Proof theoretical strength of
Martin-Lof Type Theory
with W-type and one universe

Dissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Fakultat fiur Mathematik
der Ludwig-Maximilians-Universitat
Minchen

vorgelegt von
Anton Setzer

eingereicht am 10. September 1993



1. Berichterstatter: Prof. Dr. W. Buchholz
2. Berichterstatter: Prof. Dr. H. Schwichtenberg

Tag der miindlichen Priifung:



Contents

1 Introduction

I Definition of the Theories
2 Definition of Martin-Lof’s type theory
3 Comparison of Russel and Tarski-version

4 Definition of K Pi

II Upperbound
5 Interpretation of terms and types
6 Correctness of the Interpretation

7 Arithmetical Formulas

IIT Lower bound
8 Well-ordering proof
9 Ordinals

10 Comparison of ordinals

21

27

30
31
41

56

62
63
89

121



Chapter 1

Introduction

In this thesis, we bring together two different fields of Mathematical Logic, Martin-Lof’s
type theory and proof theory. Since we hope, that some type theorists will read it as well,
which do not know proof theory very well, we will take the chance to try to motivate the
work of proof theory.

Proof theoretical strength is a measure for theories. First results go back to Gentzen
([Gen36], [Gen38] and [Gen43]) how showed the consistency of Peano Arithmetic PA by
means of transfinite induction up to €y. He used finitistic arguments. Schiitte has given
a clearer version of it by using the w-rule. We want to sketch this argument very briefly.

This was done by interpreting the proof of PA in a semi-formal, non finitistic, system,
where we have the w-rule for V-introduction:

A(n) forallneN
V. A(x)

If we have interpreted the base case and induction step of an induction axiom in this
system, with conclusion Va.A(x), we can prove A(n) by using the base case and n-times
the induction step, and conclude Vz.A(z) in our non finitistic system. Note, that the
height of the nth premise is the sum of the height of the base case and n-times the height
of the induction step, so the height of the new derivation is infinite. For the interpretation,

we needed the cut-rule
A I',-A

r

(here T is a sequence of formulas, which can be read as the disjunction of the formulas).
This rule corresponds fo a lemma: If we have proven A and a lemma, that proves, that
from A follows B, (classically this is =A V B, written as a sequence B,—A), we can
conclude B. In our interpretation of the induction, in the n-th premise we have used n
cuts, to conclude, that from A(0) and A(Sm),~A(m) follows A(n). We can eliminate
these cuts, by induction over the derivation. A cut-free proof is a truth-definition, so,
there is no cut-free proof of 0 = 1 and we have shown that PAF 0 = 1.

To do this, we needed induction over trees. We can measure the size of the trees by
ordinals and replace the induction over trees by transfinite induction. A careful analysis
shows, that induction up to ¢ is sufficient. We can even formalize this analysis in PA
plus transfinite induction up to €¢5. So PA cannot prove transfinite induction up to o,
since by Godel, PA does not prove its own consistency. For each a < ¢y we can prove
transfinite induction up to a in PA. So we have proven, that ¢y is the supremum of
ordinals, up to which we can prove transfinite induction in PA, and we say, the proof
theoretical strength of PA is €y, |PA| = €.



Now we have found a measure for the strength of a theory. The theorem, that PA
proves transfinite induction up to w,, where wy = 0, w,41 = W, € = sup{w,|n € IN},
are in a logical sense the most complicated sentences, which we can prove in PA — the
diagonalization of it can not be proven any more in PA.

This sort of analysis or related work could be carried out for many other theories as
well (see for instance the books [BFPS81] [BS88], [Gir87], [Poh89], [Sch77a], [Tak87], the
overviews [Poh91], [Poh92],[Rat91b], [WW92]), it has turned out to be a good measure,
and gives an ordering of theories. The landscape below |A? — C A + BI| is now very well
known (see for instance Rathjen’s dissertation [Rat89]), knowing the proof theoretical
strength gives a very good intuition, what can essentially be done in a theory. For instance,
I'y is the bound for predicative theories — for the analysis of stronger theories we need
totally new methods, where we can prove complete cut elimination with ordinal analysis
only for a restricted set of formulas (in subsystems of analysis for II-sentences). [II3—CA|,
which is not calculated yet, and we do not know if it can ever be calculated, seems to be
the bound, after which some sort of hyper-impredicativity starts — when we come closer
to IT, — C'A, the ordinals explode.

We think, that this analysis is important, For instance, if we are playing around with
Martin-Lof’s type theory, we can find out, how different concepts change the strength of
it.

Let us therefore have a look on the landscape of Martin-Lof’s type theory, seeing,
what is known about it. We follow the introduction of [Pal92]. Aczel has shown in [Acz77]
that Martin-Lof’s type theory with one universe but no W-type has strength [ID;| = ¢,0.
Martin-Lof’s type theory with n Universes has strength |1 D,,| = «,, with ag := €g, a1 1=
®a, 0, (see in [Fef82b]), and if we have infinitely many universes, but still no W-type, the
theory (M L,,) has strength [TD.,| = Iy, the last result due to Beeson and Feferman (see
remark I1.6(iv) in [Fef82b] or [Bee85]). The extensional version, (ML) has the same
strength (see Beeson, [Bee85]). This is astonishing, since these are all predicative bounds.
As soon as we add the W-type, the proof theoretical ordinals become impredicative.
Palmgren has shown in [Pal92] (part of his thesis [Pal91]) the following results: If we have
type theory with one universe and an induction principle on it, we have |ML}| > |ID|.
Adding extensionality gives the same strength, and if we have infinitely many universes
with induction principles, we have |[M LS V| > |ML.,V| > |ID.,|. For intensional type
theory with one universe and W-type, he has shown |ML{W| > |[ML,W| > |(A} — CA)],
but conjectured, that the strength will certainly far exceed this bound.

The strength we prove, is in fact far bigger, it is slightly bigger than the strength of
|KPi| = |(AY—CA)+ (BI)|. Until recently (work of Rathjen, [Rat90], [Rat91a], [Rat92],
see also [Buc93], [Sch91la], [Sch91b], [Sch92b]), K Pi has been essentially the strongest
theory, for which proof theoretical analysis could be carried out. For the author, |K Pi|
is an ordinal which seems to be an ordinal of significance similar to that of I'y. It is quite
difficult, really to exceed this strength, and most of mathematics can be carried out within
theories of this strength. Feferman stated in remark I, 13.2 and 4 of his paper [Fef75],
that Martin-Lof’s type theory with one Universe and W-type, as well as his theory Ty,
which is of strength K Pi, are in accordance with Bishop’s approach (see [BB85]) — all the
constructive mathematics can be carried out in these theories. So the result proven here
underlines this arguments, and shows, that Martin-Lof’s type theory is important for the
foundations of Mathematics. (For more discussions on the constructivism as an approach
towards better foundations of mathematics, see [Bee85], [DT88], [Fef79], [Fef82aland for
discussions on intuitionism [Tro73]) It also justifies the use of it as basic theory for proof
development systems.



Precisely we calculate the proof theoretical strength of intensional Russel-, exten-
sional Tarski- and extensional Russel-version of Martin-Lof’s type theory with one Uni-
verse and the W-type, M LiWx, ML{Wy and M LEWg, namely |ML\Wg| = |M LWy | =
|MLSWg| = |U,cN K Pi;| = ¥0,Qs1,. Here Russel-version stands for the formulation
a la Russel of the universe, Tarski-version for the formulation a la Tarski, described in
[ML84].

The thesis is organized as follows: In the first part, we introduce Martin-Lof’s type
theory and Kripke-Platek set theory. In chapter 2 we give an introduction on Martin-
Lof’s type theory. To make a precise definition of the substitution, we introduce sets
of r-objects, g-terms, g-types, r-terms and r-types, which should contain all the terms
and types occurring in Martin-Lof’s type theory (g-terms and g-types correspond to the
Tarski-formalization, r-terms and r-types to the Russel-formalization). These concepts
will be needed afterwards for the interpretation of M L{Wy in K Pif. We define then the
theories ML Wy, MLSWyp, MLiWg, ML{Wg. In chapter 3 we compare the Tarski and
the Russel-versions and in chapter 4 we introduce the Kripke-Platek set theories, we need.

In the following second big part, we prove |M L{Wrp| < 1, Q. by interpreting M LW
in set theoretical systems of Kripke-Platek style, called K Pi* and K Pi . This embedding
is a quite general and flexible method, which can be adopted to variations of Martin-Lof’s
type theory. In chapter 5, we develop, how to interpret terms and types in K Pit. Types
will be introduced as sets of pairs of terms, which are considered to be equal in that type.
In this chapter, we really see, how W-type and the Universe extend the proof theoretical
strength of Martin-Lof’s type theory.

In chapter 6 we first prove essentially, that the interpretation is correct, that is

it ML{Wr b a: A then KPi" + pair(a,a) € A*

Further we conclude, that the extended version |M LWy ;| can be interpreted as well.

In chapter 7 we interpret sentences of Arithmetic A as A in M L{Wy and prove, that
for arithmetical sentences A from ML{Wp F a € A follows KPit + A. Tt follows,
|M L{Wr| < |KPit|. Since every proof can be interpreted actually in K Pi;} for some n,
and in the essential lemmas K Pi* can be replaced by K Pi, we conclude, that

MLWrFreA = InKPif +A.

In the third part we show, that M L{Wpg proves the well-ordering up to vq,Q;, for
each n < w, again using very flexible methods. Since M LWk is a subsystem of M LWy
follows that the upper bound is a lower bound as well.

In chapter 8 we actually carry out the well-ordering proof. The hard work is, having
introduced a concept for the power set of IN, to define W (X), some sort of very strong
inductive definition on ordinals. Having introduced these two concepts, we can use well
known techniques for carrying out such strong proofs in systems of analysis. We will
refer to a version, ([Buc90]) where we need only some properties of an ordinal denotation
system, such as the Bachmann property, which makes relatively clear, what is going on,
and avoids, having to deal too much in this chapter with ordinals.

The properties of this denotation system, which can all be proven by using only induc-
tion on NNV, are verified in the very technical chapter 9. This chapter is only important to
check, that the properties are valid, the proofs are not necessary for understanding, what
is going on in Martin-Lof’s type theory.

In chapter 10 we compare the system introduced in chapter 9 with the system [Buc92b].
The first one we used for the well ordering proof, in the latter we expressed the upper



bound. We show, that lower bound and upper bound are the same. This chapter rewards
the hard work of chapter 9, to do all in a system containing the Veblen-function. Without
this function, the work would have been far easier, but it is quite complicated (see for
instance my Diplomarbeit [Set90] or now the new work [Sch92a] ) to express the Veblen-
functions within a system, that does not contain them.

Future research: We did not prove, but hope to do it soon, that all arithmetical
[19-sentences provable in K Pi; can be proven in M L:Wpg as well. There are some ideas,
using the well-ordering proof to do this. From there might follow, too, some bounds
for the fast or slow growing hierarchy (see for instance proof theoretical work on this in
[Sch77b], [Sch92¢|, [BW8T7], [Wai89], [Aradl], [Buc9lb], [BucIlal)

Remark: While the author was finishing his thesis, M. Rathjen has told him, that in
collaboration with E. Griffor independently and in parallel he has found similar results,
although he has not submitted it for publication, yet, or told anything to the author.
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Leeds. It benefited very much from the collaboration of the three universities, since it is
an example for the application of proof theoretical techniques, which have a long tradition
in Munich, on type theoretical systems, on which semantical investigations are carried out
in Oslo, by using the experience in the relationship between proof theory and recursion
theory of Leeds. The author wants to thank D. Norman, H. Schwichtenberg for help and
inspiration, S. Wainer for motivating me very much and especially W. Buchholz, who
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Definition of the Theories



Chapter 2

Definition of the formal system of
Martin-Lof’s type theories

In this chapter we define the Martin-Lof’s type theories, we are going to analyze af-
terwards. After an introduction to it, we define the formal language (definition 2.1). Al-
though this contradicts a little bit the spirit of Martin-Lof’s type theory, we introduce a set
of b-objects, containing all terms and types that will actually occur in Martin-Lof’s type
theory. This approach makes it easier to define substitution, allows to make definitions
for all b-objects and will later be used for the interpretation of Martin-Lof’s type theory
in KPif. The b-objects a very general class of objects containing all terms and types,
b-substitutions, and the concept of substitution (we introduced b-objects for making the
definition of substitution easy). Afterwards we define (definition 2.3) g-terms, g-types, g-
context-pieces, g-contexts, g-substitutions, g-judgements and g-statements, which contain
all the terms, types etc. which occur in the Tarski-version of Martin-Lof’s type theory,
and the corresponding r-terms, r-types (definition 2.4), terms and types occurring in the
Russel-version. Next we define, what derivability in the four theories M LWy, M LWk,
M LWy and M L§Wg (definition 2.5) and give a few remarks.

Martin-Lof’s type theory is a system used to formalize constructive mathematics,
as used informally in [BB85]. One of the key ideas was, that, constructively seen, proofs
and programs are the same, as are propositions and program specifications. In Martin-
Lof’s type theory we have only one concept for propositions, program specifications and
sets, the types. The advantage of this concept is, that it makes clear, why the Curry-
Howard terms for realization of a proposition A — B and a proposition Vx € N.B are both
A-terms: a realization of A — B maps any element of the proposition A to an element of
the proposition B, and realization of V& € N.B is a function mapping elements n of the
set N to elements of the proposition B(n) — they can both be represented in Martin-Lof’s
type theory by the same concept Iz € A.B: elements of this type are functions, mapping
elements r of the type A to elements of the type B(r).

A(x) depends on the choice of x, therefore we need in Martin-Lof’s type theory types,
depending on variables. This concept makes obvious, why, if we apply a Curry-Howard
term for the formula Vx € A to an element r of type IN, we get a Curry-Howard term
of the formula A[z/r|, a formula, which depends on the actual choice of r. The rules are
designed in such a way, that this is naturally explained.

Martin-Lof’s type theory differs from other mathematical theories in the sense that it
has no fixed set of terms and types, but they are introduced during the derivation process.
Therefore we have additional judgements of the form A type and in the rules we need
premises which guarantee, that the type-part of the conclusion is a type. For instance to



conclude that i(a) : A+ B (where A+ B is the disjunctive union of the types A and B or,
considered as a proposition, A + B stands for AV B) the premise a : A is not sufficient,
we need additionally a premise B : type.

Terms, considered as programs, can be evaluated. If we reduce a term, we want to
get an equivalent term, equivalent within the type, therefore we need an equality on the
types.

In the formalization of [DT88] statements of Martin-Lof’s type theory are of the form
[' = © where I' is a context and © is a judgement. A context is a sequence of assumptions
xo : Ao, ..., Ty » A, where z; are free variables, A; are types with free variables among
{zo,...,2;_1}. Judgements are of the form A type, t : A, t = s: A (t are equal elements
of the type A) and A = B (A and B are equal types).

We have four sorts of rules: the first sort is the sort of type introduction rules for
introducing types (in the extensional case we conclude here that certain types are equal,
in the intensional version we conclude statements “A : type”). The second sort is the sort
of introduction rules for introducing the canonical elements of a type, the elements formed
by a introductory constructor of the type. Next sort is the sort of elimination rules, rules
for deriving from some elements of one type elements of another type,(for instance the
induction or primitive recursion for the N type, the induction or recursion over trees for
the W-type, application for the II-type). Last sort is the sort of equality rules, which
are rules for conversion of a term, we get by introducing and immediately eliminating an
element of a type. For propositions, this last sort corresponds to cut elimination, for sets
it corresponds to the evaluation of a term. Additionally we have some general rules, some
sort of structural rules.

The types, we have in this version are the following:

The type N, corresponding to the natural numbers.

the type Ny, corresponding to a set with k elements, where N, is the empty type or
the falsum for the propositions, having as elimination rule the ex-falsum-quodlibet, N;
corresponds to the always true formula, Ny is the type of booleans. The types Ni, k > 0
have case distinction as elimination rule.

the type Ilz € A.B, which corresponds to the formula Vo € A.B(z) or considered as a
set to the set of functions mapping z : A to an element of B(z).

the type Yx € A.B, corresponding to the formula 3z € A.B(x), if x ¢ FV(B) to the
formula A A B or as a set to the set of pairs {pair(z,y)|x: A,y : B(x)}.

the type A + B, which corresponds to the formula A V B, and as a set to the disjoint
union of A and B.

the type I(A,r,s) which corresponds to the formula r = s for r, s : A.

the type Wz € A.B, which corresponds to a set of trees with branching degrees B(x)
for x : A.

Universe U, which is a type, closed under all other operations that create types.

For a more general introduction to Martin-Lof’s type theory the reader might refer to
Martin-Lof’s fascinating monograph [ML84], or the books [Bee85] and [DT8S].

There are two versions of Martin-Lof’s type theory, an extensional and an intensional
version. The extensional version has additional rules for deriving equalities between types
and between terms. For the formulation of the universe, there are two versions: the
Russel-version (we write ML{Wpg for the extensional and ML:Wpg for the intensional
Russel-version; in the Russel-version the elements of the Universe are types) and the
Tarski-version (we write M L{Wyr for the extensional and M L{Wy for the intensional
Tarksi-version; here the elements of the Universe are indices for types, and, if we have



I' = a: U, we can conclude I' = T'(a) type). For some remarks on these two versions,
see [ML84].

For the formulation of the version a la Russel, we follow essentially [DT88] (an earlier
version of this is [Tro87]) in the version a la Tarski, we remain in the spirit of [DT8S§],
taking rules as defined in [Smi84]. From [DT88|, we only differ a little bit in the exact
notation, and the following aspects:

We add the type Ny, as in [ML84], which can be derived from the other types, but does
not cause any problems, see [DT8S].

We make a-conversion explicit (see the rule (ALPH A), note, that from this rule follows
full a-conversion).

We add some rules to (REF L), which are shown in [DT88] to be derived rules, but only
for a weaker system. We just do not want to bother about deriving again these rules,
since they do not at all cause any difficulties.

At the end of this introduction, having praised a lot Martin-Lof’s type theory, the
author wants to say a few critical remarks to it. One problem is, that the set of rules is
immense, and this makes it difficult to handle it proof theoretically. It seems to be a good
system from the foundational point of few, but it is hard to be analyzed and might be
difficult for the practical use, although various proof assistants are based on it. Another
problem is, that substitution is not very well solved. For this proof theoretical analysis it
was necessary, to introduce the concept of b-objects, a set theoretical concept, which is
not in the spirit of Martin-Lof’s type theory. Additionally, this caused a lot of problems
in the interpretation, which just reflects, the unsatisfactory solution of this detail.

Definition 2.1 We define the formal language of Martin-Lof’s type theory Ly .
We assume some infinite set of variables Vary, = {zME|i € IN}, wherei # j — zME #£
7ML,
JFurther we have the basic symbols
type, =, 5, ,, (, ), =, €.
Constructor symbols are either term constructors or type constructors, , defined as
follows:
We have the 0-ary term constructors 0, r, n, ny (for eachn < k, n,k € IN a new symbol
ni), and ny, (for each k € IN a new symbol ny, );
the 1-ary term constructors: S, i, 7, po, P1;
the 2-ary term constructors: p, sup, R, Ap, +, 7, o, w;
the 3-ary term constructors: D, P, i;
for every n € IN an n + 1-ary term constructor C,,.
the 0-ary type constructors Ny (for each k € IN), N, U;
the 1-ary type constructor T';
the 2-ary type constructors: +, I, X, W;
the 3-ary type constructor: I;

Definition 2.2 (a) To shorten the definition of free Variables and substitution we define induc-
tively a set of b-objects (basic objects), which will contain all terms and types occurring in
Martin-Léf’s type theory, together with the set of free Variables FV (t) for every b-object t .

(BO1) If z € Varyy, then x is a b-object, FV (x) := ().
(BO2) If C is a n-ary constructor symbol, tq,...,t, are
b-objects, then
C(ty---t,) is a b-object,



FV(C(ty---t,)) = FV(t1)U---UFV(t,).
(BO3) Ifx € Varyyg, t a b-object, then
(Ax.t) is a b-object, FV ((Ax.t)) :== FV(t) \ {z}.

The b-terms are defined as the b-objects, except that rule (BO2) is only applied for C being
a n-ary term-constructor.

We write +, + infix (that is (a + b) for +(a,b)) (x)t for \x.t, (z,y)t for Ax.\y.t, (z,y, 2)t
for Az Ay Az.t. Further, if S € {3, 11, W, o, m,w}, Sz € s.t :== S(s, (v)t).

We omit brackets, as long as there is no confusion, using the convention, that the scope of Ax.
is as long as possible, for instance A\x.st should be read as Ax.(st), and s+t+v := s+ (t+v)
similarly for longer sums and for + (and later for other defined operators like —, A).

(b) A b-substitution is a sequence [x1/tq,. .., T, /t,], , where x; € Varyy, t; are b-objects. (r; =
z; is allowed, and in this situation, only the first occurrence of a variable will be relevant)
Ifd=x,...,0p, t =11,...,t,, then [:E/ﬂ = [z /t1, .. xn/t).

If X C Varyg, {ijlg <m} = {ilx; € X}, o <1 <,....0n, then [x1/t1, ..., 2, /t,] \ X :=
(23, /tis oy, [t Similar, we define [Z/1] N X = [Z/t] \ (Varyg \ X).

(c) We define for a b-substitution [z1/t,...,x,/t,] and a b-term s the application of the sub-
stitution to the term, written s[xy/t1,...,x,/t,], having as result a b-term, (we define
s|Z/t] = s[xy/t, ..., xn/tn]), and the relation “s[xzy/ty,...,x,/t,] is an allowed substitu-
tion” (or s[Z/t] is an allowed substitution,).

The definition is by induction on the definition of the b-term s.
Case (B1): If x € Varyy, then

_fx ifx;Fwforalli=1,...,n,
olra /by, /] = {ti if x; = x, (i minimal)

)

and x[x1/ty,. .., T, /t,] is always an allowed substitution.

Case (B2): If C is a m-ary constructor symbol, s1, ..., S, are b-objects, then

C(s1+sm)x1/te, .- xn/tn] = C(s1lxi /e, - xn/taly - o ST/t . 0 /t]),

C(S1y- -y Sm)[T1/t1, ..., xn/ts] is an allowed substitution iff for alli=1,... ,m,
silxi/ty, ..., T /ta] is an allowed substitution.

Case (B3): If x € Varyy, t is a b-object, [z} /t), ..., x, /th,] = [x1/t1, ...,z /t0] \ {2z},
then (Az.t)[x1/t1, ..., ¢n/ts] == Ax. (2 /E), ... 2l [t ),

and (Az.t)[x1/t1, ..., z,/t,] is an allowed substitution,

iff t[zh Jt, . 2l [t ]) is an allowed substitution, and for all i = 1---n', whenever z!; €

FV(t), then x ¢ FV(t}).
(d) We define a-equality as the least relation between b-objects, such that for t,t',t" t; t; b-
objects, x,x’ € Vary :
t=4t.
If t=ot', t'=ot", then t=ot".
If t=,t', then \x.t=,\x.t'.
If ' ¢ FV(Ax.t), t{x/2'] is an allowed substitution, A\x.t=,Ax'.(t[x/z']).
If ti=ut}, C" a n-ary constructor, then C(ty,... t,)=aC(t},...,t).



(e) We will write rs for Ap(r,s) (if r,s are b-objects) (we will need then parenthesis, using the
usual conventions, especially, that the binding of Ax. and Ilx € A. etc. is as long as possible).

Ax B:=AANB:=YM € AB, A — B =11 € A.B, where i is minimal, such that
ML g FV(B).

Definition 2.3 (a) We define inductively a set of generalized terms, called g-terms, which will
contain all terms occurring in Martin-Lof’s type theory, and is a subset of the b-objects:

If x € Varyy, then x is a g-term.

