover some well-known set constructors by giving
appropriate codes. In Section 6 we build a set-theoretic model. In Section 7 we
mention some related work.

2 An Extension of the Logical Framework

The Logical Framework (see [15]) has the following forms of judgements: I' context,
and A : type, A = B : type, a : A, a = b : A, depending on contexts I' (written
as I' = A : type, etc.). We have set : type and if A : set, then A : type. The
collection of types is closed under the formation of dependent function types written
as (x : A) — B, with elements formed by abstraction (x : A)a, application written
in the form a(b) and which has the n-rule. Types are also closed under the formation
of dependent products written as (x : A) x B, with elements (a, b), projections 7
and 71 and again the n-rule (surjective pairing). There is also the type 1, with
unique element () : 1 and 7n-rule expressing, that if a : 1, then a = () : 1.

We will add a level between set and type, which we call stype for small types:
stype : type. (The reason for the need for stype is discussed in [7].) If a : set then
a : stype. Moreover, stype is also closed under dependent function types, dependent
products and includes the one-element type. However, set itself will not be in stype.

Finally, in order to make it possible to code all constructors into one (see the
remark on page 4), we add the set B of booleans with elements tt for true and ff for
false and as elimination rule case distinction if a then belse c¢: D for a : B, D : type
and b,c: D.

We also use some abbreviations, such as omitting the type in an abstraction, that
is, writing (x)a instead of (z : A)a, and writing repeated application as a(b, ..., b,)
instead of a(by) - - - (b,) and repeated abstraction as (x1 : A1,...,x, : Ay)a instead
of (x1: A1) (zn : Ap)a.

3 Inductive Types as Initial Algebras

Let us first consider the question of how to formalize inductive types in the setting
of the simply typed A-calculus. We shall consider generalized inductive definitions
of types given by a finite number of constructors

intro; : ®;(U) - U |

where ®; are strictly positive in the following restricted sense:

e The constant functor ®(D) = 1 is strictly positive. This is the base case
corresponding to an introduction rule with no premises.

o If W is strictly positive and A is an stype, then ®(D) = A x ¥(D) is strictly
positive. This corresponds to the addition of a non-inductive! premise.

o If U is strictly positive and A is an stype, then ®(D) = (A — D) x ¥(D)
is strictly positive. This corresponds to the addition of an inductive premise,
where A corresponds to the hypotheses of this premise in a generalized in-
ductive definition (and when A = 1 we have the special case of an ordinary
inductive definition).

Note that all occurrences of U in ®(U) are strictly positive in the standard sense
that U does not occur to the left of an arrow in ®(U).

Assume @4, ..., ®, are strictly positive functors, and let & := (P1,...,Dp,).
Then the inductive type generated by ® can be captured categorically as an initial
®-algebra, that is, a sequence of arrows (i =1,...,n)

intro;

i(U) ——
such that for any other @-algebra
d;

®,(D) D
there is a unique arrow T : U — D, such that the following diagrams commute
(V) intro;
P,(T) T
d;
®,(D) D

4 Inductive-Recursive Definitions

4.1 From Inductive to Inductive-Recursive Definitions

In the presence of dependent types more inductive definitions become possible. Let
us look at some examples:

The set X(A, B) has one constructor p : (z : A) — (y : B(z)) — (A, B). It has
two non-inductive arguments, where the type B(z) of the second argument depends
on the first premise x : A.

The well-ordering set W(A, B) has one constructor sup : (z : A) — (y : B(z) —
W(A, B)) — W(A, B). It has a first non-inductive argument z and a second B(z)-
indexed inductive argument y. So the second argument depends on the first non-
inductive argument.

Both are examples of inductive definitions (no simultaneously defined function
participates in the definition yet). For this case later premises can only depend on
earlier non-inductive premises, but not on earlier inductive premises. We cannot
make use of inductive premises, because they only give information about the set
we are currently defining.

To capture inductive definitions of sets in the presence of dependent types [8, 9],
we thus only need to change the notion of a strictly positive functor ® above by
replacing the non-inductive case by:

Hn [7] the terminology “non-recursive premise” was used, but “non-inductive premise” seems
better in connection with induction-recursion, since it primarily has to do with the inductively
defined set and not with the recursively defined function. Similarly we will use “inductive premise”
instead of “recursive premise”.

e If A is an stype, and ¥, is a strictly positive functor depending on z : A, then
®(D) = (x: A) x U,(D) is strictly positive.

We shall now replace the sequence of functors (®1,...,®,) by a single functor
by defining ®(D) := (x : N,,) x ®,(D). In order to make this possible we need the
existence of finite sets with n elements N,,. An easy observation shows that B and
the empty set Ny suffice. (It will however be possible to define Ny, see section 5).