Ifn <k, n,k € IN, then ny is a g-term and if k € IN, then n;, is a g-term.

If r,s,t are g-terms, x,y,z, " € Varyp, © #y # z # x, then 0, r, n, Sr, \x.r, p(r,s),
sup(r,s), i(r), j(r), P(r,s,(z,y)t), Ap(r,s), po(r), pi(r), R(r,(z,y,2)s), D(r,(z)s, (2')t),
Tx €ET.8, ox € 1.8, Wwx € 1.8, r+8, i(r,s,t) are g-terms

Ifne IN andr, s1,...,8, are g-terms, then Cy(r, s1,...,8y,) i a g-term.

(b) We define inductively a set of generalized types, called g-types, which will contain all types
occurring in Martin-Lof’s type theory:

If k € IN, then Ny, is a g-type.

N, U are g-types.

If A, B are g-types, x € Varyy, r, s g-terms, thenllx € A.B, Yx € A.B, Wx € A.B, A+ B,
I(A,r,s), T(r) are g-types.

(c) The generalized context pieces (g-context-pieces) are (possibly empty) sequences
r1 A,z 0 Ay, where xp € Varyy are distinct, and A; are g-types. Var(xy :
A, xn s Ay) i=A{xy, ...,z }. Note that, if T', T are g-context-pieces, Var(I")NVar(T') =
(0, then T, T" (the concatenation of the strings T, ”,” and T") is a g-context-piece.

Further we define the set of generalized contexts (g-contexts), which is a subset of the g-
context-pieces:

The empty string I" is a g-conteat.
If T is a g-context, x € Vary \ Var(l'), A a g-type, FV(A) C Var(l'), then I',z : A is a
g-context.

We define for a g-context-piece I', x € Vary, and a g-term r the relation “t is substitutable
forxz in T'” and Tz /t] as follows:

If T is empty, then t is substitutable for x in T' and U[x/t] :=T.

t is substitutable for x in T')2’ : A if t is substitutable for x in T' and in A and (I',z’ :
Alaft) = Tla/t), 2" (Alz/t)).

(d) A g-substitution is a b-substitution [x1/t1, ..., x,/t,], where t; are g-terms.

(e) A generalized judgement, short g-judgement, is a string A : type or A = B orr : A or
r=s: A, where A, B are g-types, and r,s are g-terms. The set of free variables is FV (A :
type) == FV(A), FV(A=B):=FV(A)UFV(B), FV(r: A):=FV(r)UFV(A) FV(r =
s:A):=FV(r)UFV(s)UFV(A).

We define (A : type)|x/r] := Alx/r] : type, (A = B)[z/r| .= Alz/r]| = Blz/r], (r: A)[z/t] :=
rlz/t] : Alz/t], (r =s: A)[z/t] == r[z/t] = s[x/t] : Alx/t].
A generalized statement, short g-statement, is a string I' = ©, where I is a g-context, © is
a g-judgement.
Definition 2.4 We define inductively the set of Russel-terms, short r-terms, and the
Russel-types, short r-types, which will contain all terms and types occurring in the Russel-
version of Martin-Lof’s type theory, and are subsets of the b-objects:



If n <k, n,k € IN, then ny is a r-term,

if k € IN, then Ny, is a r-term,
if r; are r-terms, n € IN ,then Cy(ro,7r1,...,7) i a r-term,
if r, s, t, are r-terms, x,y,z,x' € Varyyp, t #y # z # x, thenz, 0, r, N, Sr, \x.r, p(r, s),
sup(r,s), i(r), j(r), P(r,s, (z,y)t), Ap(r, s), po(r), pr(r), R(r,(z,y,2)s), D(r, (x)s, (2")1),
Mz ers, Yeers, We ers, r+s and I(r,s,t) are r-terms.

U is a r-type.
If s,t are r-terms, A, B are r-types, x € Vary, then s, llx € A.B, ¥x € A.B, Wx €
A.B, A+ B and I(A, s,t) are r-types.

R-context-pieces, r-contexts, r-judgements, r-statements are defined as the correspond-
ing g-definitions, only replacing g-terms by r-terms, g-types by r-types.
Definition 2.5 Definition of intensional and extensional Martin-Léf’s type theory with
W -type and one Universe. We will in the following define the rules of intensional

(M LWy is the Tarski- and MLy Wpg the Russel-version) and extensional Martin-Lof’s
type theory (M LWy is the Tarski- and M L{Wg the Russel-version), which are of the
form

(Rule) —F1:>911;F®":>9",

where T'y, ..., T, T are g-context-pieces, O1,...,0,,0 are g-judgements (n = 0 is al-
lowed).

Then ML\Wr =T = © is defined inductively by:

If (Rule) is a rule of ML'Wr as above, A is a g-context-piece such that ATy, , ...,
AT, AT are g — contexts, and if MLiWyr = ATy = ©; fori = 1,...,n, then
MLiWrE AT = 0.

Analogously we define MLWy =T = ©. MLSWr T = © and MLiWr +T = ©
is again defined analogously, but we refer to r-judgements, -contexts etc. instead of g-
Jjudgements, -contexts etc.

The rules for ML Wy are listed as the general rules, the rules for intensional Martin-
Lof’s type theory and the intensional Tarski-rules for the universe.

The rules for MLYWpg are the general rules, the rules for intensional Martin-Lof’s type
theory and the intensional Russel-rules for the universe.

The rules for M LWy are the general rules, the rules for extensional Martin-Lof’s type
theory and the extensional Tarski-rules for the universe.

The rules for M L{Wg are the general rules, the rules for extensional Martin-Lof’s type
theory and the extensional Russel-rules for the universe.

We will write © for = © as a premise of a rule.

Rules for Martin-Lof’s type theory

In the following, let A, B be g-types, a,b,r,s,t,r;, s;,1; be g-terms, 0 be g-judgements, T
be a g-context-piece in the Tarski-versions, A, B be r-types, a,b,r,s,t,r;, s;,t; be r-terms,
0 be r-judgements, I be a r-context-piece in the Russel-versions. (So although we state
that Tarski- and Russel-version have many rules in common, in fact the rules are different
in the sense that for the Tarski-version we refer to g-objects, for the Russel-version we
refer to r-objects). Further let x,y, z,u € Varyy. Additionally assume for all rules, that
all substitution mentioned explicitly are allowed. For instance in the rule (N3 ), assume
that si[z/t,y/P(t, so, (x,y)s1)] and A[z/St] are allowed substitutions.




General rules
(Common for all 4 versions of Martin-Ldf’s type theory)

(ASS) A type

A=z A

A type I'=0
(THIN) o

A t=t:A A=A A lype ©A
(REFL) t=t:A t:A A type A=A A type

(SYM) t=t:A A=B

=t""A  t'=t":A A=
(TRANS) =4 _Jr=t 5

t=t"":A

T AlV'=0 =tA
(SUB)  “Forimen/i

A= B type =t=t":A
(REPL].) [z /t]= Blz/t|=Blz/t']

z:AlV=s5:B t=t":A
(REPL2) I"[m/t]i?{:ﬂ/ﬂzs[ﬁjﬂ:B[x/t]

(REPL3> A t:;ZB t:t/:tit/:é4:B

(ALPHA) =Al=6  Alype  _sa (if A=A/, t=t')

AN T'=6 A=A’ t=t":A

Rules for intensional Martin-Lof’s type theory

(rules are common for Russel- and Tarski-version)

Type introduction rules

(NF) Ny type (k€ IN)
(NT) N type

T z:A=B type
(I17) MzcA.B ltype

(ZT) :A=B type
SzeA.B type

T z:A=B lype
(W) WzcA.B type



Ty A type B lype
(+7) A+B Type

T A s:A A type
(") I(Agt,s) Lype

Introduction rules

(NPY np: Ny (n<k, nkelIN)

(NT) 0:N ;t—NN

(H[) r:A=t:B x:A=B type
Az.t:Ilx€A.B

Iy A  B[z/s] x:A=B lype
(2 ) p(s,t):Xz€A.B

I s:A  t:Blx/s]|>Wz€A.B x:A=B typ@
(W ) sup(s,t):WzeA.B

(+I) ssA  Alype B lype s:B A type B type
i(s):A+B j(s):A+B

Elimination rules

E N sitAlx/ig](t=0...k—1) x:Ny=A typ(i
(Vi) Cr(t,50, 50 1) ALz /1] (k € IN)

(NE) N s0:A[2/0]  @:Ny:Alz/z]=s1:A[z/Sz]  =:N=Alz/z] Type
P(tﬂg()?(xvy)sl):A[z/t]

E to:Illx€ A.B t1:A x:A=B typ@
(H ) Ap(t(),tl):B[x/tl]

(ZE) rYzcA.B  x:A=B lype rSzcA.B  x:A=B lype
po(r):A p1(r):Blz/po(r)]

tg:Waz€A.B z:A,y:(B—=Wz€A.B),z:Ilve B.Clu/Ap(y,v)]=t9:Clu/sup(xz,y)]

FE u:Wax€A.B=C typ(i
(W ) R(t()?(xvyvz)tQ):C[u/tO]

(+E) to:A+B  m:A=41:C[z/i(z)] y:B=>t2:C[z/j(y)] =A+B=>C lype
D(to,(z)t1,(y)t2):Clz/to]




(IE> to:l(Ajti,t2)  titA 1A
t1=t2:A

Equality rules

(N=) siiAlz/iy)(i=0...k=1) @:N=A type (n <k, n,k € IN)

Cr(nk,50,--5k—1)=8n:Alx/ng]

(N:) 50:A[z/0]  @:N,y:Alz/z]=s1:Alz/Sz] x:N=Alz/x] type
0 P(0,50,(z,y)s1)=s0:4[2/0]

(N:) t:N  s0:A[z/0]  x:N,y:Alz/z|=s1:Alz/Sx] x:N=A[z/x] typ@
P(St,s0,(z,y)s1)=s1[z/t,y/P(t,s0,(z,y)s1)]:Az/St]

(H:) Ax.to:Ilz€cA.B  t1:A x:A=B typ@
Ap(Ax.to,t1)=to[x/t1]: Bz /t1]

—\ plrs)XzcA.B A lype
(E ) po(p(r,s))=r:A

= p(r,s):Xz€A.B xz€A=B type
(El ) p1(p(r,s))=s:Blz/r]

= t:Xx€A.B
(2 ) t=p(po(¢),p1(t)):Xz€A.B

r:A s:(Blz/tg] =Waxz€A.B) z:A,y:B—>Waz€A.B,z:(Ilve B.Clu/Ap(y,v)])=t:Clu/sup(z,y)]
(W=) wWacA.B=>C LYPes:a=B TYpe
R(sup(r,s),(z,y,2)t)=t[x/r,y/s,2/ Xv.R(Ap(s,0),(2,y,2)t)]:Clu/sup(r,s)]

(If v € FV(s)U FV((z,y,2)t))

(_'_:> to:A  x:A=11:Clz/i(xz)] y:B=t2:C[z/j(y)] 2€A+B=C typ@
0 D(i(to),(w)r(0)i2)=t1 [/ o]:C[=/i(to)]

(+3) to:B  w:A=t1:Clz/i(z)] y:B=12:C[z/j(y)] 2€A+B=C lype
1 D(j(to),(x)t1,(y)t2)=t2[y/t0]:Clz/j(to)]

- to:l(At1,t2) A type
([ ) : tozlftf(A,tl,tQ)

Intensional Tarski rules for the universe

Tarski type introduction rules for the universe

(U") U type
1 a:U a=a’:U
(%) 7@ type  T=1(@)

Tarski introduction rules for the universe



n,:U (k€ IN)

n:U

alU z:T(a)=b:U

TxEa.b:

U

a:lU x:T(a)=bU

ox€a.b:

U

a:U  x:T(a)=b:U

wxr€a.b:U

a:lU_ b:U
a+b:U

a:l tT(a) s:T(a)

Z(a,t,s):U

Tarski equality rules for the universe

T(ng) = Ny (k€ IN)
T(n)=N

a:U z:T(a)=b:U
T(rzx€a.b)=IlzeT (a).T(b)

a:U x:

T(a)=b:U

T(oxz€a.b)=

YzeT (a). T(b)

a:lU z:T(a)=bU

T(wz€a.b)=WaeT(a).T(b)

a:U

b:U

T(aFb)=T(a)+T(b)

a:U  t:T(a)

s:T(a)

T(i(at,s))=I(T(a),t,s)

U type

Russel rules for the universe

Russel type introduction rules for the universe

AU A=A"U

A type A=A

Russel introduction rules for the universe



(V%)) Ne:U (k<w)

(NP N:U

Ul A:U A= B:U
(Ix")  “eiso

U,1 AU A= B:U
X)) “smaso

U1 A:U A=B:U
(Wr")  “eeino

U,I : :
(+7") %

U, 1 AU tA A
(ZR ) i(A7t,s):Us



Rules for extensional Martin-Lof’s type theory
(Common for both M LWg and ML{Wr)

Extensional type introduction rules
(NI) and (NT) as before. Additional

(HT,:> A=A"  ¢:A=B=B'
[Mz€A.B=Ilz€A’. B’

(ZT,:) A=A"  x:A=B=B'
Se€A B=zcA.B’

(WT’:) A=A" x:A=B=B’
WaxeA.B=WzxzcA'.B'

T=y A=A B=B
+7) Se=ans

([T,:) A=A" t=t':A s=s":A
I(Ajt,s)=I(A"t',s")

Extensional Introduction rules

(NL) as before.

(NT=) 0=0:N =t

(IT1=) v:A=t=t"B _z:A=B type
Az.t=Xa.t":Tlz€A.B

1= s=s":A t=t':Blz/s] x:A=B type
(E ) p(s,t)=p(s’,t'):Xx€A.B

(WI’:) s=s""A t=t":Blx/s]|>Wz€A.B x:A=B type
sup(s,t)=sup(s’,t'):WzeA.B

(+1=) s=s"A A lype B type s=s"B A type B type
i(s)=i(s'):A+B i(s)=j(s'):A+B

Extensional elimination rules

The rule intensional elimination rule (I¥) and in addition:

E= t=t':N,  s;=s}:Alx/i](i=0..k—1) x:Np=A type
(Ne™) Cr (650, 55— 1)=Ch (V5,1 A /1] (k€ IN)

(NE’:> t=t':N so=s(:A[z/0] x:Ny:Alz/z]=s1=51:A[z/Sx] x:N=>Alz/x] type
P(t,so,(:z;y)sl):P(t’,sg),(z,y)s’l):A[z/t]

(HE7:) to=t:llz€A.B t1=t|:A x:A=B typ@
Ap(to,t1)=Ap(ty,t]):Blz/t]



(2P=) r=r’:Sz€A.B __ xz:A=B type r=r:Yz€A.B x:A=DB type
po(r)=po(r'):A p1(r)=p1(r’):Blz/po(r)]

to:t():chEA.B z:A,y:B~>W:CEA.B,z:l'I’UEB.C[u/Ap(y,v)]):>t2:tl2:C[u/sup(x,y)]
u:Wax€A.B=C type
R(to,(x,y,2)t2)=R(ty,(x,y,2)t5):Clu/to]

(Wh=)

(_‘_E,:) to=ty:A+B  w: A=t =t:Clz/i(z)] y:B=>te=t4:Cz/j(y)] zA+B=C type
D(to,(@)t1,(y)t2)=D(ty,(x)t},(y)t5):Clz/to]

Extensional equality rules

All the intensional Equality rules, in addition

(Hﬁ) )\x.Ap](t;tl,_:[U:;iﬁi'ﬁfeA.B ]fl' ¢ FV(t)
Extensional Tarski rules for the universe

Extensional Tarski type introduction rules for the universe

All the Tarski introduction rules for the universe.
Extensional Tarski introduction rules for the universe

The rules (n}) and (n') of intensional Tarski version M L\Wr, in addition:

( [7:) a=ad:U  x:T(a)=b=b:U
T nr€a.b=mx€a’.b:U

( [7:) a=ad’:U x:T(a)=b=b":U
o ox€a.b=cx€a’.b:U

( [;) a=ad:U x:T(a)=b=b:U
w wxEa.b=wxca’.b:U

(;I’:) a=a/:U__b=b":-U
a+b=a’'+b":U
(7;17:) a=a":U t=t':T(a) s=s"T(a)
i(a,t,s)=i(a’,t’,s"):U

Extensional Tarski equality rules for the universe
The equality rules of the intensional Tarski version M LWy

Extensional Russel rules for the universe

Extensional Russel type introduction rules for the universe
All the Russel type introduction rules for the universe.

Extensional Russel introduction rules for the universe
((Nk)%’f), (Ng’l) as before

(HU’I’:) A=A"U x:A=B=B":U
R TlzeA.B=Ilz€ A’ .B":.U

(EU’L:) A=A""U x:A=B=B":U
R SxcA.B=XxcA’.B':U

(WU’I’:) A=A"U z2:A=B=B":U
R WxzeA.B=WaxcA'.B':U

(+UJ7=) A=A".U B=B'U
R A+B=A"+B":U

(iUJy:) A=A"U t=t'""A s=s":A
R I(At,s)=I(A"t/,s"):U

Remark 2.6 All the rules of ML YWy are derived rules in ML{Wr.
All the rules of MLYWg are derived rules in M L{Wrg.



Chapter 3

8§

Comparison of the formulation a la
Russel and the formulation a la

Tarski

In this chapter we first prove, that the Russel-version contains the Tarski-version (lemma
3.3). We prove the converse (lemma 3.11) for a little bit extended versions of extensional
Tarski- and Russel-Martin-Lof’s type theory, which we define in 3.4. For the proof the-
oretical strength, this is sufficient, since we can embed the extended Tarski-version in
KPit.

Definition 3.1 (a) Define for C' constructors, ¢p(n) := N, ¢(ny,) := Ni, ¢(m) =11, ¢(0) := 3,
p(w) =W, ¢(i) :=1I, ¢(F) := +, ¢(C) := C otherwise.

(b) Define ¢ : b-object — b-object by recursion on the b-object:

¢(x) =z (x € Varyyp),

O(Cltr, . 1) = S(CN (), .. B(t)), (CT)
P(T'(t)) == o(t),

d(Az.t) == Ax.o(t).

(c) IfT' =1 : Ay, ...z, : Ay is a g-context-piece, then ¢(T') :=x : ¢(Aq),..., 2, : (A,).

(d) If r,s are g-terms, A is a g-type, then ¢p(A : type) := (¢p(A) : type), ¢(r : A) = (o(r) :
9(A)), o(r =s: A) = (o(r) = ¢(s) : #(A)), ¢(A = B) := (¢(A) = ¢(B)).

Lemma 3.2 Assumer,s,t,s; b-objects, x; € Varyr.
(a) FV(t) = FV(o(t)).
(b) If t{xzy/s1, ..., xn/5n] is allowed, then ¢(t)[x1/d(s1), ..., xn/D(Sn)] allowed.
(c) ¢(tlz1/s1, ... xn/sn]) = O()[21/P(s1), -, 2n/d(sn)].

(d) Iftis a g-term, -type, -judgement, -statement, -context, -context-piece, then ¢(t) is a r-term,
-type, -judgement, -statement, -context, -context-piece.

(e) r=as — O(r)=a¢(s)
(f) If r is a g-term and a r-term, then ¢(r) = r.
If r is a g-type and a r-type, then ¢(r) =r.
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Proof: (a) by induction on definition of b-objects, (b), (c) and (e) by (a) and the same
induction, (d), (f) by induction on definition of g-objects.

Lemma 3.3 If M Ly is the Tarski-version of extensional or intensional Martin-Lof’s type
theory, and M Ly is the corresponding Russel-version, then

If MLy =T = 0 then MLg - ¢(I') = ¢(6).

Especially, if the statement is a statement both in M Ly and M Ly, then, if MLy -1 =
0 then MLr T = 6.

Proof:

Induction on the derivation. The general rules follow using lemma 3.2, all the rules, not
dealing with the universe are immediate.

(U?) is trivial, (T7) is obvious. Introduction rules for the universe, e.g. (of): By IH
MLRr F ¢(T') = ¢(a) : U, ML = ¢(I"),x : ¢(b) = ¢(b) : U, therefore MLg - ¢(I") =
¢(ox € a.b) : U, similarly follow the other rules or (o/:=). In the equality rules for the
Universe, both sides of the conclusion are identical, and if the statement is I' = A = B,
we can derive MLy = ¢(I') = ¢(A) : type, and by (REFL) follows the assertion.

Definition 3.4 (a) Let ML{Wry be defined as M LWy, only with the additional rules

(O_E) ocx€a.b:U ocx€a.b:U
a:U z:T(a)=b:U

(,ﬂ_E) mx€a.b:U mx€a.b:U
a:U z:T(a)=b:U

(,wE) wx€a.b:U wxea.b:U
a:U z:T(a)=b:U

-E 7(a,s,t):U Z(a,s,t):U Z(a,s,t):U
(Z ) a:U s:T(a) t:T(a)

(b) Let ML§Wgry be defined as M L{Wg, only with the additional rules

(EE) Yxz€eA.B:U Yxz€eA.B:U
U AU r:A=B:U

(HE) IIzcA.B:U Ilx€cA.B:U
U A:U :A=B:U

E WaxeA.B:U WaxeA.B:U
(W)
U A:U r:A=B:U

() L A

(IE> I(A,s,t):U I(A,s,t):U I(A,s,t):U
U A:U s:A t:A

Remark 3.5 If ML{Wyry =T =0, then MLWgry F o(I') = ¢(0).
Proof:
As 3.3.



Lemma 3.6 In MLiWy, MLWy, MLSWyy, MLiWgk, MLEWg and MLEWg

Me:Al"=0 I'=> A=A
ae: A TV=40

is a rule, derived from the General rules only.

Proof:
Let y be a fresh variable. Then by (THIN) Iy : A",z : A,T' = 6, by (SYM),
(TRANS) (REFL) T = A type, 'y : A =y : A and ',y : A’ =y : A, By (SUB)
Lyy: AT [z/y] = 0lz/y], by (THIN) and (SUB) I';z : A',I" = 6. (eventually we need
some (ALPHA), to make 0[z/y][y/z] is allowed and 0[x/y|[y/x] = 0, the same for I".
Definition 3.7 (a) Define for C' constructors, (N) :=n, ¥(Ny) := ny,, v(II) :== 7, Y(X) =0,
Y(W) i=w, (I) :=1, P(+) = T, ¥(O) := C otherwise.

(b) Define 1) : b-object — b-object by recursion on the b-objects:

U(z):=x (x € Varyyg),
V(Cltr, .. tn) = P(C)(O(t), - -, d(tn)),
(Az.t) == Ax.ap(t).
(¢) Define the function p : b-object — b-object by recursion on the b-objects:
p(Sz € r.s) =Sz e p(r).p(s) (S eI W)
p(r+s) == p(r) + p(s),
p(L(r,s,1)) == 1(p(r),¥(s), ¥ (1)),
p(C) :=C for C € {N,N;, U},
p(t) :=T((t)), otherwise.

(d) If T'=21: Ay, ..., 2, 0 A, is a g-contezt-piece, then p(I') := 1 : p(A1),. .., zn : p(Ay)

(e) If r,s are g-terms, A is a g-type, then p(A : type) = (p(A) : type), ¢(r : A) = (P(r) :
p(A)), p(r=s: A) = (P(r) = ¥(s) : p(A)), p(A = B) := (p(A) = p(B)).

(f) Define p : b-object — b-object by recursion on the b-objects:

w(T(sz € r.5)) = ¢(s)x € u(T(r)).u(T(s)) (s € {o,m w}),
p(T(r+s)) == p(T(r)) + u(T(s)),

(i(r,5,1)) = L(u(T(r), 5,1,

(T(C)) :=(C) for C € n,ny,

(Sx er.s) =Sz € p(r).uls) (Se{SI1,W})

(r+s) = p(r) + u(s),

(I(T, 5, t)) = ](M<T)7 8, t),

(C) :=C for C € {N, Ny, U},

(

Lemma 3.8 Assumer,s,t,s; b-objects, x; € Varyy.