In the case of inductive-recursive definitions however, a later premise may also
depend on an earlier inductive premise. We consider the key example, the ordi-
nary first universe U & la Tarski [12], which is defined inductively, while simulta-
neously defining the decoding function T : U — set recursively. Consider one of
its constructors, X : (z : U) — (y : T(z) — U) — U with the defining equality
T(S(a, b)) = S(T(a), T o b) : set. Here we have two inductive premises: z : U (im-
plicitly indexed by the one-element type 1) and y : U indexed by T(x). The second
argument depends on the first inductive argument via T.

Is U inductively generated by a strictly positive functor ® as was the case for
inductively defined sets? If this is the case, ® must depend on the recursively defined
function T as well: we need something like ® : (U : set) — (T : U — set) — set
defined by ®(U,T) = (z: U) x (T'(z) — U)!

In general, induction-recursion allows that a simultaneously defined function
T : U — D for an arbitrary fixed type D may participate in the inductive generation
of the set U.

e The modified non-inductive case thus becomes: if A is an stype, and ¥, is a
strictly positive functor depending on z : A, then ®(U,T) = (x : A)x ¥, (U, T)
is strictly positive.

e The modified inductive case becomes: if A is an stype, and ¥, is a strictly
positive functor depending on g : A — D, then ®(U,T) = (f : A - U) x
Uror(U,T) is strictly positive.

We see that the ® which generates U (as defined above), is isomorphic to the
following strictly positive functor: ®(U,T) = (f: 1 —U) x (T(f(())) = U) %

Furthermore, T is defined by T(3(a,b)) = S(T(a), T o b), ie. T(E(a,b)) =
d(T(a),Tob) with d: (A :set) — (A — set) — set and d(A, B) := (A, B).

In general, we need an additional component ®*'¢ which specifies the domain
of d. (Note that this domain only depends on D and not on U and T"!). Finally, we
need a third component ®™#P(U, T) : ®*8(U,T) — &A™ and then we can draw a
diagram

B¥E(U, T) intro
dmap (U, T) T
q)Arg D

which summarizes the inductive definition of U and recursive definition of T. Think
of D as a type of “semantic” objects and of d : ®*'® — D as a (possibly infinitary)
“semantic” operation with ®A™ as the domain (or generalized arity) of d. U is a
universe of codes for objects in D and T : U — D is the decoding function. The
constructor intro is the syntactic reflection of d : A& — D3

2 As this example shows the term “strictly positive” may no longer be wholly appropriate, since
the T-argument now can appear negatively. Allen [2] used the alternative term “half-positive” for
this reason. U always appears strictly positively however.

3Recall that the term “universe & la Tarski” was chosen by Martin-L&f [12] because of the
similarity between the definition of T (for the ordinary first universe) and Tarski’s definition of
truth.

Note the similarity between the above diagram for induction-recursion and the
ordinary diagram for an initial algebra of an endofunctor which was displayed in
Section 2! The key difference is that here ® is no longer a functor in the ordinary
sense, but consists of three components: ®4'¢ ®2e and ®™*P. These will be
axiomatized below.

4.2 A Finite Axiomatization

We shall now give the formal rules for the inductive-recursive definition of a set U
and a function T : U — D. Such a definition is always parameterized with respect
to the target type D of T, since a particular inductive-recursive definition generates
a universe for a finite number of D-operations.

The main step is to introduce a new type SPp, the objects of which are repre-
sentatives of strictly positive “functors” ® as above:

D : type
SPp : type

(There is also a rule, which lets us infer that SPp = SPp/ if D = D', but we will
omit all such equality preservation rules.)

SPp has three associated operations corresponding to ®48, ®#¢ and $™2P in
the informal exposition above:

D : type ¢:SPp
Argp , @ type
¢:SPp U : set T:U—D
arg, (U, T) : stype
¢:SPp U : set T:U—D

1rnap¢(U7 T): (au1rg¢(U7 T)) — Argp

To simplify notation we have suppressed the parameter (the “global” premise)
D : type and the argument D for the second and third operation*. It should
be emphasized that arg, and map, are only abbreviations of the proper formal
expressions argp, , and mapp 4. Similarly, we will suppress the D in some later
operations as well.

With this new notation the diagram for the inductive-recursive definition of U
and T becomes:

introg q
argy(Up,d, To.a) 5 Uga
map,(Ug.a, Tg.a) Tg.a
d
Argp 4 D

We have the following introduction rules for SPp (again with D suppressed):
nil : SPp
A stype ¢:A— SPp
nonind(4, ¢) : SPp

A stype ¢:(A— D)— SPp
ind(4,¢) : SPp

4In Arg we have not suppressed it, since the equality rules for it will make use of D.

ArgD,nil =1

ArgD,nonind(A,¢) = (z:4)x ArgD,d)(z)
ArgDyind(A@) = (f:A—D)x ArgD1¢(f)
arg (U, T) = 1
argnonind(A,qﬁ)(U?) = (v:A)x (arg¢(z)(U7 1))
arginaca,e) (U, T) = (f: A= U) x (argyrop) (U, T))
map, (U, T,()) = ()
ma’pnonind(A,zb) (U7 Ta <a7 ’Y>) = <CL, map¢(a) (U7 Ta 7)>

ma’pind(A,¢) (Ua T7 <f7 ’Y>) = <T © fa map¢(Tof) (Ua T7 ’Y)>

We are now ready to give the formal rules for U and T. These rules have the
common premises D : type, ¢ : SPp and d : Argp, , — D which will be omitted.
Formation rules:
Ug,q : set

T¢7d . Ud),d — D
Introduction rule:

a argd)(Ud),d, Td),d)
introg q¢(a) : Uy 4

Equality rule:

a argd)(Ud),d, Td),d)
T¢7d(intr0¢7d(a)) = d(map¢(U¢7d, T¢.d, a))

Moreover, structural recursion on U into a type D’, that is, the analogue of
universe elimination, is expressed by the following diagram (we omit the indices
¢,d of U, T, intro, R, write D'[t] for the substitution of some fixed variable in D’
by t and, when used as an argument, D’ instead of (z)D’[x]; assume in the following
x: Uy q = D'[z] : type as a global premise)

intro

arg, (U, T) U

(id, mapIH¢>,U,T,D’ (Rpr(e))) (id, Rpr (e))

(intro o g, €)
L

(v :arg,(U,T)) x IHy ur 0 (7) (x:U) x D'[z]

where we have used the operation IH which generates the induction hypothesis and
the operation mapIH which generates the recursive call:

U : set T:(x:U)—D x:U = D'[z] : type v s argy (U, T)
Hy.v,.0(7) : type

U : set T:(x:U)—D z:U = D'[z] : type R:(x:U)— D'[z]
maplH,, ;7 p/(R) : (z : arg, (U, T)) — IHy v1,p (2)

Hunorp () = 1
Hyonind(a,¢),0,7,0'({a,7)) = THg@),u1,0r (IV)
WHinaa,g),v,,0 (7)) = ((y:A) — D[f(y)]) x WHgros),v,1,00 (7))
maPIHnil,U,T,Df (R7 ()) = <>

mapIHnonind(A,d)),U,T,D’ (R,(a,7)) = mapIH¢(a),U,T,D/ (R,7)
maplH;,qca,¢). 01,0 (B, (f,7) = (Ro f,maplHyrop) v p (R,7))

Elimination rule (universe elimination):

et (yrargy(Uga, Toa) = (IHeu, .1, 4,0 (7)) = (D'[introg,a(v)])
Rya.p(e):(a:Ugq) — D'al

Equality rule (universe elimination, premises omitted):

Rg,a,0' (e, introg q(v)) = e(y,maplH, v, , 1, , o (Re,a,0(€),7))

5 Examples

We shall show how to find ¢ : SPp for some well-known set constructors. (Compare
the informal discussion in Section 4.1.) We will write intro instead of introg 4. Let
in the first examples D := 1 and d := (z : C)() for some suitable type C, since this
is how we obtain inductive definitions as degenerate cases of inductive-recursive
definitions.

Y-sets. Let
¢4, := nonind(A4, (z)nonind (B(x), (y)nil))

in the context A : set, B : A — set. It follows that (A, B) := Ug, ;.4 : set.
This set has the constructor intro : ((x : A) x (B(z) x 1)) — X(A, B). If we
define p := (4, B, z,y)intro({x, (y, (}))), then p : (4 : set,B : A — set,x :
A,y : B(z)) — X(A, B) and one can easily derive the ordinary elimination
rules as if p were the constructor of . Note that this illustrates that we get
dependencies on parameters (in the sense of Dybjer [9, 7]) like A, B for free.

Natural numbers. Let

:= nonind(B, (z) if = then nil else ind(1, (y)nil)) ,
= Uga ,

intro({tt, ())) : N,

= (n)intro((ff, {(y)n,)))) : N = N .

n o Ze
I

Although this definition is like the definition of N by the equation N = 14-(1 —
N) x 1, because of the n-rule on 1 this is equivalent to the ordinary definition
of N. The usual elimination rules for N can be derived.

The empty set. Let
¢ := ind(1, (z)nil) ,

and define Ny := Uy 4. Then we can show the elimination rule for the empty
set Ng. Note that this corresponds to the definition of Ny by having one
constructor intro : Ng — Ng. We can define now N{ := Uponind(No, (2)nil),ds
which can be regarded as the empty set with no constructors. However, one
might prefer to add the set Ny like the set B as a basic set.