(a) FV(t) = FV(¢(t)) = FV(p(t)) = FV (u(t))-

(b) If t{xy/s1,...,2,/5,] allowed, then
D(@)[x1/P(s1), - - /(8]
p(t) e /e(s1), - w0 /P (sn)],
p(O)x1/P(s1), - 2n /P (sn)]

are allowed.



(c) If t is a r-term, then (t) is a g-term.
If t is a r-type, then p(t) is a g-type.
If t is a g-type, then u(t) is a g-type.
If t is a r-term, then p(t) = p(T(Y(t))).

(d) If t,s; are b-objects, then (t[x1/s1,...,Tn/sn]) = V(t)[x1/0(51), ..., 20/ (50)].
t),

)

—~

If t is a g-type, s; are g-terms, then p(u(t)) = p
ptlea/se, . an/sn]) = p(u(@)[z1/51, . 20 /50
If t is a r-type, s; are r-terms, then p(t[z1/s1, ..., xn/80]) = p(p(t)[x1/P¥ (1), - -+ 20/ (80)])-

(e) If t is a g -judgement, -statement, -context, -context-piece, then p(t) is a r-judgement, -
statement, -context, -context-piece.

(f) r=as = V(r)=a0(s), p(r)=ap(s), p(r)=au(s).
(9) If r is a g-term and b-term, then ¥(r) =r.

~—

If r is a g-type and b-type, then p(r) =r.

Proof: (a) by induction on definition of b-objects, (b) by (a) and the same induction.

(c) follows by induction of b-objects, g-types, by the first two ones, and by induction
on rterms.

(d): The first assertion is easy by induction on the definition of b-objects. The second
is shown by induction on the definition of p(t). The third follows again by induction, the
fourth one follows using the third and first one.

(e), (f), (g) by induction on definition of the different objects.

Lemma 3.9 Let MLy be ML\Wr, ML{Wy or MLsWry and T, T be g-context-pieces,
a,b,t g-terms, A, B g-types, x a variable. The following applies:

(a) f MLy VT = s: A, or MLy =T = s=1t: A then MLy =T = A type.

(b) If MLy =T = Sz € A.B type (S € {E,1I,W}), then MLy FT' = A, MLy +T,y: A=
Blz/y] type, for ally € Vary \ X for some finite set X .

(¢) If MLy =T = A+ B type then MLy =T = A type, MLy =T = B type.
(d) If MLy =T = I(A,b,c) type, then MLy =T =b: A, MLy T = ¢: A.
(e) If MLy =T = T(b) : type then MLy =T = b:U.
(f) f MLy FT' = A= B, then MLy =T = A type, MLy - T = B type.
(9) If MLy =T,z : A,T" = 0 then MLy =T = A type.

Proof: We first add the rules

AT =B type =t=t":A
(REPLla) [w/t,1"[z)¢]= Blz/t] type

and

(ALPHAL) 4B if A=, A



and in the extensional case and in M L{Wr ;; additionally the intensional rules, and remove

the (REFL)-rules
A=A t: A

A type A type

If for this calculus the theorem is provable, then this calculus is equivalent to the original:
If we have a proof in the original calculus, then embed it into the calculus, by applying,
whenever we need the removed rules the weak inferences. If we have a proof in the new
calculus, the result is a proof in the original calculus, since we only added derived rules.

Now induction on the length of the derivation:

In the cases (ASS), (THIN), (REFL), (SYM) and (TRANS) follow trivially using
the IH.

In (SUB) the difficulty are the the second conclusion in the cases (b): let the conclusion
be for instance I', I'[x/t] = (X2’ € A.B)[z/t]. By IHI',I",y : A" = B'[2//y| : type for
y & X, therefore I', [z /t],y : A'[z/t]| = B'[2'/y|[z/t] for x # y, v ¢ X. (the substitution
is allowed) Then for y ¢ XU{z}, if v = 2’ or v ¢ FV/(B) follows (X2’ € A.B)[x/t] = X2’ €
Alx/t].B and we have the assertion, otherwise z’ ¢ FV(t) and B2 /y|[z/t] = Blz/t][z'/y].

In (REPL1) the assertion follows since by IH we have I' = ¢ : A and (SUB) or using
(REPLla).

In (REPLla), we argue as in (SUB) .

In (REPL?2), the assumption follows by (SUB) and IH.

(REPL3), (ALPHA) follow by IH.

The type introduction rules and the introduction rules are immediate, in the elimination
rules we need (SUB), and for (X£) we need one application of (3¥), and in the equality
rules we need the introduction rules and (SUB).

In the type introduction rules introduction rules and the equality rules for the universe
nothing is to prove or the assertion is easy by IH.

In the extensional type introduction rules, for (IT7=), (X%=) and (W7=), the first
part is easy by the intensional type introduction and IH for the second part we have
by IH z : A = B’ type, and now use 3.6, (where we replace the argument using one
of the removed rules by the IH), the extensional introduction rules are immediate, the
extensional elimination rules follow as the introduction rules, (IT7) follows by IH and in
the extensional introduction rules there is nothing to prove. In the rules of 3.4 (a), there
is nothing to prove.

Lemma 3.10 (a) MLWry FT = r:U , then MLWrpry T = T(r) = u(T(r))

(b) ML§Wry BT = A type , then ML{Wpy 1T = A= u(A)
Proof:

(a): Induction on the definition of r b-object. If for instance M LWy T = ox € a.b:
U, then by the rules of 34T = a: U, 'z : T(a) = b: U, by IHT = T(a) = u(T(a)),
Loz T(a) = T(b) = u(T(b)), by extensional type introduction follows the assertion,
similarly for the other terms, for which p(7°()) does something.

(b) Induction on length of the type. Consider for instance the case ML{Wr - T' =
Ilz € A.B type, then by 3.9 ' = A type, I,y : A = Blxz/y| type, by IHT = A = pu(A),
'y : A= Blz/y] = n(Blx/y]), by extensional type introduction and (ALPHA) follows
the assertion, similarly for the other types, but the T'(t)-type.

If I' = T'(t) : type by 3.9 we have I' = ¢ : U, and by the (a) follows the assertion.
Lemma 3.11 If ML{Wgry F T = 0 then ML{Wry F p(I') = p(0).

Especially, if I' = 0 is a statement of both M L{Wgy and ML{Wr s, then we have:

If MLEWry b T = 0 then MLSWyy - T = 6.



Proof: Induction on the derivation.

In most rules, the assertion follows by the same rules.

Difficult rules: (SUB), (REPL): Use 3.8 (d), 3.10 and 3.6.

Equality rules and extensional equality rules: use for the substitution part the same
argument.

Second and third rule in (U?): we conclude T'()(A)), and using 3.10 and an easy
argument follows the assertion.

Universe introduction rules (possibly extensional): easy.



Chapter 4

Definition of KPi

In this chapter we motivate Kripke-Platek set theory,and define the language and the-
ory.

Kripke-Platek set theory is the result of omitting in axiomatic set theory the power set
axiom and restricting the separation and collection axioms. In the ordinary separation
axiom 3b.b = {x € a|é(x)}, if ¢(z) = Jy.¢(x,y), the quantifier refers to all sets, even b
itself — we have self-reference. If we restrict separation to Ag-formulas, e.g. ¢ = Jy €
c(x,y)} with ¢ quantifier-free, the quantifiers refer only to subterms of ¢ (here ¢). Then
we can assign an ordinal level(b) to b in such a way, that the validity of ¢(x) for x € a is
determined by all sets of level less than b (in our case level(b) = max{level(a),level(c)}).
We have no self-reference. The collection axiom need to be restricted to Ag-formulas
as well. We can use the method called ramified set theory, to analyze the theory proof
theoretically.

The resulting theory is K Pw which is examined in [Bar75)(more precisely, Barwise
examines K PU, KP with urelements, K Pw is K PU with no urelements) In order to
have stronger theories, Jager added in [Jag79] a predicate Ad(u) and axioms, expressing,
that Ad(u) means u is admissible, a transitive inner model of K Pw, and further axioms
claiming the existence of certain admissibles. The step to the next admissible corresponds
to the step to the next inductive definition and will correspond in Martin-Lof’s type theory
to the building of one further nested W-type. In some of his theories, Jager restricted the
Aq collection axiom and the foundation axiom, to have lower proof theoretical bounds.

We interpret M LWy in K Pit, K Pi, theories which are slight extensions of the Jager’s
theory K Pi, developed in [J&g79] and analyzed proof theoretically in [Jag83] and [JP82].

For further proof theoretical investigations of Kripke-Platek set theories, the reader

might refer to [Jdg86|or [Poh82].

Definition 4.1 Definition of Kripke-Platek set theory:

(a) Let Lipbe the classical first-order language, with terms being variables, atomic formulas
beingu € v, ~(u € v), Ad(u), ~Ad(u). The set of Variables should be Vargp = {uk?}i € N}

(a meta-set), ul" # ulP fori# j.

The formulas are built from atomic formulas by A, V, ¥, 3. We define =A by the deMorgan’s
laws. The quantifier in Vx.¢ (3x.¢) is bounded, if ¢ of the form x € v — B (v € v A B)

with x # v. A Ag-formula is a formula with no unbounded quantifier.
We abbreviate

A— B:=((-A)V B),

Vrev.B:=Vr.x ev— B,

Jr € v.B:=3x.(r € v A B),
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(u=2v):= (Vo €uzr cv)A (Ve €v.r €u)),

ué¢v:=-(u€v),

tran(u) :==Vr € uVy € .y € u,

infinite(u) == 3x € u.(r =) AVe € u.dy € ux € y.

Y a formula, then " means the replacing of every unbounded quantifier Vv by Yv € u and

Jv by dv € u.

(b) Definition of axiom schemes:

(Ext) VeNyVzao =y — (v €z —y€z2)A(Ad(x) — Ad(y))
(Found) VZ[Ve.(Vy € .0(y, 2) — ¢(x, 2)) — Vo.o(z, 2)]
(¢ an arbitrary formula )
(Pair) VeNy.dzox € z Ny € .
(Union) Vr.dzVy € z.Vu € y.u € 2.

(Ag — sep) VZNVw. 3y Ve € y.(z € w A ¢(x,2)) ANVx € w.gp(zx,2) — x € y
(¢ a Ao-formula).

(Ag — coll) VZVw.Vr € w.3y.é(x,y, 2) — Jw' Ve € w.Iy € w'.¢(x,y, 2)]
(¢ a Ag-formula ).

(Ad.1) Va.Ad(z) — tran(x) A Jw € z.infinite(w).
(Ad.2) Ve Vy. Ad(x) N Ad(y) = x €yVr=yVyE .
(Ad.3) V. Ad(z) — ¢*,
(¥ an instance of (Pair), (Union), (Ao-sep), (Ao-coll) ).
(Lim) Va.Jy. Ad(y) Nz € y.
(inf) dz.in finite(x).
(+) J2.Ad(z) AVz € 2.3y € 2. Ad(y) ANz € y.
(4+n) Ay, .. o1, 2.Ad(2)A

(Vo € 2.3y € z.Ad(y) N x € y)A.
Ad(xy) A -+ N Ad(zp—1)N.

ZETINTLEX9 N N\ Tp_o € Tp_1.

(¢c) ES is the theory (Ext) + (Found) + (Pair) + (Union) + (A¢-sep) + (inf)
K P is the theory (Ext) + (Found) + (Pair) + (Union) + (Ag-sep) + (Ag-coll)
KPuw is the theory ES + (Ag-coll) = KP + (inf)
K Pl is the theory ES + (Ad.1 - 8) + (Lim) .
K Pi is the theory ES + (Ad.1 - 3) + Lim + (Ag-coll)
(= KPl + KPw).
K Pit is the theory ES + (Ad.1 - 8) + (Lim) + (+).
K Pit is the theory ES + (Ad.1 - 3) + (Ag-coll) + (+).

ES is a weak basic theory, KP is Kripke-Platek set theory without infinity aziom, K Pw is
the usual Kripke-Platek set theory (without urelements but with infinity) K Pl is a theory
claiming the existence of infinitely many admissibles, but the model itself need not be an
admissible. A model of K Pl is is Lorec. K Pi formalizes the existence of infinitely many ad-
missible, and the model itself need to be admissible. Its model is Ly, where I is an admissible
fized point of the enumeration of the admissible, the first recursive inaccessible. KPit is a
theory which formalizes the existence of I and and infinitely many admissibles above I and

15 modeled by Lgﬁcw, and K Pi} expresses the ezistence of n admissibles above I, modeled by
LQrec .



Definition 4.2 (a) pair(z,y) = {{z},{z,y}},
tripel(z,y) := pair(x, pair(z,y)).

(We use this notation, to distinguish pair from the coding of pairs in the natural numbers).

(b) On should be the class or ordinals. (a € On is a A;-predicate).



Part 11

An upperbound for the proof
theoretical strength of Martin-Lof’s
type theory
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Chapter 5

Interpretation of terms and types

In this chapter, after an introduction, how to interpret Martin-Lof’s type theory in
Kripke-Platek set theory K Pit, we formalize g-terms in it and introduce the reduction
relation — 4. (5.1), and prove some lemmata. Then we introduce the concept, how to
interpret types as X functions. (5.7), and define the interpretation of the types, first for
all but the Universe (5.8), and after that we give the definition of U, which is needed for
the interpretation of U and T'(a) (5.9).

But let us start with an introduction in how to interpret Martin-Lof’s type theory in
K Pi". The basic idea is to interpret a type as the set of those terms, for which we can
prove in Martin-Lo6f’s type theory, that they belong to the type: (T'erme; should be the
set of closed g-terms.)

A A ={teTerma|MLiWrFt:A}

The problem is, that in this definition ¢ € A* does not give any information about the
validity of the formula represented by A. We replace this definition by a set of terms,
which are introduced by an introductory rule. An example might be (Ax B = 3z € A.B,
where x ¢ B, we take this example to avoid treating dependent types now)

Ax B +— (Ax B)" :={p(a,b) € Termcila € ANb € B},
but since we have reduction of terms, we have to replace this definition by
(A x B)* := Compl({p(a,b) € Terme;la € ANb € B})
where

Compl(u) := {r € Terme;|3s € u.s in normal-form A r—,.q4s}

The next task is to treat equality. We could treat this by saying, ¢ and t’ are equal if
they have the same normal-form. But to make sure, that we do not get any nonsense like
t = t', where t—,.40, t'—,.450, we had to prove the existence of a unique normal-form,
which is a technically very difficult area (note that we had to carry these proofs out in
a restricted set theoretical framework), where the reduction rules have to be modified.
We better try to avoid this problematic area, and use a far easier approach: We interpret
types as sets of pairs of terms — the terms, which are considered to be equal.

A type is represented by a set of pairs of closed terms
An example would be
(Ax B)*:=  Compl({pair(p(a,b),p(a’, V")) € Terme; x Termg|
pair(a,a’) € A* A pair(b,V') € B*}
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where now

Compl(u) = {pair(r,r") € Terme; x Terme|3s, s’ in normal-form .
T—redS N S—peas A pair(s,s’) € u}
Another example is
(A+ B)* = Compl( {pair(i(r),i(r")|pair(r,r") € A*}
U Apair(j(r), j(r)|pair(r,r') € B*})
or the easiest example
N* := Compl({pair(S"0,5"0)|n € IN})

Now we want to interpret the type A — B (= Ilz € A.B where z is a new variable). The
problem is, that the introduction rules deduces from an open term a closed term: from
x:A=1t:B we conclude \z.t : A — B. But the intended meaning of x : A =t : B is,
that, (as long as « € FV(B)) for every s € A*, t[z/s| € B*, and this is independent from
the choice of equal elements of A*: If pair(s,s’) € A*, pair(t[z/s], t[x/s']) € B*. Putting
these two definitions together in one, we can define

(A — B)* := Compl({pair(Az.t, \x' t")|Vpair(r,r) € A" .pair(tjz/r],t'[2'/r']) € B*})

Now, the problem of confluence, we still have, is solved: The main reason for it is the
use of open terms, which are part of the closed term Az.t. But we have in our whole
definition avoided the use of closed terms, and in the definition of (A — B)*, we see,
that, if pair(Az.t, \x.t) € (A — B)*, and if ¢ — ' in a general sense for open terms,
tlx/r]—yeat’[x/r] for closed terms r. But now, if B* is closed under —,.4, we conclude
pair(Ax.t, \x.t'") € (A — B)*.

So we can define, that all terms Az.t are in normal form. To make the technicalities
even more easier, we choose a deterministic reduction strategy, some kind of call-by-value
strategy: we allow Ap(A\x.r,s) —,.cq r[z/s]| only if s is in normal-form (note that \x.r is
in normal-form), the same for all other constructors.

Now there is a new problem: Since we have dependent types, we have types containing
free variables. Let us consider the II-type:

(Ilxr € A.B)" =
Compl({pair(Az.t, \e’ ") |Npair(r,r') € A .pair(tlz/r], '[x'/r']) € B*[x/r]})

(We will see later, that t[z/r] is always allowed, as long as r is closed.)

So in fact, for a type with free variable x we could treat B*[z/r] := Blz/r|*. But we
can not introduce the interpretation of all types, but only for finitely many types, since we
are working in a restricted set theoretical system. The solution is, that we can interpret
open types as X functions (see [Bar75]), and give some operation Alxy/r, ..., z,/ry] for
Y functions A and z; € Vary, r; g-terms, in such a way, that the equality B*[z/r] =
Blz/r]* holds. Since we want to prove, that relation defined by the equality relation on
the interpretation of a type is symmetric and transitive (we could prove this as part of
the Main Lemma for all deduced types, but this would make this lemma even heavier),
we add the additional condition B*[xz/r] = B"*[z/r'] which will be fulfilled, whenever we
have derived x : A = B type:

(Ilz € A.B)" =
Compl({pair(Az.t, \&' .t')|Vpair(r,r") € A*.pair(tjz/r],t'[x' /7)) € B*[x/r]
AB[z/r] = B[z /r']})



Now original Martin-Lof’s type theory has no fixed set of terms and types: they are
introduced during the derivation of formulas. But we have extracted in chapter 2 a set of
general terms, the g-terms, such that every term occurring in Martin-Lof’s type theory is
a g-term, but not vice versa, and a set of g-types. Now we can interpret every g-type as
a Y function. Up to this stage we do not know any correctness properties. This begins,
in the last step, where we prove, that this interpretation is correct for derivations in
Martin-Lof’s type theory, in the sense that

MLSWrtre A = KPi"F pair(r,r) € A,
or, considering a more complicated case,
(ML{WrtkzeB=s=tcA) =

K Pi* = Npair(r,r'") € B*.pair(slx/r], t[z/r']) € A*[x/r].

The reader might have at this stage a first look at the following definitions, omitting all
concepts dealing with the W-type and the universe, e.g. W, U, T, (rx € s.t), (cx € s.t)
(wz € s.t), i(r, s,t), 745, n, n,, which will be explained next.
Let us now consider the W-type. From the rules follows, that an interpretation of it
must be the least set closed under the applications of the W -rule. This set must be the
least fixed point of the operator F', where, if we for simplicity switch back to the state,

where types are interpreted as sets of terms rather than pairs of terms, F' is defined as
F(u) := {sup(r, \z.s)|r € A* AVt € B*[z/r].s[z/t] € u}

To get the least fixed point we have to iterate this operator up to the least admissible
such that A* € L, and Vpair(r,r") € A*.B*[z/r| € L, (in fact we will iterate it up to an
ordinal such that even Vs € Termce;.B*[z/s| € L,).

The most powerful type of Martin-Lof’s type theory is the Universe. When we consider
a rule like

(71_[) acU  z€T(a)=belU
mr€a.b:U

we see, that we have to define simultaneously the elements of U and its interpretations
as types T'(a). We will therefore first define a set U, which will be a set of tripels
tripel(a, A,b). The intended meaning of tripel(a, A,b) € U is, that a and b are equal
elements in U and T'(a)* = A. This will be done in such a way, that, if we define

~:= {pair(a,b) € Termeg; x Terme|3A.tripel(a, A, b) € U}

and
f = {pair(a, A)|3b € Termey.tripel(a, A,b) € U}

then ~ is a symmetric and transitive relation, f is a function and Va,b.a ~ b — f(a) =
1), )

Having defined U, we can define U* :=~ and T'(a) := f(a)

As for the W-type, U will be the least fixed point of an operator U. Since U is closed
under the W-type, in the definition of U we have to go to the next admissible. So, to
get U, we have to iterate U up to an admissible, which is closed under the formation of
the next admissible, e.g. the first recursive inaccessible. This is the point, where we need



the power of K Pit. We need the existence of a recursive inaccessible, and in order to
form W-types above U, we need the existence of infinitely many admissibles above this
recursive inaccessible.

In fact, to interpret a particular proof of M L{Wr, the nesting of W-types is limited, so
we can interpret the types of this proof in K Pi; for some n.

To prove in chapter 7, that all sentences provable in M L{Wr are provable in K Pi
for some n we will add some constructors, having not necessary recursive reduction rules.

Definition 5.1 (a) We add to the set of constructors a ﬁm’te number of additional extended

(b)

(c)

term constructors (A;)ier with arities arity(A;). (I ={1,...,n} for some n € IN).

The extended b-terms are defined as the b-terms, only using additionally the extended term
constructors.

We extend substitution and a-conversion for this extended system. Let ([C1)¢ constructor
Godel-numbers for each constructor, such that we have a primitive recursive set
TermConstr(a,),., of these Godel-numbers (we will usually omit the index (A;)icr), a func-
tion

el

arity : TermConstr — N,

and a primitive recursive function

n— [Cy]
(C,, being the eliminator for the N, -type).
Further let [\], [Variable], X be Godelnumbers. (Gddelnumbers always means, that we have
chosen different natural numbers).
We interpret terms t as follows:
[2MLE] =< [Variable],i >,
[C(tr,...,tn)] =< [C], [t1],..., [ta] >,
[AME ] =< [A],4, [t] >.

We have a primitive recursive set of all codes of extended b-terms Terma,,., (again we
omit usually the index), can break it primitive recursively into its part, can deﬁne a primitive
recursive function sub: N — N — N such that

sub([t], <<y, [ti] >, ..., <in, [t] >>) = [(t[z2"F Jte, .o 20 F /)],

(< - > being the coding for sequences of natural numbers in natural numbers), a primitive
recursive function FV' : N — N such that, if FV(t) = {zML, . 2ME} with iy < -+ < iy,
FV'([t]) =<1i1,...,i, >, a primitive recursive definable subset Terme,; of indices of closed
terms. In the following we will omit usually the Gédel-parenthesis | |, if it is clear that we
are speaking of natural numbers.

The introductory term constructors are the term constructors 0, r, n, S, ¢, j, p, sup, +, 7,
o, w, t.

We assume, that for each A;, by which we extended our constructors, we have a function
Ar o Nomitv(A) 5 N defined in KPi™.
Let —eq, imm (4,,A%) (agam we will omit the index (A;, AY)icr) be the set of pairs of closed

terms, written t—>red,2mm(Ai A*)t’ or short t—eqimmt’ for pair(t,t') € — cqimm, defined as
follows:



If r,s,t,t',r; are extended b-terms (and the left side of —yeqimm are closed terms), then
Do (p(r7 S)>_)red,immr;

D1 (p(T, S>>_>red,immsz

Ap(Ax.r, $)=red.immT]/s],

CollnsT1s - -+ s Tn) = redimmTis

D(( ) S t) red,immST,
( ( ) )Hred,immtr;
P(O S t) red,immS,
P(Sr,8,t) = redimm(trP(r,s,t)), (note that we write rs for Ap(r,s)),
R(sup(r, ), )= redimm(trs(A\zME R(szME 1)), where i is minimal such that zMY ¢ FV (s)U

FV(t)

A (S™0, ..., S™0) = peq imm S M) (),

the pairs mentioned above are all pairs.