Well-orderings. Let
¢4, p = nonind(A4, (z)ind(B(z), (y)nil)) ,

in the context A :set,B: (x : A) — set, and define W(A, B) := Uy, ;.q : set
with the constructor intro : ((z : A) x ((B(z) — W(A, B)) x 1)) — W(A4, B).
As before we can define the ordinary constructor sup with its elimination
rules.

A universe closed under N and Y. Let D := set,
¢ := nonind (B, (z) if = then nil else ind(1, (f)ind(f({)), (y)nil))) .
Hence Argp, , = (z : B) x E(z), with

E(tt) = 1,
E(ff) (x:1—set) x (f:x(()) —set) x1.

Moreover, let d : Argp 4, — set be defined such that

d({tt, ())) = N,
d((ff, (A, (B, 0)))) = E(A)), ()B())

using the elimination rules for B and product. Define U’ := Uy 4, T/ := T4y 4,
and

= intro({tt, ())) : U" ,

— (a,byintro((F, (()a, (b, (1)) : (a: U'sb: T'(a) — U') — U' .

M) 2)

N and & are essentially the two constructors of the universe U’, T/ and we

have T'(N) = N, T/(3(a, b)) = 2(T’(a), T' o b).

Lists with distinct elements. Assume A :set and # : (A x A) — A, where # is
an (infix) apartness relation on A. In [7] the set Dlist of lists with elements
which are distinct with respect to the relation # is defined inductively together
with the recursively defined relation (family of sets) Fresh : Dlist — A — set,
where Fresh(l, a) expresses that a is distinct from all elements in [. (If we wish
to make the dependence on the parameters A and # explicit, we may write
Dlist(A, #) and Fresh(A, #).) Dlist has the constructors®

empty : Dlist ,
cons : (a:A,u:Dlist,Fresh(u,a)) — Dlist ,

and Fresh(l, a) is defined such that

Fresh(empty) = (b)1 ,
Fresh(cons(a,u,p)) = (b)((b#a) A Fresh(u,a)) .

Then Dlist = Uy, , a4 4, Fresh="Tgy, , q, ., where D := A — set,

¢4 4 = nonind(B, (z) if z then nil
else nonind(A4, (a)ind (1, (u)nonind(u({), a), nil)))) ,
daz((tt, () = (@1,
daz((ff, (@, (u, (p, 0))))) = (0)((b#a) Au((),a)) -

The above examples show that we can derive all inductive-recursive sets in a form,
which is close to the way we would ordinarily like to write them down. We must for
example write the arguments in list notation and, if we have a non-indexed inductive
argument, write it as an argument depending on the type 1. In an implementation
of the calculus one could of course easily avoid this administrative overhead.

6 Set-Theoretic Model

6.1 Interpretation of Expressions

The idea behind the model is simple: interpret all constructions in set theory in
the obvious way! In particular, each type is interpreted as a set, equal types are

5We have here renamed the constructor nil in [7] to empty.

interpreted as equal sets, a : A is interpreted as a € A, and a = b : A is interpreted
as a and b are equal elements of A. Moreover, A — B is interpreted as the set
of all functions from A to B in the set-theoretic sense, and (x : A) — B as the
set-theoretic cartesian product II,c4 B, etc.

The inductively defined type SPp of codes for strictly positive operators is in-
terpreted as an inductively defined set in the set-theoretic sense, that is, as a set
generated by iterating a monotone operator up to a fixed point. Similarly, the
inductive-recursively defined set U and function T : U — D, are also interpreted by
iterating a monotone operator up to a fixed point.

In order to ensure that a fixed point indeed can be reached we postulate the
existence of one Mahlo cardinal in addition to the ordinary axioms of ZF set theory.®
We also need the the axiom of choice to deal with cardinals, and for simplicity we
assume the generalized continuum hypothesis.”

Note, that a cardinal s is inaccessible, iff it is regular and R, = k, where X,
enumerates the infinite cardinals. An inaccessible cardinal k is a Mahlo cardinal,
iff every normal function f : kK — k has a regular fixed point. (A normal function
f is a (strictly) monotone function, which is continuous at limit ordinals A, i.e.
f(A) = supyy f(a).) The standard model of our extension of ZF is Vy+, where
M is the first inaccessible above M, however all types will be interpreted as elements
of Vu, where A is the first (non-regular) fixed point of Aa.R,, above M.

We will develop the semantics following the approach in [8]. Let Ag := Nypq1,
Ang1 =Ry, and A :=sup,,c,, An.

If a,aq,...,ay,,c are sets, and b is a function with domain a, let
Myeab(z) = {f|f function Adom(f)=aAVz € a.f(x) € blx)} ,
Az € ablz) = {{(z,b(z)) |z €a},
Yeeab(z) = {{c,d)|c€andeble)}
ag+---+an = Yicpo,.nyai (ifn>1),
(@ —c) = Ilyeqc .
Moreover, (a); := a;, if a = {ag, ..., a;) and undefined otherwise.
Whenever we introduce sets A® indexed by ordinals «, let in the following
A= [47
B<a

We shall use the set V5 as the set-theoretic universe for our interpretation. All
types and objects of types will thus be interpreted as elements of V5 8. Terms which
depend on free variables will be interpreted relative to an assignment p, that is, a
function, which maps a finite set of variables to elements of V. In the following p
(possibly with indices or accents) will always be an assignment. If a € V, then p?
is the assignment with dom(p?) := dom(p) U {z}, such that

a a if x =y,
P3(y) = {

ply) otherwise.

Let terms be the set of expressions which possibly occur as elements of a type or
as types: So variables are terms and if a,b,a1,...,a, are terms, z is a variable,
and C is an n-ary constructor (including set, stype and constructors like (-,), 7o

6In Sect. 7 (“Constructive versions of the model”) we will discuss how to replace these strong
set theoretic requirements by far weaker ones.

“Without the generalized continuum hypothesis one has to replace Mahlo and inaccessible by
strongly Mahlo and strongly inaccessible, respectively, and R by Ja.

8We here use a notion of model which only requires all derivable types to be interpreted as
elements of V5. Note however that V5 is not closed under the formation of dependent function
types. If we wish to satisfy this requirement we can either reinterpret type as the class of all sets
or as V1 for some inaccessible cardinal T > M.

but excluding type) of the system, then (z : a) — b, (z : a)b, (x : a) x b and
C(ai,...,an) are terms.

For terms ¢ and assignments p we will determine, whether its interpretation ¢
is defined, and if it is defined, the value of ¢;. This will be done in such a way that
for every term t and every n € w there exists an m € w such that, if rng(p) C V, ,
ty, € Va,,. For closed terms, ¢ will not depend on p and we therefore omit the
subscript p. We will use ~ for partial equality in the usual sense, and also let
t, i~ s mean that the interpretation of { under assignment p is defined to be s,
provided s is defined, and is undefined otherwise. We extend this definition further
by defining

type* := Vi .
The interpretation of terms is given by

xh e p(x) set* :~ stype* :~ Vy ,
((z:4)— B); = HyEA;B;g , ((x:A)a) i~ Ay € Ap ol
(a(b)), == ay(b}) ((z:A) x B), =~ Syea; Byy
(a,b>p :;: a;,b;> , (mo(a)) i~ (a)o ,
(m(a)), = (a)1 , 1%~ 1,
(" ~0, B* :~{0,1} ,
tt* i~ 0 ff* i~ 1,

b, ifa, =0,
(if a then belse ¢), =~ { ¢ ifay =1,

undefined otherwise .

To interpret terms with constructors SP, nonind, ind, Arg, ..., we first define

SP*, nonind”*, ind*, Arg*, arg*, map*, IH*, mapIH*, U*, T* and interpret

(SPD): i~ SP*(Dj) ,
(nonind(a, b)): i~ nonind”(a},b}) ,
(ArgD1¢)p i~ Arg*(D;,(b;) ,
(mapp, 4(U, T)): i~ Az € arg™(D}, ¢, Uy, Ty).map™ (D5, 65, U, T,)

etc.
SP*(D) is defined for D € type* as the least set such that
SP*(D) = 14 Zgeset- (@ = SP*(D)) + Zpeset+ ((a — D) — SP*(D))

which we get by iterating the appropriate operator x times, if for all a € set™ the
cardinality of @ and of a — D is less than x. If D € V), therefore SP*(D) € V3, .

nil* :~ (0,0), nonind*(a, b) :~ (1, {a, b)), ind*(a,b) :~ (2, {a,b)) .
Arg*(D, ¢) is defined, if ¢ € SP*(D), and then defined in accordance with the
equations for Arg, that is,

Arg*(D,nil") =~ 1,
Arg"(D,nonind*(4, ¢)) = Y,ecaArg”(D,o(z)) ,
Arg*(D,ind"*(A,¢)) =~ Xjca—p)Arg"(D,o(f)) .

Similarly, we define arg*(D, ¢, U, T'), map*(D, ¢, U, T, a), and for D" € (U — type*),
(D, ,U,T, D',), mapIH (D, $,U T D', R,a).

U(D, ¢,d) (D, ¢,d) ,
T*(D, ¢, d) Az € UM(D, ¢,d). TM(D, ¢,d, z) ,

where U*(D, ¢, d) and T*(D, ¢, d) or shorter U* and T are simultaneously defined
by recursion on « as

~
~

10

T°(a)

i2

d(map*(D, ¢, US* T<* a)) ,

intro(a) ,
R* (D7 ¢7 d7 D/7 67 a)
R*(D, ¢,d, D', e,a)

i?

a*

p b)

RM(D, $,d, D’ e, a), where

e(a, mapIH* (D, ¢, U"(D, ¢, d), T*(D, ¢,d) ,
D', R<*(D,¢,d,D',e),a)) .