Note that it is primitive recursive decidable, if there exists a t' such that t—,cqimmt’, and for
each term t there is at most one term t' such that t—,cdimmt’s SO —redimm represents are
partial function.

(d) We define inductively a set of (indices for) terms in normal-form Term, s C Termey:

If C is an introductory n-ary term constructor, t1,...,t, € Term,y, then C(t1,...,t,) €
Termy;.

If C is a n-ary term constructor (possibly an extended term constructor) that is not intro-
ductory, t1,...,t, € Term,s, and there exists no t such that C(ty,...,t,)—redimmt, then
C(t1,...,tn) € Termyy.

Ift e Term, v € Varyy, FV(t) C {z}, then Ax.t € Term,;.

We easily see, that Termyy 1s a primitive recursively decidable relation.

(e) We define terms t € Termey, the next reduced term ¢,
Fort € Termy;. t"¢ :=t.
If C is a n-ary (possibly extended) term constructor, r; € Termey, Ji.r; & Term,y, then

Clry, ... mp)red = C(r7ed ... rred).

r'n

Ift:=C(ri,...,rn) & Termpg, ri € Termyy, then t— cqimmt’ for some t', t7°¢ :=¢'.

We define r—,eqs = In € w, s € w.sequence(s) ANlh(s) =nA(s)g=1A(8)y = sAVi <
n.(s);" = (8)it1-
Lemma 5.2 Assume x;,y; € Varyy.
(a) KPit =Vr, s € Termar=,r"— FV(r) = FV(r').
(b) KPit =Yr,r; € Term . FV(r[Z/r]) C FV(r)UUl, FV(r;).

(c) In KPit we prove that for all s, t; € Term, all r; € Termcgy,
s[Z/7] is allowed substitution A

s[ij/t] is allowed ) — s[Z/7][i7/1] is allowed )\
(slz/Mg/8] = slz/7. g/1]).

(d) KPit =Vt t" € TermNr;,rl € Termey.(t=ot' N\ ri=o1%) — t[T/F]=t'[Z/T].

(e) KPit FVax, o' € Vary Vt, t' € Term.Nr,r' € Termey.
(Art= A"t Nr=ur") — tx/r]=.t[' /r']



Proof:

(a), (b): easy.

(c): If x € Vaaryy this is trivial, and if s = C(ty,...,t,) it follows by IH. If s = A\z.t,
(7)) = [#/F)\ {z}, /7] = [7/1] \ {z}, s[Z/F] = Ia.(t[z/7]) allowed, since z ¢
FV(r;) and the IH. If s[§j/7] is allowed follows t[i /] is allowed and z # y € FV(t) —

x ¢ FV(t;) therefore t[i’ /][ /t] is allowed and x # y € FV(t[i'/7]) = FV(t) —
x & FV(t;), s[z/f)[7/t] is allowed. Further follows s[Z/7|[ij/t] = Aa.(s[z/7][7/1]) =
ACIE 37/?]) = tz/7, §/1].

(d) We prove first, that if t=,t, r; € Termcy, t|Z/T]=ut'[Z/7].

Induction on t=,t'. The case t = t’ is trivial, the cases of t=,t"=,t', t = C(t1,...,t,) A
t'=C(th,....th) Nti=4t; and t =x Az.s ANt =n5 A\x.s’ A s=,5 follows by IH.

Caset = Ax.s, t' = \y.s[z/y|, y € FV(s), tlx/y] is allowed, [z' /7] := [Z/7]\{z,y}. Then
y & FV(t), t[z/7] = Mx.(s[Z /7]), by (c) therefore s[z'/7][z/y] is allowed, y ¢ FV (t[Z/1],
sl /P [w/y] = s[F" /7, xfy] = slx/yl[5 /7], V]Z/7] = Ny (s[7' /7 ][/ y]) =al[Z/T].

Next we prove r;=,r; — t'[Z/F]=,t'|Z/7"], which follows by a trivial induction on the
construction of ¢'.

(e) Induction on definition of Az.t=,Az".t": The case A\x.t = A\a’.t' is trivial, if
Ar.t=n5=, A2’ .t', then s = \z”.t" and the assertion follows by IH, and if x = 2/, t=,t' the
assertion follows by (d). If ¢’ = t[z/2'], 2’ ¢ FV(Ax.t), t[x/2’] substitutable,

[ [r|=ut' [2 7] = tlx/2'][2' [r] = tlx/r, 2’ [r] = t[z/r], since &’ & FV () V2’ = x.
Lemma 5.3 (a) KPit EVr s, s € Termey.(r—reas A r—yeas’) — (S—reas’ V ' —1eas).

(b) KPit F¥r,s,s € Terme.(r—yeas ANr—reas’ N s, 8" € Term,s) — s =5
(¢) If C is a n-ary constructor, then

KPit b ey, oo, mh(Ti—=eary € Termpy A ATp—rears, € Termy, )

r'n’

—>C(7’1,...,’f’n) redC(’f’l,...,’f’;)

(d) KPit BVt t' s € Termey.(t—reas Nt=ut") — 3s' € Termey.t' —,eqs’.

(e) KPit F VYt t' € Termet=ot' — (t € Termy,; < t' € Term,y).
Proof: (a), (b): Immediate, since we have chosen ¢ — ¢? as a function.

(¢): Induction on maximum of the reduction sequences of 1;— .47

(d), (e): We show t=nt' — ((t € Termy; < t' € Termys) At —,..qt""?), by induction
on the definition of t=,t', side induction on construction on ¢:

If t =1’ the assertion is trivial, if t=,t"=,t' it follows by IH.

Case t = C(ty,...,t,). Then t' = C(t},....1)), ti=atl: It t; & Term,y, follows
t; & Termy,y, t;”ed:at;md, tred = C(tred, .. e =,t" by TH. If t; € Termpys, t—=redimm$,
t'—red.imms’, where s’ is just the same arrangement of the terms as in s, except that in the
case of C'= R we might choose another variable zM% and in the case C' = Ap where we
have to conclude using lemma 5.2 (d), and we have in all cases s—.qs". If t; € Termyy,
“(t=red.imms) we have t,t' € Term,, t™? = t=,t' = prred

If t = Az.s, then ¢’ = \y.¢', t,t' € Term,,.

Definition 5.4 (a) a; := min{y € On|Ad(L,) ANVz € L,.3y € L,.Ad(y) Nx € y} (definable in
KPit),

(b)
arn = min{y € On|3aq,...,a,—1 € On.Ad(Lay,) N\ -+~ Ad(Lq, ) A

ar€EagNag Eag N Ny92 € Q1 Ay =0p_1}



(definable in K Pi™ or KPi forn <m)

(¢) If a is an ordinal, then o := min{y € On|Ad(L,) Ao € L.} (definable in KPi"),
a®™" :=min{y € On|Ad(L,) Na € L,} U{ar,} (definable in KPi)

(d)

=

(u) == min{c|Ad(c) Nu € ¢} (definable in KPit).

(u) := U{y € a(u)|y € On}, definable in KPi*.

(u)" :=min{c|Ad(c) Nu € c} U{Lq,,,}, definable in KPi.
(w)™ :=U{y € a(u)"|y € On}, definable in KPi}.

e = 0

We need for the interpretation of W and U the transfinite iteration of an operator,
defined as follows:

Definition 5.5 (a) If F is an (n + 1)-ary ¥ function, let F(7i,-) be the ¥ function, such that
F(i, ) (u) := F(,u).

(b) If F is a ¥ function, we define by recursion on «

v if a =0,
F*(v) :={ F(F(v)) ifao=p0+1,
Up<apeon FP(v) if a €Lim.

Definition 5.6 We define the ¥ function Compl

Compl(a) :=  {pair(r,s) € Terme; X Terme|3r', s € Termy,;.

/ / . / /
T—redl” N S—reas A pair(r',s’) € a}

Compl(a) C Termeg; x Termey, and will be used only, if a C Terme; X Termg;.

Note that in fact this definition is relative to the extension of our set of constructors,
so actually we have to write Compla, a%),, -
We will interpret each g-type occurring in a proof of Martin-Lof’s type theory (note
that there are only finitely many — we cannot give a general interpretation of all types) as
. functions, with arguments represented by the free variables of the type. More precisely,
if FV(A) = {ML . ZME} ) (2ME as in the definition 2.1 of Varyy) the arguments of
the interpretation A* will have arguments given by the variables {uf? ... ufF} (uk? as
in definition 4.1 (a) of Vargp). We introduce the following abbreviation:

Definition 5.7 If A is a ¥ function in KPit with arguments represented by the free

variables {uls”, .. ulT}, iy < .o i, ulT as in the definition 4.1 (a) of Vargp zM*
as in the definition 2.1 of Varyy, r1,...,r, estended b-objects, ji = min{l|x; = Z%L

(k=1,...,m), then

Alxy/r1, .o T T = A[uffp/rjl, o ,ufip/rjn],
where on the right-hand side we have the real substitution or (having introduced a X
function symbol) the application of the function symbol to the arguments.
We will write A[Z/7] for Alxi/na, ..., xn/n,). Note that, if a variable occurs more than
once in the sequence x1,...,T,, only the first one is relevant.

Definition 5.8 Definition of the interpretation of g-types A, namely A*, which will be a
Y function, that has, if FV(A) = {zML . 2MEY - GME s in definition 2.1 of Varyrg),
arguments given by the variables {uft ... uEP} WEE as in defition 4.1 (a) of Vargp).
We will define it by giving the values A*[Z/s].



Additionally we define lev(A) € IN.
The interpretation is relative to a choice of term constructors (A;)er, extending the given
term constructors, together with some interpretation A}, as stated in 5.1 (c), so in fact
we have to write (we do not for simplicity) Ay, 4+

We define in all, but the W-, U- and T'(t)-cases

iel”

A*[T/3] := Compl(A*[7/3)),

where A% is defined as follows:
For k € IN, ‘
Npesis[ ] = {pair(ng, ni)|n < k},

(note that we have a constant ¥ function) lev(Ny) := 0

Nbasis[ ] — {pazr(S"O, S"O)‘?’L < W}a

lev(N) =0
Let A, B be g-types, m := maz{lev(A),lev(B)}.
Then lev(Ilz € A.B) :=lev(Xx € A.B) :==m, lev(Wz € A.B) := m+1, and we define:

(Ilx € A.B)"%*[7/5] .= {pair(\z.r, \v'.1") € Term,; x Term|
Vpair(s,s') € A*[Z/8].pair(r[z/s],r[x'/s']) € B*[x/s,Z/35]
AB*[x/s,%/5) = B*[x/s', Z/5]},

(more precisely we have to write:

(Ilx € A.B)***[7/3] .= {pair(t,t') € Termy,; x Term,;|
Jz, 2’ € Varyyg,r,r’ € Term.t = Ax.r At = X’ ' A
Vs, s € Term.pair(s,s’) € A*[Z/s] —
pair(rlxz/s),rla’/s"])) € B*[x/s, /8]
AB*[z/s,@/5] = B*[z/s',Z/5]},

similarly in the following definitions)

(Sx € A.B)"5[F/5) .= {pair(p(r,s),p(r',s")) € Terms x Term,;|
pair(r,r') € A*[Z/8] A pair(s,s’) € B*[x/r,Z/5] A
B*x/r, &[5 = B"lz/r', £/5]},

Wz € A.B*[7/3] := Form(3,.)(0)

(note that m = maz{lev(A),lev(B)})
where
F(5,u) :== Compl(F"**(5,u)), and

FYosi5 (5, 0) ==
{pair(sup(r, \x.s), sup(r', \e’.s")) € Termy; x Termys|pair(r,r') € A*[Z/s] A
Blx/r,Z/s] = Blz/r', 8
NVpair(t,t') € B*[x/r,Z/8].pair(s[x/t], s'[z'/t']) € u}



If A, B are g-types, then lev(A + B) := max{lev(A),lev(B)},
(A+ B)"#[%/5) .= {pair(i(r),i(r")) € Termus x Term,|pair(r,r') € A*[Z/5]}
U{pair(j(r),j(r") € Term,s x Termy,s|pair(r,r") € B*[Z/5]}
If A is a g-type, s,t are g-terms, then lev(I(A,s,t)) = lev(A) and
(I(A, 7, ))255(7/3) = {pair(z, £)|pair(r{/3], sl7/31) € A*(7/31}.
lev(U) :=1 and

U*[ | := {pair(r,r") € Terme; x Termey|3b € TC(U)tripel(r,b,r') € U}.

(U will be defined in the next definition)
Ift is a g-term, then lev(T(t)) =1

T(t)*[#/3] == | {b € TC(O)[tripel(t[7/3), b, t[7/5)) € U}.

Definition 5.9 Definition of U:
U :=U~(D), where U is a X function symbol, which can be defined in KPi" in the
following way:

Let
Comply (a) == {tripel(r,b, s) € Terme; x TC(a) x Termey|3r', s" € Termyy.
T—redl”’ N S—=reas’ Atripel(r',b,s') € a}.
U(u) := Comply (U (u)),
where
U5t (y) = {tripel
{tripel

g, Upin(K), i) € alu)|k € IN}
1y Unat, 1) }
x € 1.8, u (b, f), 7 € r'.s") € a(u)|d(r,z, s,r" 2", s b, f,u)}
ox € r.5,u,(b, f),ocx’ € r'.s") € a(u)|p(r,z, s, 7", 2, s, b, f,u)}
{tripel(wz € r.5,u®@ (b, f,)(0),wz’ € r'.s") € a(u)]

o(ryx,s,r' 2’ s b, fu)}
{tripel(r+s,uy(b,c),r'+s") € a(u)|ti(r,s,7',s",b,c,u)}

U {tripel({(r,s,t),ui(b,s,t),z(r’,s',t') € a(u)|i(r, s, t,r' ', ', b,u)}

{tripel

o~ o~ o~ o~

{tripel

C C C C

-

and

o(ryx, s, v’ a' s b, fyu) == 10" € Termps As,s" € Term A f € a(u)
NFV (s) C {a} NFV(s') C {a"} Atripel(r,b,r") € u A
(Vpair(t,t') € b.tripel(s[z/t], f(t),s'[x'/t]) € u)

(note that f(t) = U{c € TC(f)|pair(t,c) € f}, so f need not be a function)

Yy(rys, 1,8 b, c,u) =1, 8,78 € Termyy Atripel(r,b,r') € u A tripel(s, ¢, s') € u,

Yi(rys,tor' st byu) = st st € Termyy Atripel(r,b,r') € u A
pair(s,s’) € b A pair(t,t') € b,



ugpin(k) : Compl(ulfis*(k), where
ufie (k) = {pair(ng, ny)In < k}
Ungt := Compl(ules’®), where

ul®ss .= Lpair(S™0, S"0)|n € IN}

nat

ux(b, £) = Compl(u!s=(5, 1)), where
wts 5 (b, f) = {pair(\z.t, 2’ ') € Termps x Term,|
Vpair(r,r') € b.pair(t[z/r], ¢'[2'/r']) € f(r)}

o (b, f) = Compl(ubesi*(b, f)), where

ul (b, f) .= {pair(p(r,s),p(r',s)) € Termyy x Termys|pair(r,r') € b A
pair(s,s’) € f(r)},
Uy (b, f,v) := Compl(ub®*¥ (b, f,v)), where
ul® B (b, fov) = {  pair(sup(r, \z.s), sup(r', \a’.s")) € Termy,; x Term,|
r,r" € Termgy, s, s’ € Term, FV(s) C {z}, FV(s') C {2},
pair(r,r') € b,Vpair(t,t') € f(r).pair(s[x/t],s'[z'/t]) € v)}
uy (b, ) == Compl(ub**(b,c)), where
uy(byc) = {pair(i(r),i(r')) € Termy,; x Termy,s|pair(r,r') € b}
U A{pair(j(r),j(r") € Term,; x Termys|pair(r,r') € ¢}
ui(b, 7, 8) :== Compl(u®*(b,r,s)), where

ul?asis(b7 r 3) = {pair(f, ﬁ) |pai7’(7", S) € b}

(3



Chapter 6

Correctness of the Interpretation

In this chapter, we show, that the interpretation is correct, in the sense, that, if
MLSWr b r 2 A, then KPit F pair(r,r) € A*. In chapter 7 we will then conclude,
that this shows, that all arithmetical sentences provable in M L{Wy, can be proven in
KPit.

We first prove some correctness property: The relation defined by the type is a sym-
metric and transitive relation (lemma 6.10), we examine the relationship to substitution
(lemma 6.12) and a-conversion (lemma 6.15). Further we introduce abbreviations, to
state easily our Main Lemma (definitions 6.11 and 6.16). The heart of this chapter is the
Main Lemma 6.18, which proves, that, if ML{Wr Fr . A, then K Pit F pair(r,r,) € A*.
In fact we prove something more general, to have a stronger induction hypothesis. The
proof is tedious, since we have to check the correctness of each rule, but not very com-
plicated — the intuition for the upper bound is concentrated in. At the end we see, that
we can even interpret an a little bit extended version ML{Wpy in this way. This ver-
sion is equivalent to M L{Wg , an extension of | M L{Wg| and therefore we can interpret
ML{Wg as well (lemma 6.19).

The next lemma shows, that by iterating w.,(b, f,-) up to the next admissible, we get
a fixed point.

Lemma 6.1 (a) Vy < d.ul,(b, f,-)(0) C ul (b, f,-)(D).

(b) (bE (I/\f € a/\Ad(a)/\a:U5€aﬂOn5) -
V’}/ > O“u%(l% f: )(@) = Ug(b, f: )(@)

(¢) The proof can be done in KPi™.

Proof: (a) follows by induction on 4.

(b) Tt is sufficient to show, with u' := u2(b, f,-)(0), that u,(b, f,u') C «'. (Then the
assertion follows immediately by induction on ~)

Since Compl(u') C o' it is sufficient to prove u?***(b, f,u') C u'. Now, if

pair(sup(r, \z.s), sup(r, \x’.s')) € ul®* (b, f,u')
follows
Vt, U € Termey.pair(t,t') € f(r) — 36 < a.pair((s[z/t],s'[¢' /t]) € ul,(b, f,u))
Since Ad(a) (here we need (Ag-coll), there exists p < a, such that

Vt,t' € Termey.pair(t,t') € f(r) — 36 < p.pair((s[z/t], s'[2'/t]) € ul,(b, f,u))
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Now follows
pair(sup(r, \z.s), sup(r', \a’.s")) € ul (b, f,u) C v
and the assertion.
Definition 6.2 (a) equiv(u) &
Vr, s, t, 1) s € Termey.(pair(r, s) € u — pair(s,r) € u)A
((pair(r,s) € u A pair(s,t) € u) — pair(r,t) € u).
(note that we do not claim reflexivity)
(b) Cor(u) &
Vr,r' " € Terme Vb, b .(tripel(r,b,r') € u — [tripel(r’,b,r) € u A equiv(b)
Altripel(r', b, r") € u — (tripel(r,b,r") € u Nb=1")]])
Remark 6.3 (a) (Cor(u) Atripel(r,b,r") € u Atripel(r,t/, ") € u) — (b = b Atripel(r,b,r) €
(b) If Cor(u) and
~:= {pair(a,b) € Terme; x Terme|3A € TC(u).tripel(a, A,b) € u}

and
f = A{pair(a, A) € Terme; x TC(u)|3b € Termey.tripel(a, A,b) € u}
then ~ is a symmetric and transitive relation, f is a function and Va,b.a ~b — f(a) = f(b).
Proof: Obvious.
Lemma 6.4 Assumer,s,t,r',s',t' € Term, x,x’ € Varyy, b, f,u sets.

(a) (Qb(’l“, z, s, T/a 33/, 3,7 b, f, U) AN COT(U ) —
(b € a(u) ANIf € alu).Vpair(t,t') € b.f(t) = f(t') = f'(t) = f'(t')).
(b) Yi(r,s,r' s b c,u) — b,c€ alu)
(c) Yi(r,s,t,r' s ' byu) — b€ alu)
Proof:
(a) b e TC(u) € a(u).
Let f':= {pair(t,c) € Terme; x TC(u)|pair(t,t) € b A tripel(s[z/t],c, s[z/t]) € u}.
f" € a(u). Further, if pair(t,t") € b follows tripel(s|z/t], f(t), s'[x/t']) € u, by Cor(u)

tripel(sx/t], f(t), s[z/t]) € u, further Ve.tripel(sx/t], c,s'[x/t]) € u — ¢ = f(t), f'is a
function, f(t) = f'(t) and by

tripel(s'[x/t], f(t), s[x/t]) € u A tripel(s'[z/t], f(t'), s[z/t]) € u

follows f(t) = f(t').
(b), (c) follow by b,c € TC(u).

Lemma 6.5 Assume r,s,t,r’,s',t' € Term, x,x’ € Varyy, b, f,u sets.
(a) Vk € IN.tripel(ng, upin(k), ;) € a(u).
(b) tripel(@, unataﬂ) S CL(U)

(tripel(rx € r.s,u(b, f), 7’ € 1.8, tripel(ocx € r.s,u, (b, f),00 € r'.s) € a(u)A
tripel(wz € r.s,ut™ (b, f,-)(0), wz’ € r'.8") € ala(u)).



(d) (Cor(u) Ay (r,s,1", s b,c,u)) — tripel(r+s,uy (b, c),r+s) € a(u).

(e) (Cor(u) Ab(r,s,t,r' st bu)) — tripel(i(r, s,t), u;(b, 5,1),i(r', s, ') € a(u).

Proof: By 6.4
Lemma 6.6 Assume r,s,t,r' s t' r" " t" € Term, x,x',2" € Varyyg, bV, f, f,u, v
sets.

(a) o(r,z,s,r' 2’ s b, fu) — Cor(u) — o(r', 2’ s, r,x,s,b, f,u).

(b) (qb(’l“,ﬁ, s, 1!, S,, b, f, U) A ¢(T,,[E,, s 7“”,[E”, s, b/, f’,u’) A COT(U U u/)) N
Vpair(t,t') € b.f(t) = f'(t) = f(t') = f'(t)

(c) Yi(rys,r' s bc,u) — Cor(u) — (', s r, s,b,c,u).

(d) (i(r,s,7", 8, byc,u) Ny (r', ', r" "V, u') A Cor(uUu') —
(s (r, 5.7, 57 b, u D) A= B e = )

(e) Yi(r,s,t,r' s ' byu) — Cor(u) — ;(r', ', t',r, s, t,bu).

(f) (wl(r7 S’ t’ Tl’ Sl? tl? b? u) /\ ¢z (T’, Sl? tl? T”7 S”7 t”7 b/7 u’) /\ COT(U U ul> —
(Wi, s, t,0", 8" 1 buUu') Nb=1))

Proof:
(a) tripel(r’,b,r) € u. If pair(t,t’) € b, then

tripel(s[z/t'], f(t'), s'[2'/t]) € u, tripel(s'[2'/t], f(t'), s[z/t]) € u,

f(t) = f(t') by 6.4 (a).
(b) v :=uwUu. b=V by Cor(u"). tripel(r,b,r") € u". If pair(t,t") € b, follows

tripel(s[z/t], f(t), s'[2'/t]) € u”, tripel(s'[2"/t], f(t),s"[2"/t]) € u”,
therefore tripel(s[z/t], f(t),s"[x"/t']) € v”. Further
tripel(s'[z'/t], f(t), s[x/t]) € u”, tripel(s'[2"/t], f'(t), s"[2" /t]) € u”,

therefore f(t) = f(t')
(c) - (f): Easy.
Lemma 6.7 Assumer,s,t,r',s',t' € Term, x,x’ € Varyy, b, f,u sets.