2

Contexts will be interpreted as sets of assignments:

0 >0, (T,z:A) :={ps|pel;Nac A} .

6.2 Soundness of the Rules

Theorem 1 (Soundness theorem)

(a) If - T context, then T'* is defined.

(b) If T = A: E, where E = type or E is a term, then T'* is defined,
VpeT™. A} € B, and if E # type, Vp € I'".E} € type™.

(¢) Ift T = A= B : E, where E = type or E is a term, then I'* is defined,
Vpel™(Ay € E; A B, = Ay), and if E # type, Vp € I'".E}; € type”.

(d) t/ a: No, where Ng is the empty set, for any of the possibilities mentioned in
Section 5.

The proof of the Soundness theorem is more or less routine, except for the verifica-
tion that U : set. In order to prove this we will need some lemmata.

First we need to verify that U is increasing with « and that for a < 8 T® and
TP coincide on U®. In order to prove this we need to verify that arg*(D,®, U, T)
and map* (D, ¢, U, T) are monotone in U, T, as expressed by the following lemma:

Lemma 1 Assume D € type*, ¢ € SP*(D), U C U’ € set*, T : U — D,
T=T 1U. Then

(a) arg"(D,$,U,T) C arg*(D, 6, U", T') and

(b) map*(D, ¢, U’ T") | arg*(D, ¢,U,T) = map*(D, ¢,U,T).

We want to show that there is a k < M such that U<* = U*. This is the case if
k is a limit ordinal such that arg*(D, ¢, U, T) is k-continuous in U and T', that is,

arg* (D, ¢, U<, T<%) = | J arg®(D, ¢, U*, T) . (1)

a<k

To obtain this we need that all index sets, which start an inductive argument,
have cardinality less than x. The set Aux(D,¢,U,T) € set*, where D € type*,
¢ € SP*(D), U € set*, T € U — D, collects all possible such index sets. It is
defined by induction on ¢:

Auwx(D,nil*, U, T) = 1,

Aux(D,nonind* (4, ¢),U,T) = IyeaAux(D,o(x),U,T) ,
Aux(D,ind* (4, ¢),U,T) A+Tea—v)Aux(D,¢(T o f),U,T) .

Lemma 2 Assume D € type*, ¢ € SP*(D). Let k be inaccessible and let for o < k
U® € set*, T : U* — D such that for o < 3, U* C UP, T = TP | U*. Assume
also for some ay < k and for all oy < a < K

Aux(D, ¢, U, T*) € V,, . (2)

Then arg*(D, ¢, U, T) is k-continuous in U and T, that is, (1) holds.

11

Proof: “O” follows by Lemma 1b.

“C” follows by induction on ¢. We treat only the main case ¢ = ind*(4,~).
Assume a € arg*(D, ¢, U<*,T<%), and show a € arg*(D, ¢, U*, T%) for some a < k.
We know a = (f, c) for some f: A — U<" ce€arg*(D,y(T<%o f),U<<,T<F). By
(2) it follows A € Vj;, and by the inaccessibility of & there exists a 3 < k such that
f:A—U<P especially f: A — UP. W.lo.g ag < . For f < a < & it follows
Aux(D,y(T%o f),U*,T%) € V,, and therefore by induction hypothesis there exists
a ' such that c € arg* (D,W(Tﬁ/ of), Uﬁl,Tﬁ/). With a := max{3, 3’} follows the
assertion. O

Lemma 3 Assume ¢ € SP*(D), s € Arg"(D,¢) — D. Abbreviate U* :=
UY(D, 6, d), T := T*(D, ¢, d) and note that U*(D, ¢,d) = UM, T*(D, ¢, d) = T™.
(a) T*:U* — D, and if a <M, U* € V).
(b) If a < 3 then U* C UP and TP | U~ = T,
(¢) There exists k < M such that U* = U" (and therefore T* = T%) for all a > k.
(d) UM € Vy, arg*(D, ¢, UM, TM) C UM,

Proof:
(a) Easy induction on «.
(b) Induction on «, 3, by using Lemma 1(b).
(c) Define f : Ord — Ord by transfinite recursion:

£(8) =minfa | V& <BUE) <a)h o
V3 < M(U? C Vg — Ul UAux(D, ¢, UP , T7) CV,}
f: M — M follows immediately by M being inaccessible, since
{U7 |8 <MAU” CV5} € Vg Vi

Let for « < M 0(«) := f*(0). By the regularity of M we have 6 : M — M. Since
f is increasing, 6 is normal. Hence, since M is Mahlo, 6 has an inaccessible fixed
point kK < M.