(a) Vk € IN.equiv(uls*(k)).

bosi).

(b) equiv(u

(c) (Cor(u) A o(r,z,s, 7,2’ 8", b, f,u)) — (equiv(ub®* (b, f))equiv(ub®*(b, f))A
Yu.equiv(v) — equiv(ul®* (b, f,v))).

(d) (Cor(u) ANy (r,s,1',8',b,c,u)) — equiv(u**(b, )

(e) (Cor(u) A(r,s, t,r' s U, b,u)) — equiv(ub®®(b, s, t))

)



Proof:

(a), (b) are trivial.

(c): Assume pair(Az.t, \z’.t') € ub**(b, f), pair(7,7) € b. Then pair(¥',7) € b,
pair(tlz/F],t'[z/7]) € f(7), pair(t'[z/7],t[x/7"]) € f(7) = f(T) so we have symmetry
of ubasis(b, f), similarly for transitivity and ubasi qlesis,

(d)- (e) are easy.

Lemma 6.8 (a) (Cor(u) A (Vtripel(a,b,a’) € u.a,a’ € Term,y)) — Cor(Comply(u)).

(b) (equiv(u) Au C Termy,s x Termy,s) — equiv(Compl(u)).
Proof:
By lemma 5.3 (b).

Lemma 6.9 (a) Cor(u) — Cor(U(u)),
(b) uC ' ACor(u) — Ulu) C U,

(¢) Cor(D).
Proof: (a): by 6.6, 6.7, 6.8.
(b) The only difficulty is, to show that

(B(r,m, 8,7, 2", 8", b, fyu) A d(r,m, 8,77, 2, ', b, fou!)) — ul (b, f,-)(0) = u™(b, f,-)(0).

This follows by 6.1.

(c) Follows by (a), (b).

We conclude, that the interpretation of each g-types gives a symmetric and transitive
relation:

Lemma 6.10 If A g-type, then KPi™ FVsy,...,s, € Termg;.equiv(A*[Z/35])
Proof: Induction on the definition of types.

In the cases (Ilx € A.B)* we need the additional condition in the definition of the
interpretation B*[z/s,Z/5] = B*[z/s', /5], similarly for ¥, W.

The difficult cases are equiv(U*), which follows from Cory(u), and equiv(T'(t))*[r],
which is trivial if =3b.tripel(t*[F], b, t*[F]) € U, and if tripel(t*[], b, t*[7]) € U for some b,
follows T'(t)*[7] = b, equiv(b).

Now we define the interpretation of the judgements in the Lgp.

Definition 6.11 Let A, B g-types, s,t g-terms, FV(A), FV(B), FV(s), FV(t) C

{z1,. . 2}, T, Tn, S1,, ..., 8, be extended g-terms.

(a) (A type)*[Z/7; 5] <& (A type)*[x1/r1; 81, -« Tn/Tn; Sn) & (A [Z/T] = A*[Z/3]).
(b) (A= B)*[Z/r 5] = (A= B)*[x1/r1;S1, -, Tn/Tn; Sn) = (A*[Z/F] = B*[Z/3)).
(c) (t: A)F[Z/T:8] & (t: A) 1 /11581, -« oy T/ Tn; Su] & pair(t|Z/T),t[Z/s]) € A*[Z/T].
(

(d) (t=1t:A)Z/rs = (t=1t:A) x1/r1;81, ., Tn/Tn; Sn] &
pair(t[Z/7], U'[7/5]) € A*[Z/7].
We will not mention the variables x4, . .., x, explicitly, if they are the variables, mentioned
in the context, writing (A = B)*[F, 5], (t : A)*[ 5], (t =1t : A)*[; 3.

Lemma 6.12 (Substitution lemma).
Let C, D be g-types, r,s,t;,t; g-terms, x;,y; € Varyy. Then:



(a) If r[Z/t] is an allowed substitution, FV (r[Z/t]) C {y1,...,yn}, then
KPit Y7 € Termey.r[Z/8[7/7) = rle /L[7/7), .. ., 2n/tal§/7), 7/7).

(Note that, if variables occur more than once in /7], only the first substitution is relevant.)
(b) If C[¥/t] is an allowed substitution, FV(C[Z/t]) C {y1,...,yn}, then
KPit =71 € Terme, C[Z/8)[i7/7] = C*lar /L[F/7), - . ., 2/ ta[§)7), 7/7).
(c) If AlZ/t], B[Z/t] are allowed substitutions, FV (A[Z/t]), FV( [_'/157]) CA{y1,-.-,Yn}, then
KPit - V7,5 € Terme.(A = B)*[Z/(t]2/7); (F[2/3)), /7, 5] « (AlZ/t] = B[Z/{))*[Z/7: 5].

(d) If A[Z/t], r[Z/t] are allowed substitutions, FV (A[Z/t]), FV(r ﬁ/ﬂ ) C Ay, yn}, then
KPit -7, 5 € Termey.(r = A)*[Z/(t12/7); (t7/3]), /7 8] < (r[x/t] : Alz/t)*[Z/7 ).

(e) [fA [Z/t], r[z/1], s[Z/¥] are allowed substitutions, FV (A[Z/t]), FV (r[Z/t]),
FV(s[z/t]) C {y1,- -y}, then
KPit FV7, 5 € Termey.(r = s : A)*[Z/(t|2/7); (F[2/3), 2/ 5] —
(vl /1] = sla/) : Ale/E)"[5/7:).

Proof: (a): Induction on the definition of r g-term:

If r is a variable, the assertion is trivial, if r = C(ry,...,r,) it follows by IH.

Let r = Ay.s. Wlo.g. x; # vy, x; € FV(r). Then, since the substitution is al-
lowed follows y & FV( ;). W.lo.g. vy # y. Then r:v/ﬂ [7/5) = (\y.(s[Z/8])[7/5] =

(s[/815/5) = M-l (/). 9/5)) = rlz) @5/, /3.
(b) Induction on the definition of A g-type:
C = N, N, U is trivial.

C =Tlx € A.B. Let [#/1] := [&/1] \ {z}, [/ /7] := [§/7] \ {=}, Then
Cl /T 5/

{pair(Mx.t, \a’.t') € Terme; x Terme|Vpair(r, ') € A[Z/t]*[§/7).
pair(tl/r],'[2'/1']) € BI&' /T] [x/r, 5/7]
AB[E JT] [w/r,g/FIBIE /€] [ /7', 57/}
Now 2} € FV(B) — = ¢ FV(t;). Therefore

Clz/t**= g/

= {pair(\z.t, \a'.t') € Termey x Termey|Vpair(r,r') € A*[Z/tly/7], i/7]*.

pair(t[z/r],¢'[2' /1)) € B[Z [({[x/r,§/7), x/r, §/7)
NB*(E /@l fr, §/7), 2, )7 = B ) Flor, 57,/ 171}

= {pair(\x.t, \' t') € Termey x Terme|Vpair(r,r') € A*[Z/t]ij/7], 7/7]".

pa’“”( /7], [« /")) € B*[x/r, @/ ({F/T), 5/ A
B*la/r,@/(Hly/m), 5/ = B*[x/r'. &/ (tlg/T]), 5/7]}
= Chos (377, /7.

The cases C' =Yz € A.B,Wx € A.B, A+ B follow in a similar way.
Case C'=I(A,r,s): (a) and IH for A.
Case C =T(t): (a).

(c) - (e) are immediate consequences of (a), (b).



Lemma 6.13 For every g-type A FV(A) C{x1,...,z,}, follows

(a) V7, r,1' 5,8 € Termey.(r—rear”’) — (85— reas’)
— pair(r,s) € A*[Z/7] — pair(r',s') € A*[Z/7].

(b) N7, r, " € Termey.pair(r,r') € A [Z/r] — 3s,s" € Termys.r—reas N 1'—reqs’.

Proof: easy, since for each type, Compl was applied to some set.
Definition 6.14 (a) Define

Stable(a) :=Vr,s,r',s" € Termey.pair(r,s) € a — r=4r" — s=,8 — pair(r',s') € a

(b) For every g-type A with FV(A) ={x1,...,x,} we define
Flex(A) :=Nr,...,70, 81,80 € Termep.(r1=a81 A -+ - ATp=a8,) — A*[Z/7] = A*[7/5]
Lemma 6.15 For every g-type C, D with FV(C) = {x1,...,x,} and C=,D we have
(a) KPit F Flex(C)
(b) KPit b Vrq,...,r,.Stable(C*[Z/T))
(¢) KPit =Nry,...,r,.C*[Z/7] = D*[Z/7).

Proof of (a) - (¢) by induction on definition of g-types, for (c¢) by side induction on C=,D.
In (c) the case C'= D is trivial, and if C=,C"=,D, the assertion follows by IH.

We write 7=,35 for (r1=481 A-+- ATp=a8n)-

First note, that Stable(a) — Stable(Compl(a)) by lemma 5.3 (d).

Case N, Ni: Easy.

Case C' = Ilz € A.B: Since

V7, §.r=,8 — AlZ/7] = A[Z/5) ANVr € Terme.Blx/r, Z/7) = Blz/r, ©/5]
follows Flex(Ilx € A.B), and if Ax.t=, a".t", A\’ t'= """,
pair(\x.t, A’ ') € C**5[F/F,

then for pair(r,r’) € A*[Z/r] follows by 5.2 (e) tlx/r|=ut"[z" /7], t'[x’[r'|=at"[x" [r'],
B*[x/r,Z/7] = B*[x/r', Z/F], and by Stable(B*[x/r,Z/r], follows

pair(t"[2" /r], " [2" /7)) € B*[x/r, 7/7]
and '
pair(/\x/,.t,/, Ax‘/,/.t,/,) E CbaSZS I:j’/?j]
For (¢), if D =TIz € A’.B" with A=, A" B=,B’, the assertion follows by TH, if D =1Ily €
A.Blz/y|,y & FV(B), Blz/y] allowed, follows assuming under the assumption 7=,5
Vr € Termey. Bl /y]"ly/r, 7] = B*[x/r,y/r,7] = B*[z/r, 7],

and therefore follows C*[r] = D*[r].

Case C' = Yx € A.B: Stability follows immediately by IH, and if r=,r", s=.,s",
r'=qr", §'=48", pair(p(r,s),p(r',s)) € C***[Z/F], pair(r”,r") € A*[Z/r], follows by
IH Blz/r, /7] = Blx/r",Z/F], and Blz/r',Z/7] = Blx/r",Z/F]. therefore by stability

pair(s',s") € Blx/r,Z/F] = Blx/r",Z/7]



(c) follows as for Ilx € A.B.

Case C = Wz € A.B: As in the X-case follows using the IH, F(7,u) = F(5,u). Further
we see, that Stable(u) — Stable(F** (7, u)).

(c) follows as for Iz € A.B.

Case C' = (A + B): as before, (c) is easy.

Case C' = I(A,r,s): Stable(I1"$(A,r,s)) is trivial. Flex(I(A,r,s)): If 7=,3, then
s|Z/T)=as|Z/3), t[Z/r]=at[Z/5], A*[Z/r] = A*[Z/5], and therefore pair(s|Z/7),t[Z/r]) €
A[Z/7] < pair(s[Z/5], 1[7/5]) € AlT/3].

For (¢), D = I(B,r',s'), with r=.1", s=,5", A=,B, A*[r] = B*[r], by 5.2 (d) r[F]=ar"[F],
s[F]=,5'[F] and, using Stable(A*[F]), follows pair(r[r], s[F]) € A*[F] < pair(r'[F], s'[F]) €
A*[r] = pair(r'[r], s'[11) € B*[r].

Cases C' = U, T(t): We define

Stabley(u) == Vs, s t,t" € Terme,.¥b € TC(u).
s=a8 — t=ot' — pair(s,b,t) € u — (pair(s',b,t') € u A Stable()))
We have Stabley (u) — Stabley (Comply(u)). We have Stable(ulyy’), Stable(u’'*(k)),
(Va,d',ad",a" (pair(a,a’) € b A a=,a" N d'=,d") — (f(a) = f(a") N f(a') = f(a”) A
Stable(f(a)))) — Stable(b) — (Stable(ub®* (b, f)) A Stable(u®s(b, f)) A (Stable(v) —
Stable(uy;** (b, f,v)))),
(Stable(b) A Stable(c)) — Stable(u’*(b, c)),
Stable(u;(b,, s)).
Further Stable(b) — r=,r" — s=48" — u¥(b,r, s) = u(b, 1’ ).
(Stabley (u) Ar=or' A s=o8 NAxt= A2t ANAyv=, Yy V")) — o(r,z,t,s,y,v,b, f,u) —
o(r', ' U, sy v b, fu).
(Stabley (u) A r=or" A s=48 Nt=ot' Nv=,0") — i (r,s,t,v,b,c,u) — P(r', ', ¢/, v u).
(Stabley () A r=uqr" A 5=a8' A t=ot'T=o7 N 5=48 Nt=ol') — ;(r,s,t,7,5,1,b,c,u) —
Vi(r', s 75U, b, e, )
From all this together we conclude Stabley(u) — Stabley (U(u)) and therefore

Stabley (U). Now immediately follows Stable(U*), Flex(U) is trivial, Stable(T(t)*[Z/7]),
and since for =8, t[Z/F]=,t[Z/5], follows

pair(t[z/7, b, t[Z/7]) € U « pair(t[Z/5],b,t[i/5)) € U,

(T()*[7/M=a(T(t))"[7/5]
Now, if T(t)=,D, D = T(t') with t=,t', T(t)*[r] = T(z)*[x/t[F]] = T(x)*[z/t'[7]] =
() [r].
To state our Main Lemma, we need to express, that, if we assume elements of the
types of the context, the interpretation of the conclusion © of a statement of Martin-Lof

is valid. Since we need, that this is independent of the choice of equal elements of A;, we
will introduce the following abbreviation:

Definition 6.16 Let ' =x1: Ay, ...,z : A be a g-context.

VI=(78).0 :=Vry, ..., Tk, S1,. .., Sk € Termey.(pair(ry, s1) € AJ[ | A
pair(re, s9) € As[xy/m1] A -+ Apair(rg, sg) € Aplz/r1, ..., Tk—1/Tk-1]) — ¢
“Assume T=(7; §)” means:

“Assume ri,...,Tk, S1,. ..,k € Terme; such that pair(rq, s1) € Af[ A
pair(re, $3) € AS[x1/r1] A -+« A pair(ry, sg) € Ax[z1/r1, .. 21 /Tr-1]-



Remark 6.17 All the proofs, carried out before, can be carried out in KPi™.

Now we can state our Main Lemma. We need to prove that
ML{Wrbkt: A = KPitF(t: A"

But to carry out the proof, we need an assertion for each judgement of M L{Wp, and
further, that it respects equality:

Lemma 6.18 (Main lemma)
Let T', A be g-context-pieces, x,x; € Vary, Ai, A, B g-types, t,t' g-terms, 0 a g-
gudgement. Assume ' =x1: Ay,... 2z, A,.

(a) If MLSWr ET =t : A, then
(i) KPit = VI'=(r;3).(t : A)*[Z/F;3).
(ii)) KPit = VI'=(7;35).(A type)*[Z/7; 5].
(b) If ML{Wr T =t=1t:A, then

(i) KPit ENT=(78).(t =1t : A)*[Z/73].
(1)) KPit = VI'=(7;3).(A type)*[Z/T; 5].

(c) If MLSWp FT' = A=A, then

KPit -VI'=(r;5).(A = A2/ 5].
(d) If MLSWr =T = A type, then

KPit = VI'=(7;5).(A type)*[Z/7; 5].
(e) If MLWp FT,z: A/ A =6, then

KPit EVI'=(73).(A type)*[Z/T; 5].

Proof of the Main Lemma:
We proof simultaneously (a) - (e) by induction on the derivation. We write IH 3 for the
Induction-hypothesis for the 3rd premise, etc. IH 3(d) for the Induction-hypothesis (d)
for the 3rd premise of the rule etc.
If there is more than one rule of one category (as in the case of (REFL) ), we refer to
them by (REFL),, (REFL),, etc.
Let '=a21:A,...;2, : Ap, IV =91 : By, ..., Ym : B,
fr=mry,...,r,, i <n,then 7, ;=7 ...,7;.
Ifo=t:Aort=1t:Aor Atype or A= B, let & = A type (the judgement treated in
the cases (i) of (a) - (c¢), or which follows from the assertion in (d), (e).
Distinction by the last rule applied.
Case (ASS): Assume I'=(7; ), pair(r,r’") € A*[Z/7]. Then z[Z/F,z/r] =r, z[Z/5,z/r'] =
v’ (x A)F[Z)T 8 x/rr]

ad (a,ii): Direct by IH.

ad (e): if ,,y : B” part of I', by IH (e).

ify: B =x:Aby IH (a,ii).

Case (THIN): Assume I'=(7 5), pair(r,r’) € A*[i], pair(r,, si) € B [Z/7, x/r,§;/7;].



Then pair(r, s,) € B [Z/7,9;/7:], by IH 0*[Z/7; §,y/7; §], therefore
O*[Z/7; 8, x/ryr g/ §. and (0")*[Z/7 S, x/r;r y/T; §].
(e): If ,;y : B” =z : A, follows (e) from IH 1(d), otherwise as before by TH.
Case (REFL), — (REFL)y:  Direct by IH.
Case (SY M),  Assume I'=(7;5). From pair(r;,s;) € Af[r;] follows pair(s;, ;) € Af[ri]
and by IH (b,ii) pair(s;, ;) € A[s;]. By IH (b,i) follows pair(t[s],t'[r]) € A*[s], and by
IH (b,ii) A*[r] = A*[5], and by 6.10 follows (¢’ =t : A)*[r; 5].

(b,ii) follows from IH (b,ii).
Case (SYM)y  Assume I'=(7; ). As for (SY M), we have pair(s;,r;) € Af[8;], by IH
A*[5] = B*[7] and therefore the assertion.
Case (TRANS); Assume I'=(735). From pair(r;,s;) € Aj[r;] follows pair(r;,r;) €
A%, pair(tr], t'[F]) € A*[F], pair(t'[F],t"[5]) € A*[r] and therefore from equiv(A*[7])
follows (t =t": A)*[r; §]. (b,ii) follows by IH.
Case (TRANS)y;  Assume I'=(735). From pair(r;,s;) € Aj[r;] follows pair(r;,r;) €
Azlr], A*[r] = B*[r], B*[r] = C*[s] and therefore the assertion.
Case (SUB)  Assume I'=(7;7), pair(s;, s;) € B;[x/t]*[F, $;]. Now by lemma 6.12

Biz /t)*[F, 8] = Bf[x/t[F, 8,7, 8] = Bl [z /t[r], T, 5]
By IH 2 (a,i) pair(t[r], t[5]) € A*[F], therefore
0 [z/m 7, /U] ], g/ 5 5,

and by lemma 6.12 [z /t]*[Z/7; 7, 5], similarly for ¢'.

Proof for (e): If ,,y : B” in T, follows assertion by IH.

If ,;y : B” in I'[z/t], follows by IH B*[F,z/t]F], 5] = B*[",x/t["], 8], and by 6.12 the
assertion.

Case (REPLY) Assume I'=(77"), pair(s;, s;) € B;x/t|*[F, 5:]. pair(t[r],t'[F"]) € A*[7].
By 6.12 follows B [Z/7,x/t[r],y:/$i] = Bi[z/t]*[r, 3;]. Therefore we have pair(s;,s;) €
B:[Z/F, x/t[r],9:/8] Then by IH 1 B*[Z/F, x/t[r],y/5] = B*[Z/7,x/t'[i"],y/§], and by
6.12 follows the assertion.

Proof for (e): From IH 2 follows as in (REF L) the assertion for I' = ¢’ =t : A and further
as in (TRANS) the assertion for I' =t =t : A, which is the same as for I' = ¢t : A and
now the proof follows as in (SUB).

Case (REPL2) Assume I'=(7,7), pair(s;, s;) € B[z /t]*[F, $;]. Then pair(t[r],t'[F"]) €
A*[r], and by IH 1(a,i)

(s =s: B)[2/r 7, a/t[r]; ¢'[7], 4/ 5 5]

and by the 6.12 follows the assertion for (b,i). (b,ii) follows as in (REPL1), using that
we have the assertion for I' = ¢ =t : A, and (e) follows exactly as in (REPL1).

Case (REPL3) Assume I'=(7;5). We have (t = ¢ : A)[r; 5], and, since we have
pair(r;,r;) € Af[r;], A*[r] = B*[r], therefore the assertion for the first rule. The assertion
for the second rule is similar. Using the proofs of (REFL) and (TRANS) follows the
assertion for I' = B = B and therefore the assertion for (b,ii).

Case (ALPHA): Immediate by the IH since if A=,A", t=,t', A[5] = A'[5], t[r]=at'[T]
and pair (t[r], {[r]) € A*[r] < pair(t[r], U'[]) € A*[].

Case (NI), (NT)  Nothing to prove.



Case (II"=) Assume I'=(75). By IH (e) A*[f] = A™[s], and, if pair(r,s) € A*[r],
follows pair(r,r), pair(s, s) € A*[r], therefore by IH B*[7", z/r| = B*[7",z/r|, B*[s,x/s] =
B*[7, x/s], llx € A.B*[r] = (Ilx € A".B")*[3].

Cases (X1=), (WT=), (+77): similarly.

Case (I™=):  Assume I'=(7: 5). By IH (1) we have

pair(t[r],t'[5]) € A*[r], pair(s[r], s'[5]) € A"[F])

and by TH 1,(b,ii) A*[#] = A™*[s]. Therefore we have pair(t[r], s[F]) € A*[F] < (¢'[s], §'[3]) €
A/*[g’]

Cases (N}), (N/=);  Nothing to prove.

Case (N17)y:  Assume I'=(75). By IH we have for some k € IN ¢[f]—,45%0 A
t'[3]—,caS*0, therefore St[7]—,cqaS* 10, St'[8]—,.aS*10, and we have the assertion.
Case (ITH=):  Assume I'=(7 5), pair(r,s) € A*[F]. Then by TH (b,i)
pair(tlz/r,7),t'[x/s,§]) € B*[x/r,7] = B*[F,z/r]|, pair((\x.t)[Z/F], Ax.t')[Z/5]) € (lz €
A.B)*[r].

(b,ii) follows as in (II}~), since from IH (b,ii) follows (d) for z : A = B type.

Case (X57):  Assume I'=(75). By IH pair(s[r], s'[5]) € A*[F], further pair(¢[r],¢'[3]) €
(Blz/s))*[r] = B*[x/s[r], 7] = B*[x/s'[s], 5]. Therefore pair(p(s,t)[r], p(s',#')[5]) € (¥ €
A.B)*[n] .

(b,ii) follows as in (X77).

Case (WT=):  Let ar,, F be as in the definition of Wz € A.B*, a := ar,. Assume
I'=(7§). Then by IH pair(r[r],r'[5]) € A*[F)], s[F]—reaz.t, §'[S]=reara’ t', B [x/r[r], 7] =
B*[z/r'[s], s, and

Vpair(u,u') € Blz/t]*[Z/7](= B*[z/t[F],Z/r) 3y < a.pair(tjz/u],t'[z/u]) € F(T,7)

By (A — coll) and Ad(L,) there exist a 6 < a such that the v can be chosen to be < 4.
Then pair(sup(r, s)[r], sup(r,s)[5] € F(F,v+ 1) C Wa € A.B*[F].

(b,ii) follows as in (W7=).

Case (+17):  easy.

Case (I""=): obvious.

Case (N,f’:): Assume I'=(735). By LH. 1 follows t[r]—,eang, t'[5]—=reank, for some
n < k, $i[r]—reaSi € Termyyg, s;[5]—reaS; € Term,s for some pair(s;, s;) € Alx/ip]*[r] =
A*[z /iy, 7).

Therefore by lemma 5.3 (c)

Cr(t, 50, -y Sk—1)[F]=reaCr(nk, S0y - -+ Sk—1)—redSns

Cr(t', S0y, Sk—1)[S]—reaS

t[F]—reank, therefore pair(t[r],ng) € Ng. By pair(r;,r;) € A;[r;] and IH for the last
premise follows A[z/t]*[F] = A*[x/t*[F], 7] = A*[x/ng, 7] and we are done.

(b,ii) follows, since from IH 1 follows as in (SY M), (TTRANS) the assertion for t =t : N,
as in (SUB).

(b,ii) follows as in (SUB).

Case(NP=):  Assume I'=(7; 5). Then by IH 1 pair(t,t')[r] € N, therefore ¢[7]—,4S™0,
t'[7]—=7eaS™0 for some n < w. Further by IH 2 and 6.13 (b) exist 3y, 5 € T'erm, such
that so[r]—redS0, S1[7)—reaSy, pair(so, s,) € Alx/0)*[r] = A*[z/u, 7).



Let [/ := [Z/M) \ {=, y}, [7'/5] := [Z/5] \ {2, y}.

P(t, S0, (IL’, y)sl)[ﬂ_)redp(sn()’ g07 )\x)\y(sl[fl/f/_j]))’
P(t', sy, (x,y)s})[8] = reaP(S™0, 54, Ax. Ay.(s1[Z/7])).

Let Py(r) := P(r,50, \e.  \y.(s1[@ /7)), Pi(r) = P(r, sy, e \y.(s1[2'/5])). We show:
Vm € IN.pair(FPy(S™0), P(S™0)) € A*[2/S™0,7]. We will now conclude as in the case
NP=, Alz/t]*[F] = A*[z/t[F], 7] = A*[2/5"0, 7], and have now assertion (b,i).

If m = 0, Po(S™0)—reaSo, P1(S™0)—readh, pair(3o, 3) € A*[2/0, 7.

If m =k + 1, follows by IH Py(S*0)—eqS, P1(S*0)— a8, 3,5 € Term,, pair(s,s) €
A*[z/S*0,7] = Alz/x]*[x/Sk0, 7.

Po(S™0) —rea (A My.(51[7])S*OP (S*0) = rea(Ny.51[2/ S0, 7])5
—red sl[f'/F',x/SkO,y/g]
Py(S™0) —yeq S)[7)5,2/S%0,y/7).
Now pair(S*0, S*0) € N*, therefore by IH 3 follows
pair(s,[7 )7, x/S%0,y/3), s, (7 /5, x/S%0,y/5]) € Alz/Sx]*[r] = A*[2/S™0, 7],

and the side induction is finished.

(b,ii) follows as in the case N~

Case(IT®=):  Assume I'=(7 3). By IH 1,2 there exist #,,#; € Term,,; such that
t1[F] = reat1, t)[S)—reat) pair(ty,t') € A*[r], and there are r,r" € Term and Variables
x,x" € Vary such that

to[Fl=reaz.7, th[F )= readx’ v, pair(Ax.r, \a’.r') € (Ilz € A.B)"*[f].

Therefore N N

Ap(to, t1)[F) = rea Ap( A7, t1) = pear[x /11, 7],

Ap(ty, 11)[8) = rear’[2' /11, 3]

pair(r[z/ty, 7], r'[2' /1), 5]) € B*[x/t1, 7).

As before we conclude
pair(t[7], 1 [r]) € A™[7]
pair(ty, t,[7]) € A*[F]
B*lz/t, 7] = B*[z/t[F],7] = Bla/t]"[F),

and we have IH (b.i).
(b,ii) follows as in the case (N7).

Case(XF7=):  Assume I'=(755). By IH 1 exist s, s',t,¢' € Term,,; such that
r[Fl—reap(s,t), 7'[8]—reap(s’, 1), pair(s,s’) € A*[F], pair(t,t") € B*[z/s,T].

Then po(r[F])—reas, Po(r’[5])—reas’, and we are done for the first rule, and p; (r[F])—edt,
p1(77[S])—reat’, and since from pair(s, s’) € A[r], follows

pair(s,s') € Alr], pair(po(r)[r], s) € A[r],



therefore by IH 2

B*[z/s,7] = B"[x/po(r)[r], 7] = Blz/po(r)]"[F]

follows (b,i) for the second rule.

(b,ii) is in (X57); trivial, in (X£7), we use the proof of (X£7); and argue as before.
Case(WF=):  Assume I'=(7:5), @ := a;,, as in the definition of (Wx € A.B)*.

By IH to[]—redto, th[5]—reaty, pair(to,ty) € FO(7,-) (D). for some § < a. Let

[ /7] = [Z/7\ {=,y, 2},
[2/5] = [Z/3] \ {=,y, 2},
Ro(r) := R(r, (z,y, 2)t2)[F](= R(r, \x.\y.A\z.(t2[7'])))
Rl(r) = R(T7 (.T, Y, Z)t;)[gj
We show by induction on 7,
(+) Vv < a.Vpair(s,3') € FI(7, ) (0).pair(Ro(3), R1(5')) € C*[u/5, ]

Since Clu/to]*[F] = C*[u/to[r], 7] = C*[u/ty, 7] = C*[u/t}, 5] (using arguments as before),
follows the assertion.

The case v = 0 is trivial, and if v € Lim follows the assertion by IH

Let now

y= +1,u = FV(7)0), pair(3,§) € F(7,u).

If §—,edS, §—reas’, pair(s,s’) € F*#(5,)(0), pair(Ro(s), Ri(s")) € C*[u/s, ], fol-
lows pair(Ry(3), R1(5")) € C*[u/s, 7], further, like similar arguments before, C*[u/s, 7] =
C*[u/3,7] = C*[u/s"]. We therefore assume pair(s,s') € FP* (7 ).

Let pair(s,s') = pair(sup(r, Ax.s), sup(r’, \a'.s")), pair(r,r') € A*[r]. Let pair(r”,r") €
B*[x/r,7]. Then r"—,eqf, " —peqt for pair(v,7) € B*[z/r,7], 7,7 € Termy,s, and we
have pair(s[z/r"],s'[«'/r"]) € ' and

(%) pair(s[z/7], sl /7]) € u'
Since ' C (Wz € A.B)*[7] follows from the first of these assertions
pair(Az.s,\x’.s") € (B — Wz € A.B)*[7]
Further, for pair(7,7) € B*[x/r, 7],
(Ro((Az.s)v)[v/1"]=realto(s[z/T]) (v & FV (Ax.s))
(Ral (e YN[ 1" reaBa (T2 /) & FV ()
and by side TH, follows

pair((Ro((Az.s)v))[o/r"], (By((Aa’.s o) ['/r"]) € C*[u/ (sl /7], 71)
= C"[u/(s[z/r"]), 7))

Now we have pair(r;,r;) € Ai[ri], Ap(Az.s,r")—,eqs[z/T], and by (%), ' C (Wzx €
A.B)*[r], equiv((Wz € A.B)*[r]) and 6.13 follows

pair(s[z /7], Ap(Ax.s,7)) € (Wx € A.B)*[r]



therefore

Clu/Ap(y, )" [v/r", y/ Ne.s, /7] = C*[u/Ap(Ae.s, "), 7] = C"[u/(s[z/7]), 7]

further

Clu/Ap(y, v)"lv/r", y/ x5, T[] = Clu/Ap(y, v)]"[o/r", y/Az.s, Z/7),
and we have
pair(Av.Ro((Az.s)v), W' .Ry (A2’ .s')v")) € (v € B.Clu/Ap(y,v)])*[y/ .5, Z/T]
Now by IH 2 follows

pair(te[z/r,y/Ax.s, 2/ \v.Ro((Ax.s)v), 7], thlz /v,y /A’ .s', 2/ A" Ry (Ax.s")v'), 5))
€ Clu/sup(x,y)|*[x/r,y/ x.s,T]

Since
Clu/sup(z,y)|*[x/r,y/ x.s, 7] = C*[u/sup(r, \z.s), 7] = C*[u/s, s],

and

Ro(8)—=rea(Ax. Ay Az 822 [7])r(Ax.s) (M. Ro((Az.s)v))
—redlez/ry/ A8, 2/ (M. Ro((Az.8)v))]

Ry (8" ) —=reath|z /1, y/Ax.s', 2/ (A Ry (Az'.s")v"))]
follows (+), and we are done. (b,ii) follows as in the case (N;7).
Case (+57):  Assume I'=(7 8). By IH to[r]—,eai(r) € Termy,g, t4[5]—reai(r’) € Term,,;

and pair(r, ") € A*[F] or to[r]—=reaj(r) € Termyys, ty[51—reaj(r’) € Termy,s and
pair(r,r’) € B*[r]. Let [2'/7] := [Z/7] \ {z}. In the first case we have

D(to, (2)t1, (Y)t2)[F)=rea(Az.(01[7']))r—peat1 [ /1, T /7],

D(to, ()1, (9)t5)[F]—=reats[x /7", /5,
pair(ti[z/r, 7], ) [z/r', 8]) € Clz/i(2)]"[z/r, 7] = C*[2/i(r), ]

and using arguments as before

Cz/ilr), ) = C[z/tolr], 7] = Clz/to]"[7]

and we are done. The second assertion follows in the same way.

(b,ii) follows as before.

Case (IF): Assume I'=(7:3). By IH 1 follows (I(A, t1,t5))*[F] # 0, pair(t1[7], t2[F]) €
A*[r]. Further by IH 3 pair(ts[r], t2[s]) € A*[r], and by equiv(A*[r]) follows (b,i). (b,ii) is
trivial.

Case (II7), (X7), (X7): By using the proof for the elimination rules we see, that if the
conclusion is r = s : C, we conclude assuming I'=(r} §), that (r = r : C)[r}§], further
(r[s]—=reat € Termys) — (s[5]—redt), therefore follows (r = s : C)[r; s].

Case (II7):Assume I'= By IH we have

pair(t[r], t[s]) € (lx € A.B)*[7],



therefore t[r]—,eq .8, t[S]—rea A2’ S,
pair(\z.s, \v’.s") € (Iz € A.B)™**[f],
Assume pair(r,r') € A*[r]. Then r— .4, r'—eq”, pair(7,7') € A*[r], 7,7 € Termy;.

Ap(t, 2))[][x/r] = Ap(t[r], 1) —=reaAp(Ae.s, T) = reasla /7],

and since
pair(s[z/7], s'[x' /7)) € B*[x/F, 7] = B*[z/r, 7],
follows
pair(Ap(t, x)[M)[z/r], '[a"/7]) € B*[x/r, 7,
therefore

pair(Ap(t, x)[r], \z'.s") € (Ilx € A.B)*[],
pair(Ap(t, x)[7],t[f]) € (Ilx € A.B)"[r].

Case (X3): Assume I'=(735). By IH t[r]—,ear, t[S]—reqr’ for some pair(r,r’) € Yz €
A.B [N (Termys x Termys), p(po(t), p1(t))[r]—rear and we are done.

Case (I7): Assume I'=(7; 8). By IH we conclude pair(to[r], to[S]) € I(A, t1,t2)*[F], there-
fore to[8]—ear, pair(r,r) € I(A,ty, t2)*[F], pair(to[F],r) € I(A, t1,t2)*[F]. (b,ii) is trivial.
Case other equality rules: Let » = s : A be the conclusion of the rules. By using several
times the rules general rules, elimination rules and in case W= the introduction rules
we can conclude r = r : A, and s = s : A. (For (W=) we argue that I',v : Blz/tg] =
Ap(ty,v) : Wz € A.B, by (WE=)T,v: Blz/t] = R(Ap(s',v), (z,y, 2)t') : Clu/Ap(s',v)],
by Im= T' = \v.R(Ap(s',v), (z,y,2)t') : v € B.Clu/Ap(s',v)], by (ALPHA) for
the 2ME that we need, and it follows I' = M2ME R(Ap(s', 2M%), (z,y,2)t') : Tv €
B.Clu/Ap(s',v)], and now by (SUB) follows the assertion). Now, assuming I'=(7, 3,
and using the proofs above we can conclude pair(r[r], r[s]) € A*[r] and A*[r] = A*[s], so
(b,i). In all the cases, we have, if the right side is written as t[x;/r1, ..., z,/t,], if z; corre-
sponds to the type B; (read off from the rule) follows easily by IH and using the proofs of

several rules handled before the assertion for I' = r; : B;, therefore 7;[F]—,cq7; € Termy,
for some 7, pair(7;, r;[]) € Bi[r], further r[F]—,cat[z1/T1, - - - T0Tn, 7). We conclude

pair(tlxy /71, ..o T [To, T) tzr fr1(T]s - oy @10 T), 7)) € AY[F).

Now using equiv(A*[r]) and lemma 6.13 we conclude

pair(r[r], s[r]) € A*[7], pair(s[r], s[s]) € A*[F],

and have (b,i).
Case (UT): trivial.
(TH=) we have by TH, assuming I'=(7 5),

pair(al, a'[3]) € U”
therefore, ~
tripel(a[r],b,d'[3)) € U

~

for some b, by Cory(U),

tripel(a[], b, a[F]) € U, tripel(a[3), b, a[5)) € U,



and

T(a)[r) = b="T(a")[s]
Case (nf), (n!): trivial.
Case (71=): Assume I'=(7 3). By IH a[r]—,eqa, a'[5]—read,

Iy < a3 € TCU()(0)(tripel(a, b, a), tripel(@, b, a) € U (-)(D)),

and
Vpair(t,t') € ¥ — 36 < a;.3c € TC(U(-)(D)).

(tripel(blz/t, 7], c, b [z/t',§]) € U (-)(D)).
Since Ad(L,,) (here is the central point where we need (Ag-coll) and and admissible a
which is closed under the step to the next admissible), and TC(U?(-)(0)) € La, (8 < ay),
there is a p < ay, such that v < p and ¢ can be chosen < p. There are now b, f such that
([7'/7] = [Z/m \{x}, [7/5] = [2/5) \ {z}) ¢(a, ,b[7], d’, 2, b[F],b, f, Util*(-)(0)), (note
that the ¢ we used above is correct by Cor(U)) and by 6.5 follows

pair(rz € a.b,ur(b, f), 7z € d' V') € UPL()(0).

The cases (o17), (w!,=), (£"7), (i'7) follow in a similar way.

Cases (ng), (n™) are immediate.
Case (77): Assume ['=(7;8) and chose ¥/, f,p as in (7"=). Then T'(a)*[5] = ¥/, and if

pair(t,t’) € O, T(b)*[x/t,7] = f(t) = f(t') = T(b)*[z/t',5]. Since we have Cor(U) (by
lemma 6.9) follows

T((rz € a.b))*[F] = u(V, f) = (Iz € T(a).T(b))*[7].

Cases (07), (+ ) are treated in a similar way.

In the case of (w™) we conclude as before, that u),(b, f,-)(0) = F7(5,-)(0), and, since
a(UP(-)(0)) < az, (p chosen as in (7:=)) follows by 6.1

T(wz € a.b)*[r] = uf‘u(ﬁp(‘)(@))(b, f,)0) = F1(8, ) (0)c = W € T(a).T(b))*[3].

Lemma 6.19 The Main Lemma 6.18 is valid, if we replace ML{Wrp by MLiWr .

Proof:
As before, we only hae to check the rules, defined in 3.4 (a):
Case (of): Assume I'=(7; 5). By IH exists ¢, o < o such that

tripel((oz € a.b)[f], ¢, (ox € a.b)[5]) € U*(0).

Let o be chosen minimal. Then, o = o’ +1, and with u := U® there exist r, 1’ € Termyy,
¢, d, f, f such that a[F]—car, a[S]—rear’, tripel(r, c,r’) € wand (with [Z' /7] := [Z/7)\{z},
(/3] = [Z/3] \ {x}) VYpair(t,t') € ctripel(s[i’][x/t], f(t),s[§][x/t']) € u. Therefore
T(a[r])* = ¢ =T(al8])*, and for pair(t,t') € T'(a[r])*, pair(s[z/t, 7], s[x/t',§]) € U*[].
(7F), (wP), (") are checked in the same way. For (if) we observe, that a[f]—cqd,
a[5) = req@', S[Fl—read, 8|51 —rea’’, t[F]—redl, t[5]—real’, and tripel(a,c,a’) € u, for some u
as before, T'(a)*[F] = ¢, pair(s,s') € ¢, pair(t,f') € ¢, and since c is closed under —,.q
follows the assertion.



Chapter 7

Arithmetical formulas in M L{Wp and
KPit

In this chapter we want to evaluate the results we have found out to get the proof
theoretical strength of Martin-Lof’s type theory. We will interpret the language of Peano
Arithmetic (Lpga, introduced in 7.1) in Ly, and Lip (definition7.2) and prove that it
permutes with the interpretation of Martin-Lof’s type theory in K Pi* (lemmata 7.4 and
7.6). Next we observe, that we could interpret every proof in some theory K Pi, and
have a stronger bound (lemma 7.7). At the end we analyze the proof theoretical strength
of KPi} and have the desired upper bound (theorem 7.8).

Definition 7.1 Definition of the language of Peano Arithmetic Lpa: Variables should
be a set Varpa = {v[4]i € IN}, of 4 # oP'4 for i # j. Further we have symbols for each
primitive recursive function, =, A\, V, —, ¥, 3, L and .,,,(,).

Terms are Variables and f(t1,...,t,) ift; are terms and f is a symbol for a n-ary primitive
recursive function.

Prime formulas are L and equations r = s for r,s terms.

Formulas are prime formulas and A — B, ANB, AV B, Vz.A, dx. A, if A, B formulas,
r €Varpy.

Definition 7.2  (a) For each primitive recursive g : IN* — IN we define a closed g-term
intpamr(g), (we abbreviate this as g = intpa pr(g)) such that

MLEWr b §: N —---N — N,

k times

and we define a set intpa kp(g) short g in Lxp
such that K Pit & fun(g) A dom(g) = IN* AVx € IN*.g(x) € IN.
Case g = S: §:= Mx.Sz, g := {pair(z,z + 1)|x € IN}.
Case g = Projl:
G = Ar1, ..., xn.x;, § = {pair(tupel(xy,... x,), x;)|x1, ..., x, € IN}.
Case g = Cons!:
G = A1, ...,2,.59°0, g := {pair(tupel(xq,...,2,),c)|z1,..., 2, € IN}.
Case g(w1,...,wn) = h(gi(x1, .., 70), oo, Gl @1, -+, @)
G =Ar1, .., h(grey o xn) o (G X)),
g = {pair(tupel(zy,...,x,), h(g1(T1, .. s Zn)s ooy Gm(T1, -, T0)))
|1, ..., z, € IN}.
Case g(1,...,2n,0) = h(xy, ..., 2,),
gxy, ..y + 1) = k(. y, g(21, .o X0, y))

56



g:=Ar1,...,x,,y.P(y, iz:g s T, (u,v) kX - mpuw),

define a(x1, ..., Tn,0) = h(w1,...,2p),

a(xy, ..., Tn, SY) = k(x1, ..., 2n,y,a(xy - 20,Y)),

then

g = {pair(tupel(z1, ..., xn,y),a(x1, ..., T0,y))|T1,. .., Tn,y € IN}.

(b) Foreach termt of PA we define a g-term z'ntpA ML( ), shortf and a term of Lk p intpa kp(t),
short t, such that, if FV(t) = {vZl N O S (1 in) (EA as in definition 7.1 of
Varpa) then FV(t) C {zME,. ., 2ME} FV(1) C {u ul P} and MLSWyp = 2ME
N,....2ML-N=1¢t:N, and
KPi* I—Vuffp,...,ufip € IN.(f € IN).

KP

i1 g e e ey

Case t = vfA: .= 210 1= ulk?.
Caset =0:1:=0, t:=0.
Caset =gty -ty: t:= gty t,, t:==g(ty, ..., t,)

(¢c) For each formula A of PA we define a g-type intparr(A), short A, and a formula of
LKp intparxp(A), short A, such that in KPit A is equivalent to a Ag-formula, and if

FV(A )—{vll,... }(zl< zn)

then FV (A )C{z ey Zn ML FV( Ay € {ufP, . ulPY and
MLTWTI—ZML.N... N = A type.

Case A= (s=1t): A —](N,é,f),A:: (5=1)

Case A= (BANC): A:==(Bx (), A:==BAC

Case A= (BVC): A: —(§+CA'),;1:: (BVC).

Case A= (B—C): A:=(B—C), A:=(B— Q).
Case A =YoPA B: A= HZMLENBAZVUZ-KPEINB
Case A= FFAB: A —zzMLeNB A:=3uf" € INB

Case A=1: A:= Ny, A:=(0+#£0).

Definition 7.3  (a) We deﬁne emb : IN — IN, embnat(n) := S™0(=: n) (or more precisely
[S™0]), a function definable in KPi*.

(b) makepair(a) := pair(a,a).
Lemma 7.4 (a) If g: IN° — IN is primitive recursive, then

KPit = Vt,...,t, € Terme Nna, ..., ny.
(1t =gy A -+ - AP qfin) — 11, .. Pr—reaemb(G(na, . .., ng)).
(b) Ift is a term of PA, FV(t) C {vF4, ... vl4}, then

KPitF  Yry,...,rn € TermeVng, ... . (1 —peqiy A -+ ArF— gy —

tME ey M e )= peaemb ([l g, ul T Ing)).

Proof: (a) Case g = S: §t1—rea(AT.ST)N1—1eg ST = emb(Sny).

Case g = Projin: gti,...,tj=red\Tit1, ..., Tp.x; for j <4, Azipq, ..., x50, for i < j.
Case g = Cons: trivial.

Case ¢(Z) = h(g1(Z), ..., gm(D)), l; := Gi(n1, ..., ny):

Qz‘(ﬁh cee ﬁn)_ﬁﬂedemb(gi(nla e 7nn)) = €mb(lz')7



therefore

ari,...,Tn
—red hgl(ﬁ'la e ,’fl,n), e ,gm(ﬁl, e ,fln)

red emb(h(ly, ... 1y))

— 6mbnat(g<n17 LRI 7nn))

—

Case g(z1,...,2n,0) = h(xy,...,20), (¥, 2pnt1) = k(Z,y, 9(Z, Tpy1))). Induction on ny, .
If nn+1 = 0,
g(rh <oy Ty, TTL+1)
—red  P(Mns1, (A0, ..o ), (Au, v.kng, ... Ru))
—red  P(Nni1, emb(lNz(nl, oo ng)), (Au, U.if’fll, ooy NpUY))
—red emb(ﬁ(nl, )
If nn+1 - k + 1,

gty tn, toy1)
—vea P(Sk, (hivi, ... i), O, vk, .. )
vea P(Sk,emb(h(ny, ... .ny)), \u,v.knq, ... ‘nu))
—rea (A, v kR, . Au)kP(k emb(h(ng, . .. ny)), (Au, vk, ... ipuw))

—red l%ﬁl, e ,ﬁnl%embnat@(nl, R )

—rea emb(k(ny, ... np, k,g(ny, ..., n,, k) =emb(g(ng, ..., nn,Npy1))

(b): If t = vF4, 0, this is trivial,
and if t = gtq,...,t, follows N
tz’ [7:] —>redemb(ti [7_1:] ) ;

by (a) therefore

t[f]_%“edg(fl [7:]7 cee ,th[fD - tN[ﬂ

Next task would now be to prove, that, when we first interpret a formula of Lp, in
Ly, and then use the interpretation, as we have done in chapter 5, we get an equivalent
formula to the one, we get by directly interpreting Lp4 in Lxp. But in this formulation,
this is not correct, here is the place, where we need to extend the set of term constructors
by the constructors A;: Assume, that we had only interpreted Ilxz € A.B as a set of
closed terms, which all represent recursive functions. Let A(z,y) be a prime formula
of Lpa, such that, KPi* F intpa p(Vz.3y.A(x,y)) and such that there is no recursive
function g such that Vz.A(z,g(z)). Then we had intpa (Ve 3y Az, y))* [ ] = 0, so
for every t € Term, FV(t) C {x} pair(Az.t, \x.t) € intpayr((Vr.Jy.Alx,y)) —L)* ],
although K Pit b —intpa xp((Vr.3y.A(z,y)) —L). But when we add a constructor A;
together with its interpretation A} such that Vz.(Jy.A(z,y)) — A(x, Af(x)), we have
intpanr(Ve. 3y A(z,y))*[ ] # 0 and intpayr (Ve Jy.A(z,y) —L)*[ ] = 0. Following this
idea we can define for every formula a finite sequence of functions fi,..., f,, such that
the two interpretations are equivalent, if we have A; with AY = f;, as will be stated in the
next lemma:

Lemma 7.5 For every formula A of PA with

FV(A) c {of4, .. of4

i1 ]



with i1 < ---14; there exist a finite set of functions F, with Vf € F.3n.f : IN* — IN,
definable in KPit, such that for every interpretation relative to an extending set of con-
structors (A;)ie; with interpretations (Af)ier, such that F C {Af|i € 1} there ezists a

ML ML > ._ ML ML = ._ . KP KP
h € Terma, asy,e, FV(t) C Az 200 (2= 200500, =y,
such that

iel

KPif v Vny,...,n € INVry,...,r € Termgy.
(T1—=redf1 A -+ = N Ti—peaily) —
((Ir € Termy,s.h[Z/T]—=rear) N
(A[ii/7] — makepair(h|Z/7]) € ﬁ*[Z/F]) A
(Ala/7] — A*[Z/7 #0))
Proof: by induction on the definition of the formulas.