Therefore f : kK — k: Assume « < k. K is a limit ordinal, therefore o < 6(3)
for some 8 < k, f(a) < f(8(B8)) =60(8+ 1) < 8(k) = k. By induction on «, using
the regularity of k, for a < k U* € V, Aux(D, ¢, U, T) € V.., and therefore by
Lemma 2

U* = arg®(D,¢, US" T<F)
U are™(D, ¢, U, T)

a<k
J vt =us,
a<k
By induction on « for all a > xk U® = U<F = U*,
(d) UM = U* € Vy, arg*(D, ¢, UM, TM) = arg*(D, ¢, U®, T*) C U+l C UM. O

7 Related and Future Work

Universes in type theory. The first example of an inductive-recursive definition
in type theory was Martin-Lof’s universe a la Tarski [12]. © Then Palmgren [17] de-
fined external and internal universe hierarchies and also a super universe. Rathjen,
Griffor, and Palmgren [19] defined quantifier universes and Palmgren [16] defined
higher order universe hierarchies. All these constructions use induction-recursion,
whereas Setzer [20] defined a Mahlo universe, which goes beyond it.

9There are earlier examples of informal inductive-recursive definitions, for example, Martin-
Lof’s simultaneous definition of the notions of computable type and term [13] from 1972. However,
the explicitly inductive-recursive nature of type-theoretic universes was only brought out when they
were formulated & la Tarski rather than a la Russell.

12

Inductive definitions in type theory. Previous work on formalization of in-
ductive definitions in Martin-Lof’s type theory has mainly used external schemata
in the style of Martin-Lof’s intuitionistic theory of iterated inductive definitions in
predicate logic [11]. See for example Backhouse [3], Dybjer [9], and Paulin [18]. A
schema for inductive-recursive definitions was introduced by Dybjer [7].

Categorical semantics of inductive types and of universes. The categorical
semantics of inductively defined dependent types has been discussed for example
by Coquand and Paulin [5] and Mendler [14]. The latter article also discusses cate-
gorical semantics of universes in type theory. In a future article we plan to extend
Mendler’s work, by giving categorical semantics of inductive-recursive definitions in
terms of initial algebras on endofunctors in slice categories. We will also show how
such semantics suggest an alternative finite axiomatization of inductive-recursive
definitions.

Set-theoretic semantics of type theory. It is well-known that Martin-Lo6f’s
type theory has a “naive” full function-space model, see for example the introduction
in Troelstra [26]. Dybjer [8] gives a full function space model of Martin-Lof’s type
theory with an external schema for inductive definitions. Aczel’s recent article [1]
contains further information about set-theoretic interpretations of type theory.

Large cardinals in set theory. Induction-recursion gives quite a general ap-
proach to type-theoretic analogues of large cardinals in set theory. See for example
Drake [6] for an introduction to large cardinals. Induction-recursion gives rise to
analogues of for example inaccessible, hyper-inaccessible cardinals, and more gen-
erally Mahlo’s m-numbers [19], but does not justify the definition of a set, which is
an analogue of a Mahlo cardinal. However, the type of sets has closure properties
similar to those of a Mahlo cardinal.

Constructive versions of the model. The current model requires much more
proof theoretic power than is actually needed: the strength of the type theory
considered is very weak relative to ZF, even without any addition of large cardinals.
Aczel [1] shows that the set theoretic models interpret as well the principle of
excluded middle of type theory, an enormous strengthening of the type theory. In
order to get a model in a theory which has the same strength, Aczel modifies the
model and replaces ZF by constructive set theory CZF. One can as well define a
model in a theory of the same strength by giving a realizability interpretation in
Kripke-Platek set theory extended by a recursive Mahlo ordinal and w admissibles
above, extending [21, 24, 23]. Both models require some extra work, which exceeds
the space available in this article.19

Proof-theoretic strength of type theory. It should be easy to develop a term
model of the theory in KPM™ used in [23] for the interpretation of Mahlo type
theory. Such a model, which will make use of a (countable) recursive Mahlo ordinal
and w admissibles above it only, would show that the strength of the current type
theory is at most as big as the Mahlo universe. On the other hand, set can be seen
as being almost a Mahlo-universe, since we have induction over arbitrary types.
What is missing to get the full strength is the possibility of having the W-type on
top of the universe. In [10] together with [22], [24], [25] it was shown that in case
of one universe such a restriction reduces the strength from |KPI*| to |KPI| and
with a similar argument for the lower bound as in [10] it is very likely that using

10The interpretation in the extension of Kripke-Platek set theory will be presented in an extended
version of this article.

13

the Mahlo-feature of set we have a lower bound |[KPM)|. Therefore it seems that the
strength of our theory lies in the interval [[KPM]|, |[KPM™|].