Again we will not mention explicitly Variables, that occur in subterms, or do not occur
at all. Case A =_1: Choose F := 0, h := 0 We have ~A[i], A*[r] = 0.

Case A = (s = t): Choose as F := 0, h := r € Term,s;. We have, using that for
r—reds € T'ermyy s is unique, and 7.4

slri] = tl7]

(In € IN.5[F]—1eaS"0 A H[F]—1eaS™0)
pair(8[r], f[ﬂz € N”
pair(r,r) € A"[r]

AT #0

Case A = (BAC): Let F; for A; chosen, F':= Fy U F,. If FF C {Af]i € I}, and we have
h; according to the assertion of the lemma chosen. Then we define h := p(hy, he). Then
for i € IN, 7 € Terme; as in the lemma, exist sq,sy € Termy,y, such that r;[F]—,eqsi,
h[F]—=yeap(s1, s2) € Termy.

Alft

11111

Al By[ii] A Ba|]

makepair(sy) € Bf [71] A makepair(sq) € E; 7]
njakepair(h[f]) e A*[f]

Biffl £ 0 A Byl 2 0

A*[i) # 0

Case A = (B; V Bs): Let F; for B; chosen. Let

11111

f3 := {pair(tupel(ny,...,n;),)|[(i =0 A Eo[ﬁ]) V(i=1A —Bo[ﬁ])}

F = FLUF,U{fs}, and if ' C {A}|i € I}, further A} = f3, h; chosen according to
the IH for F' and define h := P(Ax(2), h1, (u,v)hs) (u,v new variables). Then if 7, 7 are
chosen as in the assertion, there exist s; such that h;[i]—,cqs; € Termy,

Ap(re, - ) —reaAr (R, o 1) —1eaS'0
for i = fo(i7) € {0, 1}, if i = 0,

R[] —reaP (S0, 51, (u, V) ha[F]) —reas1 € Term,,y,



and if 1 = 1,

= reasa-
We have
Alii] < B[]V (=Bi[] A Ba[l]) ~ ~
— (fs(n)=0A mak:e]zair(sl) € Bi[r) V (f3(71) = 1 A makepair(sq) € B3[r))
— makepair(h[rF]) € A*[F]
— B[l # 0V Bl #0
o A#0

Case A = (By — B,). Let F; for B; chosen, F' := Fy UF,, F' C {Af|i € I}, and
assume that h; are chosen for A;. Define h := Ax.hy Then for 7, 7 as in the assertion

h[f] € Termy,s, By TH hy[r]—,casq for some sy € Termy.
Subcase A[fi]. If By[fi] is false, then by IH Bi[7] = 0, therefore

Vpair(r,r') € Bi[].pair(h[z/r, 7, ho[z/r', 7)) € B3[F)

therefore makepair (h[]) € A*[7.
If B[] is true, then B[] is true, therefore makepair(s,) € B[,

Vpair(r,r') € Bf [F].halx /1, T]—rease A halx /1!, Fl—,casa A makepair(sy) € B’; 7],

hlF) € A*[7).

Subcase —Jl[ ). Then by IH exists s; such that hl[f]—>redsl € Termys and we have
makepair(s,)inB:[7] and, if we had pair(s,s’) € A*[f, then makepair(s) € A*[F,
§—rea .t for some t, makepair(t[z/s,]) € Bi[F] = 0, a contradiction, therefore A*[F] = 0.
Case A = Vvl4.B: Let F, for B be chosen, F := F|, F C {A}]i € I}, hy be chosen for
B, and let h := \vf4 hy. Assume 7, 7" as in the assertion, h[r] € Termy.

Assume pair(r,r') € A*[7], then pair(r,r) € A*[F, r—>red)\xt and

Vk € N.makepair(r[z/k, 7). € B*[zM* [k, ),

by IH follows Vk € IN.B[uXF [k, 7] , therefore Al#].
Assume A[7i]. Then for all k € IN B[v/*/k, ], therefore by LH. makepair(h[v[*/r,7]) €
B*[zME /r 7], whenever r—,.4S*0, therefore makepair(h[r]) € A[r].
Case A = /4. B, Fy be chosen for B,

fo := {pair(tupel (@), k)| (B[uX"/k, 7] AWK < k.~(B[ul/k, 7)) Vv

(k =0AVk € N~(Bul"/k, i)}
Let F':= Fy U{fa}. Let FF C {A}]i € I}, hy be chosen for B and A} = fo. h =
p(Ag(2), hi[zML ) Ap(Z)]) Assume 77, 7 as in the assertion, k := fo(77).
Ai(F)_)redAi(ﬁla BRI ﬂn)_WedSkO-

By TH we have hy[zML/AL(2)][F] = h[zME/Ai(F), F]—reats for for some t; € Termy,
therefore h[i]—,..ap(S*0,t1).
Assume pair(r,1’) € A*[f]. Then pair(r,r) € A*[A, r—reap(S'0,7") € Termyy. Then
makepair(r") € B*[zML /50,7, by LH. Blul‘? /1, 7], therefore A[f].
Assume A[fi]. Then by definition B[uX"/k, 7] and by IH

makepair(t) € B[ML Jk, 7] = B* M A7), 71 = BIME /AW /7,

(we use that ML{Wr = 2: N = A type, R
pair(Ag(7), k) € N* and the Main Lemma), therefore makepair(h[r]) € A*[7].



Lemma 7.6 If A is a formula in PA, MLSWryy - s: A, then KPit F A.
Proof: lemma 7.5

Now we observe, that, for a particular proof, the interpretation of M L{Wr can be
carried out in K Pif for some n: In definition 5.8, we can define A* in KPi} for n >
level(A), where level(A) counts the nesting of W-types (we replace a(u) by a(u)™, a(u) by
a(u)™). (In fact, we only had to count nestings of W-types above U, but this is technically
more complicated.) U can be defined, by replacing again a(u), a(u) by a(u)”, a(u)", in
KPif for n > 1. The small lemmata of chapter 6 can be proven in KPil for n > 1
and in lemma 6.18, we can for each judgement prove the conclusion in K Pi} for n > no,
where ng is the maximum of the levels of types occurring in the proof in ML{Wrp. All
arithmetical formulas have level 0. So we have the following stronger lemma:

Lemma 7.7 If A 1s a formula of PA ML{Wry = s : A, then there exists n < IN, such
that K Pif + A.

Theorem 7.8 ’MLTWT,UL ‘MLTWTL |ML§WR7U‘, ‘MLTWR‘, ‘MLZIWT|, ‘MLZIWR‘ S
Vo, (Qr4w), where the ordinal denotation is as in [Buc92b].

Proof: We show, that |KPi| < ¥q,(€q,,,+1) < Ya,(Qr4w). By lemma 7.6 follows the
assertion.

We follow the lines of [Buc92b]. First observe, that we can prove as in theorem 2.9 there,
using several applications of 3., (A)*, and F* Ad(L,») for " € {k, ..., kn1}, that if:

(%) A€ Lim A ki, ... kpo1,k € R(Va < k3K € Ra <k <K)A
(%) KEKIANKL €KRa N NEpg € Kp_1 NEp_1 € A
and if we extend X* by K, k1, ..., Kp_1

follows

Fx (K Pit).
We can adjust theorem 3.12 of [Buc92b] to obtain, if we have (x), A € R, and \, k, K1,
..., kn_1 € H, and H closed under & — &7, then:
For each theorem ¢ of K Pi exist k € IN such that H I—‘j\’iﬁ .

Now observe, that H., in [Buc92b] has the desired properties (with X := Q. &; 1= Q)
and we conclude as in theorem 4.9, Corollary, with v := g, (eq,., )

|KPif| < g, (€q,.,)



Part 111

A lower bound for the proof
theoretical strength of Martin-Lof’s
type theory
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Chapter 8

A well-ordering proof in
Martin-Lof’s type theory

In this chapter we will prove

MLiWgFr:Vope N —U( Vy € N.(Vo < y.¢x) — ¢y)
— Yy < Daq,,  Qiin-dy

for some term r, that is M LWy proves the well-ordering up to every ordinal less than our
desired proof theoretical strength of M L:Wx, ML{Wy and ML¢Wx. To prove this, we
need in some sense to write a computer program, the term r. To do this we will introduce
some useful abbreviations.

We will define in Martin-Lof’s type theory the analogue of many constructions known
from analysis, such that we can later on more or less follow the lines of a well-ordering
proof in A} — CA + BI.

After giving some general abbreviations (8.1), we define the type of truth values B (8.2),
the natural numbers (8.3), lists (8.4) and state the obvious properties (lemma 8.5). On
page 67 we introduce the four kinds of candidates for the power set of the natural numbers
we have, and introduce them in definition 8.6. Then we introduce the subtree ordering
(definition 8.8, properties are shown in 8.9), which, although looking very simple, was
one of the key ideas in this proof, since it allowed to define W (X) (definition 8.11). On
page 73, we explain the general method for the well-ordering proof. We assume some
properties for the ordinals (general assumption 8.10) define now W (X)) (definition 8.11).
We prove, that we have induction over W (X) (8.12), and show some easy properties of
W(X) (8.13 and 8.14.

Next we define the “ausgezeichnete Mengen” (definition 8.16). We show, that ausgezeich-
nete Mengen are segments of each other in the sense of lemma 8.19, define W (definition
8.20), which is the union of all ausgezeichnete Mengen, and the segments of which are
exactly the ausgezeichnete Mengen (lemma 8.21). We show that W is closed under + and
the step to the next cardinal (8.24), contains the type of every element (8.25) and that W
is a “ausgezeichnete Klasse” (definition 8.27). To prove that W is closed under certain
ordinal functions, we need the fundamental sequences of it, stated in 8.10. We prove that,
if I n X and Ag(X), then W(X) is closed under A\z.Q2, (z < I), (8.30), that W (X) is
closed under Veblen-function (8.29) and collapsing function (8.31). Now we define classes,
which are syntactical increasing ausgezeichnete Klassen (definition 8.32) and show that
we can prove using W, transfinite induction up to Dq, (274, (theorem 8.34).

63



Preliminaries 8.1 In this part we use the formulation a la Russell for the Universe,
where the elements of the universe are types, rather than terms representing indices for
types, as in the formulation a la Tarski. In the first part, we preferred the formulation
a la Tarski, since indices for the elements of the Universe are better for the interpration
in KPit (we could interpret the Universe as a subset of the natural numbers), whereas
the Russel-formulation is more suitable for actual using it (we do not have to apply the
type constructor T to make a type out of an element of the Universe). The author thinks
that it would have been able to carry out the well ordering proof in ML\ Wy rather than
ML{Wg — this way he would have proven the proof theoretical equivalence of four, and
not only three theories. (we have not proven a lower bound for M L'Wr) Unfortunately,
there was at the end no time to check this any more.

We use the following abbreviations:

r0 = po(r), 71 = pr (1),

<r,s>:=p(rs),

rs:= Ap(r,s),

(r=as):=1I(Ars)

Ve € AB :=1lx € AB, 3x € A.B := Yz € A.B, we will use this, if the intended
meaning of the type is a formula.

B = NQ, 1= N(), T:= Nl.

AVB:=A+B, A~ B:=(A—=B)AN(B—A), " A:=A—L, (r#as):=-(r=as).
A, V, VY, 3 are used for talking of types, which have formulas as the inteded meaning,
whereas the use of X, +, Il, X, indicates, that we are talking of functions and sets.

We will write Ax,y.t for Ax.\y.t, Yo,y € A.B for Vx € AVy € A.B, similarly for
4,11, X, W and for more than two variables.

We will in the following argue informally, especially, if we say: “we have A”, or shorter
“A” for some g-type A, we mean, there exists a term r such that ML'Wxr F=1r: A. We
write v : A for MLIWrEr: Aandr,s: A for MLIWr b r: A, further MLWgr F s : A,
C=r:Afor MLWrET =1r: A, elc.

We will not be very restrictive in the choice of variables, so we will use x,y,z, a,b,c
and sometimes capital letters such that A, B,C and X,Y,Z for them. We will prefer
i, 7, k,n,m to indicate natural numbers (considered as natural numbers and not as elements
of the subsets of N T", T', OT, A” etc. which are denotations for ordinals), o, 3,7 for
trees (elements of a W-type) but sometimes as well for elements of OT. Elements of OT
are usually denoted by a,b,c or x,y, z.

Definition 8.2 We define some functions corresponding to the type B, the type of truth
values.

Fort : B we define ift then A else B := Cs(t, A, B).

tt = 02, ﬁZ: 12.

Ag = Az, y. if v then (if y then tt else ff) else ff,

Vg = Ax,y. if x then tt else (if y then tt else [f),

Ag,Vp : B — B — B, written infiz, Ag is the boolean conjunction, Vg the disjunction,
-5 := Az. if x then [f else it

-5 : B — B, the boolean negation,

atom := Ax. if x then T elsel,

atom : B — U.

(atom transfers a boolean value to a formula, atom(tt) is a true formula — a type having
one element, and atom(ff) is a false formula — the type Ny =L, that has as elimination
rule the rule which corresponds to “ex falsum quodlibet”)




Note, that for decidable predicates p we have Vx,y € N.atom(p(x,y))V —(atom(p(z,y))).
The next task is to introduce certain functions and relations on N.
Definition 8.3 (a) 1:= 50, 2:= 550, etc.

(b) predy := Ax.P(x,0, (u,v)u), predy : N — N, the predecessor on N
that is pred0 = 0, predy(Sz) =N .

(c) zero? .= \x.P(xz, tt, (u,v)ff), zero? : N — B, the test for 0,
that is zero?0 =g tt, zero?(Sz) =g ff,

(d) <np= Ax.P(x, \y.—g(zero?y),
(w, )Xy if (zero?y) then ff else (v(predyy)),
<np: N — B, the <-relation on N, which we write infiz, and have:
(O <N.,B 0) =B ﬁc, (O <N.,B St) =5 tt,
(Sl’ <N.,B 0) :Bﬁc, (Sl’ <N.,B Sy) =B (:E <N.,B y)
<y:= Ax,y.atom(x <yp y), written infiz, too. <y: N — U is the <-relation, seen as a

formula.

(e) <np:=Ax.P(z,\y.tt,
(w, )Ny if (zero?y) then ff else (v(predyy)),
<ng: N — B, the leg-relation on N and we write <y p infiz. We have:
(O SN,B [E) =g lt,
(Sz <np 0) =51, (St <np SYy) =5 (z <npY)
<n:= Az, y.atom(x <npgy), written infiz, too.
<y:N—=U.
We define Vo <y t.¢p :=Var € N.x <yt — ¢, similarly for 3 and <y.

(f) =np:= Ax.P(x, \y.zero?y,
( v)\y. if (zero?y) then ff else (v(predyy))),
=np: N — B, the decidable equality on N. We write =y infix, and have:
(0=n50)=ptt (0=nN5St) =51
(Sz=np50) =5 ff, (St =n5 Sy) =5 (v =n5Y)-
#N,B:= AT, Y. BT =NB Y-

(9) +~ = Az,y.P(y,z, (u,v)Sv),
+n: N — N — N, the addition on N. We write +y infiz, and have:
r+y0=yz, x+y Sy=nS(x+nY).

(h) — = Az, y.P(y, z, (u,v)(predyv)),

~: N — N — N, which is the minus-function on N, we write — infiz, and have:
r—0 =y z, =Sy =N predyy(z—y).

(i) maxy = A\x,y. if v <y y then y else x,
miny = A\x,y. if v <y y then x else vy,
mazxy,miny : N — N — N, the maximum and minimum of two natural numbers
and we write maxy{a, b}, miny{a,b} for maxyab, minyab.

(3) VB,< := An, ¢.P(n, tt, (u,v)d(u) As v),
V< : N — (N — B) — B, that is
(V.<00) =5 tt,

(V5,<(Sn)¢) =p (¢n) A5 V5 <nd).



dp < = An, ¢.P(n, ff, (u,v)p(u) Ve v), that is

(I8,<09) =5 [,
Ip,<(Sn)¢ =5 ((¢n) Vs Ip,<ng).

Further Vg < == An, p.Vp < (Sn)¢, Ip < := An, $.35(Sn)¢.

We write Vgxr <y n.¢ for Vgn(Az.¢), Vgr <y n.¢ for Vg<n(Az.¢), Tpr <y n.¢ for
dgn(Az.¢) and Jpx <y n.¢ for Ig<n(Ax.¢). Vg, Ip are used for bounded universal
quantification over a decidable predicate, which can be decided (see 8.5 (e)).

(k) We write = for =x.
We will now define lists as a pair < n, f >, where n is the length of the list, and (f(4));<n
are the elements of the list.

Definition 8.4 Let A be a g-type, and assume (we will need this for stating the typing
Judgements), x,y, z,u,v,w € Varyyr, MLiWg =T = A type, X, Y wvariables that do
not occur free or bounded in ", A’.
Alist :== N x (N — A).
lh := \z.20, and have I" = lh : A'list — A'.
(). :== Az, y.(xl)y, and have I' = (-). : A'list = N — A/,
and write (a); for (+).i
nil, =< 0,\z.y >, I',y : A" = nil, : A'list, (we omit the index y, if we have any usual
dummy element, for instance 0 in case of A= N ).
cons == Ax,y. < S(Ih(y)), Az. if z = 0 then x else (Y)predy (=) >
I' = cons: A" — Allist — A'list,
car := \x.(x)o,
I' = car: A'list — A’
cdr = Axv. < pred(lh(x)), \y.(a) s, >.
cdr . Allist — A'list
append := Az, y. < Ih(x) +n Ih(y), Az if 2 <y Ih(x) then (x). else (Y)ina)+y= >
I' = append : A'list — A'list — A'list
ENiist,5:= AT, Y.lh(x) =N h(y) As Vsz <y lh(z).(x): =Nn5 (¥):),
=nusts: Nlist — Nlist — B, the equivalence of two lists, which we write infiz, and
A X pse B:=1h(B) =1h(C)AVz <y lh(B).(B), =4 (C)..
(where z is a variable, that does not occur free in B or C)
(for A : U, we can define a function AX,Y. X = Y @ Alist — Alist — U and have
then:
DLX)Y @ Alist = X =y Y type)
and for fited n < aq,...,a, >ris:=< Sn, f >, where
f =M. ifv =y 0 then ag else
ifr =np 1 then a; else - -
-+ if ¥ = n then a, else ay,
and if z; are new variables, then ML'Wgr =T,z 1 A, .. .2y 1 A =< T1,..., Ty >pist:
Allist
Sublist x y will be the list of the first y elements of the list x:
Sublist := Az, y. if y <y lh(z) then< y,x1 >else x,
' = Sublist : A'list — N — A'list, we write Sublist(a,b) for Sublist ab.
We can easily prove the following properties:

Lemma 8.5 (a) atom(tt), —(atom(ff)). (which means: there exist g-terms r,s, such that
MLWr b r:atom(tt), MLiWg & s : =(atom(ff)) ).
Vo € B.atom(z) V —~atom(x), (which means that for all decidable predicates (functions with
codomain B) we have tertium non datur).




(b) Yx,y € B.atom(z Ag y) < atom(x) A atom(y),
Ve, y € B.atom(x Vg y) < atom(z) V atom(y),
Vo € B.atom(—pz) < —atom(z).

(c)Ve,y e Nx <yyVae=yVy<yz,
(which means: there exist a g-term r, such that
ML\Wgkr:Vo,ye Nx <yyVr=yVy<yz),
Vo,y € Natom(z =ypy) o x=y. Vo,ye Ne <yy— (r Zy A -(y <n x)),
Vo,y e Ne =y — (=(z <n y) A =(y <n 2)),
Ve,ye No <yy«< (x<yyVa=y),

(d) YVx € No # 0 — x = S(predy(x)).

(e) Yy € NY¢ € N — B.atom(Vgx <y y.¢) « Vo <y y.atom(¢y),
Vy € NV¢ € N — B.atom(Igx <y y.¢) <> Jx <y y.atom(oy),
similarly for <.

(f) LetT' = A : type, I' = d : A.

Va,y € Nlist.atom(z Znusts Y) < T Zniist Y-

Vo € Alist.x = g5 nilg <> Ih(z) = 0.

' = Vo € Alist.—(x Z g5t nily) — & = g1 cons(car(z), cdr(x)).

I' = Vz € Alist.append(nily, ©) = ays T,

['= Va,y € Alist, z € A.append(cons(z,x),y) Zaus: cons(z, append(z,y))
Proof:
(a) is obvious, (b) follows by boolean induction. In the second assertion of (¢), “—” follows
by induction on z,y : N, for “” we use again the same induction, and argue, if 0 = Sy,
then 0, € Ny = P(Sy, No, (u,v)Ny) = P(0, Ny, (u,v)Ny) = Ny = atom(0 =y 5 Sy), and
if Sx = Sy, then x = predy(Sz) = predy(Sy) = y. The other assertions in (c), (d), (e)
follow by induction on N.
In (f), the first assertion follows (b) and (e), by induction on the length of the lists, the
other one follow easily.

The most complicated definition is to introduce the analogue of the subsets of the
natural numbers. We will use in this proof four different possibilities for introducing
the power set of N, which we present in increasing order of their complexity: The finite
sets P/7(N), defined as lists of natural numbers, the decidable sets P%“(N), defined as
boolean functions on N, which decide, which elements belong to the set, the ordinary
power set P(N), defined as a functions f : N — U, where the elements should be those
n : N, such that fn is not an empty type, and the subclasses of N Cl,(N), which are
types (seen as properties) with free variable y.

The subsets with lower complexity have, roughly speaking, the advantage of better degree
of decidability, whereas we need the subsets of high complexity, to introduce concepts
which correspond to the highly impredicative definitions, possible in the corresponding
systems of analysis.

For each power set we will introduce the relation 7, which stands for the element relation
(for the first two power sets additionally the decidable element relation 7z), the types
Vo n A.B, (with intended meaning for all x in A we have B), 3z n A.B, the relations
the relations C for subset and = for “have the same elements” between power sets, union
(U), intersection (N) and difference (\). Further we lift an element of one power set to
the next complicated power set (operations -+, -7, - and we define the finite sets



{a,o,. .