Inductive-recursive definitions seem to cover what is by many (but not all) re-
searchers considered at the moment as predicative type theory. Even if some ex-
tensions are not covered by our calculus, it seems unlikely that such extensions will
get beyond the strength of the Mahlo universe. This indicates that Mahloness is a
natural boundary in the world of predicativity, which can only be crossed by adding
principles such as the existence of the Mahlo universe as a set. The second author
regards such principles as predicatively justifiable.

Inductive-recursive definition of indexed families. The external schema by
Dybjer [7] considers the more general case of the simultaneous inductive-recursive
definition of a set-indexed family of sets and functions. The present finite axioma-
tization can be extended to this case too, but we postpone the presentation of this
to a future article.

References

[1] P. Aczel. On relating type theories and set theories. Submitted to TYPES’ 98,
LNCS, Springer-Verlag.

[2] S. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD
thesis, Department of Computer Science, Cornell University, 1987.

[3] R. Backhouse. On the meaning and construction of the rules in Martin-Lof’s
theory of types. In A. Avron, B. Harper, F. Honsell, I. Mason, and G. Plotkin,
editors, Proceedings of the Workshop on General Logic, Edinburgh, February
1987. Laboratory for Foundations of Computer Science, Department of Com-
puter Science, University of Edinburgh, 1988. ECS-LFCS-88-52.

[4] J. Cederquist. Pointfree Approach to Constructive Analysis in Type Theory.
PhD thesis, Department of Computing Science, Chalmers University of Tech-
nology and University of Géteborg, 1997.

[5] T. Coquand and C. Paulin. Inductively defined types, preliminary version.
In LNCS 417, COLOG ’88, International Conference on Computer Logic.
Springer-Verlag, 1990.

[6] F. R. Drake. Set Theory - an Introduction to Large Cardinals. North Holland,
1974.

[7] P.Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. To appear in Journal of Symbolic Logic.

[8] P. Dybjer. Inductive sets and families in Martin-Lo6f’s type theory and their set-
theoretic semantics. In G. Huet and G. Plotkin, editors, Logical Frameworks,
pages 280-306. Cambridge University Press, 1991.

[9] P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440-465, 1994.

[10] E. Griffor and M. Rathjen. The strength of some Martin-Lof type theories.
Archive for Mathematical Logic, 33:347 — 385, 1994.

[11] P. Martin-Lof. Hauptsatz for the intuitionistic theory of iterated inductive
definitions. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian
Logic Symposium, pages 179-216. North-Holland, 1971.

[12] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

14

[13]

[14]

[15]

[16]

P. Martin-Lo6f. An intuitionistic theory of types. In G. Sambin and J. Smith,
editors, Twenty-Five Years of Constructive Type Theory. Oxford University
Press, 1998. To appear. Reprinted version of an unpublished report from 1972.

P. F. Mendler. Predicative type universes and primitive recursion. In Proceed-
ings Sizth Annual Synposium on Logic in Computer Science. IEEE Computer
Society Press, 1991.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Léf’s Type
Theory: an Introduction. Oxford University Press, 1990.

E. Palmgren. On universes in type theory. To appear in: G. Sambin, and J.
Smith, editors: Twenty-Five Years of Constructive Type Theory.

E. Palmgren. On Fized Point Operators, Inductive Definitions and Universes
in Martin-Lof’s Type Theory. PhD thesis, Uppsala University, 1991.

C. Paulin-Mohring. Inductive definitions in the system Coq - rules and prop-
erties. In Proceedings Typed \-Calculus and Applications, pages 328-245.
Springer-Verlag, LNCS, March 1993.

M. Rathjen, E. R. Griffor, and E. Palmgren. Inaccessibility in constructive set
theory and type theory. Annals of Pure and Applied Logic, 94:181 — 200, 1998.

A. Setzer. Extending Martin-Lof Type Theory by one Mahlo-universe. To
appear in Archive for Mathematical Logic.

A. Setzer. Proof theoretical strength of Martin-Lof Type Theory with W-
type and one universe. PhD thesis, Fakultat fir Mathematik der Ludwig-
Maximilians-Universitat Miinchen, 1993.

A. Setzer. Proof theoretical strength of Martin-Lof Type Theory with W-type
and one universe. PhD thesis, Universitdat Miinchen, 1993.

A. Setzer. A model for a type theory with Mahlo universe. Draft, 1996.

A. Setzer. An upper bound for the proof theoretical strength of Martin-Lof
Type Theory with W-type and one Universe. Draft, 1996.

A. Setzer. Well-ordering proofs for Martin-Lof type theory. Annals of Pure
and Applied Logic, 92:113 — 159, 1998.

A. S. Troelstra. On the syntax of Martin-Lof’s type theories. Theoretical
Computer Science, 51:1-26, 1987.

15