., ap}, the empty set (), and, except in the finite case the set corresponding to N,

namely Ny, Np, Nciy.

We will give, whenever possible, closed terms, which we can do, as long as the types are
constructed of elements of U or elements of some fixed type related to U. For the case
that the types are no longer elements of this type, we need another definition, which is
for each type a new syntactical object.

We will use capital letters like A, B,C' and X,Y, Z to indicate elements of the four power
sets of .

Definition 8.6 (a) The four kinds of subsets are:

(b)

(d)

The finite subsets are the elements of P/"(N) := Nlist,

the decidable subsets are those of P*¢(N) := N — B,

the ordinary subsets are the elements of P(N) := N — U.

For the subclasses of N we have no type containing all classes, but we have only the following
meta statement:

I' = AeCl,(N) is defined as ML{Wgr E T,y : N = A type.

The finite subsets can be seen as a list of the elements of the set, the decidable subsets
are functions of boolean value, which decide for each element, if it belongs to the set. The
ordinary subsets are functions, that assign an element of U to each natural number. If we see
this element as a formula, the set is supposed to contain all elements, for which this formula
is true (although this sentence is just some heuristic, we cannot say in type theory that an
element of U is true, only that we have some t : U). To exhaust the full proof theoretical
strength of Martin-Lof’s type theory we need classes, which correspond to classes in systems
of the analysis. A class is a type, depending on one free variable y (and eventually on a
bigger context), and the class A € Cl,(N) stands for {x € IN|Aly/z|}. When using classes,
we have to be careful with the use of free and bounded variables.

In PI"™(N) and P**(N) we have decidable element relations 1 in 5, Naces, Which distinguish
these from P(N), Cl,(N):

Ning:= Ny, X.3pr <y INX).y =n5 (X)s, Nping: N — PI(N) — B;

Ndec,B-— )\y7X'Xy; Ndec,B* N — Pdec(N) — B.

Both relations are written infix.

The element relations nfin, Ndec, N and N,y are defined as follows:

Npin:= Ny, X.atom(y nyins X), Npin: N — PI™(N) — U;

Naee:= Y. X.atom(y Naees X), Naee: N — P*(N) — U;

n:= Ay, X. Xy, : N - P(N) —=U.

all these three relations are written infir, and y n. X can be seen heuristically as a formula.

t noy B = B'ly/t], where B'=,B such that B'ly/t] is an allowed substitution (we can do
this for all the finitely many types occurring in the proof we construct)

We further define

u/fin:: >‘y7 X‘_'y Nfin X; u/fin: N — me(N) - U7
similarly 1gee, 1, and
t 7/7/Cl,y B = ﬁ(t Nci,y B)

PIn(N) is distinguished from the other kinds of subsets, by having decidable quantification
over boolean predicates:



(¢)

(f)

(9)

Vi = AX, fVpx <y IW(X).f((X).),
Jp 1= AX, f.Ipr < Ih(X).0((X).).

Vg, 35 : P/"(N) — (N — B) — B,

and we write Vgx n B.¢ for VgB(Ax.¢) and gz n B.¢ for Igb(Ax.¢).

We can prove:

VX € PI"(N)Vf e X — B.atom(Vgz n X.f) < Vo € N.x npin X — atom(fx),
VX € P/"(N).Yf € X — B.atom(Igz n X.f) < 3z € N.x npin X A atom(fz).

We define the quantification over subsets of N first, for functions with values in U as closed
terms:

Y =AX,Y.Xx € Nang, X A (Yo),

i = AX, Y1z € Nz gy X — (Ya),

2 tins Wi 'me(N) — (N —=U) = Uy;

Yaee = AX,Y.Xx € Nx ngee X N (Y),

Mgee := AX,YIlz € Nx nge. X — (Y1),

Z:clem 1_Idec : Pdec(N) - (N - U) - U’.

Yp:=AX, Y'Yz e Ny € (zn X).(Yry),

[p := AX,YIlz € NIy € (z n X).(Yzy),

Yp,lIp: [IX € P(N).(lr e Nan X - U) — U.

We write ¥ for 11, 3 for ¥, (when our heuristic is to speak of formulas rather than functions),
and write Ygx n B.¢ for LgB(A\x.¢), similarly for 11, ¥V, 3, and for indices dec, and in the
case of ordinary subsets Xx n A.B or 3x n A.B for YpA.(A\x,y.B), Vxn A.B or llx n A.B

for llpA(A\x,y.B), omitting the indez y if the variable y does not occur free in B (we assume
that in this case we choose a new variable y ).

If we have no function with value in U, but just a type with a free variable, quantification is
defined as follows (where x, z are always new variables):

22 Npinayp AB =32 € Nx npin AN B, 1z npingyp A.B := 1z € N.x npn A — B;

2% Ngeetyp A-B =32 € N.x Ngee AN B, 112 Ngecyp A.B :=1lz € N.x ngec A — B;

Yx yy AB:=Yr € NxnANB,
Iz 1y, A.B:=1llr € NanA— B.

Since we have A: P(N),B: N — U = r:llx n A.B < Ilz ny, A.B, the same for ¥ and
in the cases fin and dec, we will omit the index typ, if there is no confusion.

Yxney AB:=Yr € Nv ey, ANB
Hz neyy AB:=1lx € Nxneyy A— B
For the finite subsets we have a decidable subset relation:
Cring:=AX,YNVpr n X2 Npinp Y, Cpinp: PI™(N) — PI"(N) — B, written infiz.
For all sets we define the subset relation by:
CfmZ: )\X, Y.atom(X Cfmyg Y), Cfmi me(N) — me(N) — U,'
Caec:=AX, Y NVT € N gee X — T Ngee Y,
Caec: PY¢(N) — Pe*(N) — U;
C=XX,YVee NenX —-xnY,
C:P(N) —P(N)—U;



We write all these relations infiz.

B Coly C:=VreNx Noty B —x Noty C,
where T 18 a new variable.
IfT'= B,C €Cly(N), then' = B C¢y,y C type.

(h) For the finite subsets we have a decidable relation =, for “have the same elements”: =, p:=
AXY.X Crins Y AY Crinp X,
> pin g PI(N) — PI(N) — B, written infix.

For all subsets we define = as follows:

= AX, Y.atom(X 25 Y), Xpin: PI(N) — PI(N) — U;
2= AX, Y. X Cuec Y NY Cee X, Zgee: P*(N) — P¥(N) — U;
== )X, YXCYAYCX,=P(N)—PN)—U;

We write all these relations infix.

B gCl,y C =B Coly CNC Coly B.
IfI'= B,C €Cl,(N), then' = B =¢;,, C type,

(i) We define union U, intersection N and set difference \ as follows:
Upini= AX, Y. < IW(X) +n5 Th(Y), Az. if (x <y Ih(X)) then (X)) else (Y, x)) >,
Mpin'= AX, YP(lh(X)7 Q)fim (u7 U) ﬂc((X>u> Tfin,B Y then
(v Upin {(X)u}) elsev),

\pini= AX, Y. P(IR(X), Dfin, (u,v) if (X)u) 1pinp Y then v else (v Ugin {(X)u})),
Ufmﬂfm, \fmi me(N) — me(N) — me(N),'

Ndec = AX, Y Y.y Naee.s X ABY Ndee, Y

Udee := AX, Y Y.y Naee.s X VB Y Ndee, Y

\dec = )\Xa Y)\yy Ndec,B X /\B ﬁB(y Ndec,B Y)}

ﬂdec; Ud607 \dec . Pdec(N) N Pdec(N) N Pdec(N),'

N:=AX, YAy y n X Ay Ngee Y,

U:=AX Y xyynXVynY,

\ = AX, Y yyn X A-(ynY),
N,U,\: P(N) = P(N) — P(N);

all these functions are written infix.

BﬂCZVyCI:B/\O,

BUCZVyCI:B\/O,

B \Cm/ C:=BA ﬁ(C’)

IfT'= B,C € Cl,(N), then

I'=2B Ucty C,B Moty C.B \Cl,y Ce Cly(N)

We can easily prove

VX,Y € PI™(N).Vz € Nx npin X Upin Y > (2 0pin XV T 05 Y),

VX,Y € PI(N)Vr € Nz npin X Npin Y = (@ 0pin X AT 0pin V),

VX,Y € PI(N)Vz € Nx npin X \jin Y < (@ Npin X AT 9fpin V),

similarly for P¥(N), P(N), and for the classes we prove, that, if I = A € Cl,(N),
I'=Be Cly(N), then I' = Vx € N.x Noly A Ucty B« (ZL’ Noly AVzx Noly B),

similarly for the other functions.

(7)) We define the lifting from PI"(N) to P¥¢(N), from P¥(N) to P(N) and from P(N) to
Cl,(N):



F =AY Ny npins Y, T PI(N) — PY(N), and we write BT for -+ B;
o= AX Yy Ngee X, T 1 PX(N) — P(N), written B” for ‘P B;

O = Ny AB.y n B, written B for - +CbyB;

and we have B : P(N) = BT € Cl,(N).

We see easily, that

VX € PI™(N)Vz € Na nping X = T Naees X, VX,V € PIM(N) (X Upip V)T e
(X Ugee YT) VX € PE¢(N)VY € N — U.(Vpx € XP.(Y1)) & (Vaeer € X.(Y2)) etc.
similarly for -7, -HCW  therefore we will, if there is no confusion, omit these superscripts,
and subscripts dec, fin, P, Cl,y.

(k) We define the empty set:

wfzn = ml,
Q)dec = Q)}_m;
0= Q)Zi)ecf

Q)Cl,y = ®+7Cl,y'

We define the finite sets:

{ao, ..., an}fin =< ao,...,an >rList,
Lo,y T d%0,s -y Tt pin : N — N — -« N — PI(N);
{ag, ..., antaec == {ao, ..., an}}rm;

{ag, ... an} = {ao,...,an}] .

{ag, ..., an}cry == {ao, ... ,a,} .

The set of natural numbers can be represented as follows:

Ndec = )\ZL’.tt, Ndec . Pdec(]v)},

Np = N;zc,'

NCl,y = N+’Cl’y.
Remark 8.7 In the following, we will often have statements, which can be stated for all
elements of P(N) and for all classes, and have similar proofs. So we have the following
convention:
The statement “for’ Y : P(N) orY € Cl,(N) holds ¢” stands for
‘MLWgR =YY € P(N).¢ and, if MLiWr + T,y € N =Y type, then MLWxr + T =
¢'”, where in ¢ we replace n by Ncyy, and rename all bounded variables, such that they
are different from all variables in T, similarly for the other operations on classes.
The statement “for X,Y : P(N) or X,Y € Cl,(N) stands for “for X : P(N) or X €
Cly(N). forY : P(N) orY € Cl,(N) we have ¢”, that is, unfolding it we have four
statements for X,Y : P(N), X € Cl,(N),Y : P(N), Y € Cl,(N),X : P(N) and X €
Cl,(N),Y € ClL.(N).

The next task is to define the subtree ordering < on the W-type. An element sup(a, f)
of a type Wz € A.B is a tree, having immediate subtrees (fz).ca. By iterating the step
to the immediate subtree, we get all subtrees. So we define: a < (3 iff we can get from (3
to a by always going to an immediate subtree.

We need two definitions, one where we quantify over all A : U and B : A — U, and
another definition, suitable for A : type and x : A = Btype, so we have statements only
for one special type A and B.



Definition 8.8 (a) Assume A, B g-types, «, 3 g-terms, x a variable.
The immediate subtree relation for arbitrary trees:
a<h,pB=3reA3fe B— (WzeAB)3z€B.

B =waean sup(z, f) Na =weean [2
(where f, z are new variables)
The subtree relation on arbitrary trees:

« '<A,:c,B ﬁ =
dne NO<ynA3fe(N— (WzeAB)).
(f0) =weean BA(fN) =weean @A
Vi <y n.(fi) <4.p (f(57)).
(where n, i, f are new variables).
@ 2aeB P i=0a <4280V a=weean b
We have, if ML\Wgr FT = A type, MLiWgr T 2 : A= B type, o, B are new variables,
then
MLWrFT = Va,3 € Wa € AB. = a <ap 3 type

the same for <4 p.

(b) The immediate subtree relation for trees “in U”:
<Univi= A, B, .3z € A3f € (Bx) — (Wz € A.(Bx)).3z € (Bx).

ﬁ —Waz€A.(Bzx) SUp(x7 f) Na —Waz€A.(Bzx) fZ7
(where A, B, o, B, x, f are different variables)

MLiWgF<p,: TA€ UINIB € A — UWx € A(Bx) — Wax € A(Bx) — U

We write & <545 3 for <univ ABaf3.
The subtree relation on these trees:
<Univ:= MAB. A\, (.
dne NO<ynAdfeN—- (Wze A(Bx)).
(f0) =waea.(Bx) @ A (f1) =waea.(Ba) BA
Vi <N k’(fl) <%]m'v,A,B (f(SZ))
Further:
<Univ:i= AMAB. o, f.a < BV « =WazcA.(Bz) 0.

MLWg F=<pni: TA € UIIB € A — UWzx € A(Bx) — Wx € A(Bx) — U

the same for <pniy and again write o <yniv.a,p 5. We will usually omit the Index Univ or
even A, B, so we write a <  for <uyniy ABaf if this does not cause any confusion.

Lemma 8.9 Assumel = A type, I';x € A = B type. Then:
(a) Va,B,v€ Wz € AB)a << (a<0Va=wrean )
(b) Ya,B,v€ Wz € AB).((a <AL =7y) —ma<y)A((a=2BAL<7y) = a=<7)
(¢c) Va € Wz € A.B).~(a < a).

(d) Vo € Wx € A BNz € AVs € (B— Wax € A.B).
a < sup(r,s) < (Jy € B.a < sy).

(e) (a) - (d) are valid, if we quantify over all X : U, Y : X — U, e.g. in (a):
VX € UNVY € (X — U)¥a, 8,7 € (Wz € A.(Bx)).
(@ 2B a<BVa=wiaBs) B)



Proof: (a), (b), (d) are trivial.

(¢) We prove by Induction on a: Wz € A.B.~(a < a):

Assume f,n as in the Definition.

We have 0 <y n, fO =weap sup(r,s) A f1 =wzeap sy for some r, s, y. Define

g = Ar. if @ <yp n then f(S(x)) else sy, g : N — Wz € Ay.B. Then using g we
conclude sz < sz, a contradiction to I.H.

We will now explain the way of carrying out the well-ordering proof.

A first attempt to do this, is to define operations like 4, w", €2., and the collapsing function
Az, y.D.y on some huge W-type Wx € A.B, and then map some ordinal denotation sys-
tem OT on this W-type, using the recursion on Wx € A.B to prove transfinite induction
on OT. This can be done, as long as we restrict ourselves to ordinals of O,,, the n-th
number class. For bigger number classes, we need for the definition of D,y the relation
7(y) < x: we need some relation between the elements of a tree and its branching type.
When we think of them as elements of two trees, and of < as the subtree ordering (modulo
isomorphisms between trees), we have the problem, that this ordering is not decidable,
we can not define a function D,y.

The next idea is, to use the decidable ordering < on OT, together with fundamental
sequences (a[x])y<r(a), Where 7(a) is the type of the ordinal a, and besides some properties
we have for limes ordinals a = sup{alz]|xr < 7(a)}. The ordinals a[z] correspond to
immediate subtrees, we had before. Let W := Wa € N.(Xy € N.y < 7(a)). If sup(r,s) €
W1, then r should be the label, an ordinal, of this tree. (We will use arbitrary labels in
N for technical reasons) Then we distinguish those trees of Wy, where the fundamental
sequences of the labels of its subtrees correspond to the ordering in Wi, that is we define
Correct(a), (in this informal part we omit some bounds for quantifiers, so that the formula
can be easier read)
Cor(a) :=Vr, s.sup(r,s) <a—Vr e (Xy € Nyn T/(;).Els'.sx = sup(r[x0], )

—

(where 7(r) is some set related to 7(r).)

Now to define the functions we need, we need some well-ordering on {x € OT|z < 7(a)},
which we originally want to prove by this method. The idea which helps, which is the
first step towards the “ausgezeichnete Mengen”, is to replace 7(x) by 7(x) N X, where we
assume, that we know the well-ordering of X.

Actually we will use 7(z)* := (7(x)* N X) U7'(z) where 7/(x) contains some elements of
7(x)™, which we want to include in any case. Now we define Wy, Cor(a) as before and
let W(X) be the natural numbers, that are labels of correct trees of W;.

The last problem is, that now 7(z)X occurs negatively in the definition of W (X), that is,
the bigger X, the smaller W (X).

To get sets, which contain €2, for finite a or a in some ordering, which is already proven
to be a well-ordering, we could construct Og := W (0) N Qy, O := W(Op) N Qs and so
on, so that at every step we know in some sense, that O,, is complete. To get sets which
contain (o, and stronger cardinals and give very strong well ordering proofs, Buchholz
has introduced the concept of the “ausgezeichnete Mengen”, the distinguished sets, which
is the property, which all the O, we constructed before have in common, and which we
needed. The property is some sort of stability in the sense that the segment formed by the
set does not grow by forming W (X). We define X is a “ausgezeichnete Menge” (Ag(X)),
if X C W(X), that is: Vo n X. X |z = W(X)|z

Now these sets allow induction (since we have a corresponding tree a € Wi(X)) and we
can define all the functions we need.



To get the full power of Martin-Lof’s type theory, in a next step we built “ausgezeichnete
Klassen”. First we built the union of all “ausgezeichnete Mengen”, which is a class,
closed under €2.. Then we built Wy :== WN I, Wiy == W(W,) N Qryi41, which are
“ausgezeichnete Klassen”, such that I n Wy, Q. n Wiy,

Historically, these steps are not the way, the author found this attempt. They are only a
way to motivate it. Actually, after trying the first attempt, the author tried to adopt the
paper of Buchholz [Buc90], the until now clearest version of the method of the “ausge-
zeichnete Mengen”, to Martin-Lof’s type theory. The method of “ausgezeichnete Mengen”
goes back to Buchholz ([Buc75al), who first needed I} — C'A for introducing them and
where further developed by Schiitte, who discovered, how to define these concepts in
weaker subsystems of analysis.

But before introducing all these concepts, we need some ordinal denotation system OT.
We will introduce this in the next chapter 9, here we only assume, that we have a system
OT, with certain subsets an ordering <, functions like 4, that has certain properties, is
given:

General Assumption 8.10 We assume an ordinal denotation system
OT : P*(N),
which we will introduce in chapter 9, together with elements
Oor, lor,w, I n OT

(I should be a representative for the first weakly inaccessible cardinal or its recursive
analogue) sets
Lim, A, R : P%(N)

(where Lim will be the denotations for limit ordinals, A the additive principal numbers
and R the reqular cardinals) such that

RCACLimcOT, InR,

and the following functions:

<or,2or: N = N —=U

( written in Infix, we will, if there is no confusion, omit the index OT ),
We further assume

7T:N—=N
such that ¥z n OT.7(z) n RU{0, lor,w},

f]:N—-N-—>N

(written alb] for [-] - ab)
+:N—-N—=N

(written infix)
NF,g:N—=N—=B

(for + normal form), we write NF, g(x,y) for NFy gxy and define

NF+ = )\Z’, y.atom(NF+,B(33> y))7



written in pthe same form),
Alength : N — N,

(the length of the Cantor normal-form of an ordinal)
-:N— N — N,

written infiz, (for multiplication of an ordinal by a natural number)

Q:N—-N

(the enumeration of the infinite cardinals)

-~ N — N,

(written a~ for -~a, which we fuse only for cardinals, the most important definition is

We define a < b < ¢ := a < bAb < ¢ the same for similar situations, and -~ := Az \y.(y <
xAgynOT), = : N — P¥(N), we write a~ for -Za.
We have a= C OT and will usually omit the superscript <.
Similar to the subsets of the natural numbers, we define abbreviations for the quantification
over elements of OT V. := Az, f.(Vy n x~.fx),
s = A, f.(Fy n ™. fx),
V.,32: N — (N = U) — U, and we write
Vo < a.¢ for Via(Ax.¢),
Vigpt < a.A:=Vr € Nz na™ NA,
similarly for 3, and have x : N — A type, then Vy,,x < a.A, Ix <4, a.A, type.
Ve 2 a.¢:=Vrn(a+ lor)~.¢,
simalarly for 3.
We assume that

(a) Ve,yn OT Nz € NQ,,7(x),x +y,x-2n OT AN (yn7(x)” — x[y] n OT)

(b) Vr,y,z2n OT.—~(z <) AN(x <y =y <2z —x<2)A
(x<yVr=yVy=<uz),
Ve,ynOT.x <y« (x=yVr<y)

(¢) Vo,y,zn OT.x + (y+ 2) = (z +y) + 2.

(d) Ve n OT.x f A (x =00rV y,z2n OT.2 # 0or NNF,(y,2) Nx =y + 2),
Ve,y n OT.NF (z,y) — y # Oor — (Alength(z) <y Alength(z + y) A Alength(y) <w
Alength(x + vy)),

VenOT,ynOT. NF (x,y)Vz+y=yV
2,2 0T (x =242 N2 #00r ANNF (2,2 ) Nz +y =2z+y).

(e) YVen OT.xn LimV (3yn OT.x =y+ lor) Ve =0or
Ven OT.x + 1loryf Lim A x + 1or # Oor A Oor 1f Lim.

(f) Yz n OT.=(x < Oor),
VenOT.Opr+x=x+00r =1
VernOT.x <y+lor <z =y,
Ve,y,znOTy <z —x+y<x+ 2.
Ve n OT.NF,(z,1lor)



(9) VenOT.x <w <« 3Ine€ Nax=lor-n
VenOT.x-0=0or, - (Sn)=(x-n)+x.

(h) QOOT:w, Q[:I,
Ve,yn OT.x <y — Q, < Q,

(1) Yx n OT Q. =Q,,

z+lor
[T =w = 1OT = OOT = OOT-

() VenOT.an R« x=1V3ynOT.x=Qy1,,,
Ve,yn Re <y#1—x =<y~
(k) Yxn OT.7(z) <z A7(z) n RU{Oor, lor,w}
(1) Yz n RU{0or, lor,w}Yyn OT.(y <z — o~ +y <z) AN NFy(z,7).
(m) Ve,y,zn OT.z <y — NF (z,y) - NF,(z,2).

Further we assume the following laws (which are minor modifications to [Buc90]):
(F1) Vo n LimNy,z n ()" .(y 2 zly] < 2) A (y < 2 — 2[y] < z[z])

(F2) Vo n LimNy n OT.x2[0or] Ry <2 — Jzn7(x)"2[z] 2y < 2[z+ lor]
(F3) Vo n RU{0or, lor}.7(z) =x AVyn7(x) alyl =2~ +y

(F4) Yo n LimNy n 7(z)"Vzn Lim.xly] < z < z[y + lor] — z[y] < 2[007]

(F5) Va n Lim.Ny n 7(x)~ N Lim.7(z[y]) = 7(y)A

(V2 0 7(y) " zlyl=]] = z[y][2])
V(T(y) = wAVz <w.alyl2]] = zly][z + 1or]))

(F6) Ve n OT.1(x) R x
(F7) Yo OT(NFi(z,y) Ay # Oor) — m(x +y) = 7(y) AVz n 7(y) " (z + y)[z] = = + (y[2])
(FS) T(lOT) = 1OT A 1OT[OOT] = OOT-

So (F1), (F2) express that the fundamental sequences are ascending and approzimate the
ordinal, (F3) tells, that for reqular cardinals, the fundamental sequence is more or less
the identity (we start with 7(a)~ to avoid fized points of \x.Q,). (F4) is the Bachmann
property, together with (F5) it guarantees, that the correct trees are highly uniform. These
properties allow to prove lemma 8.15, especially 8.15 (a), which expresses, that for these
uniform trees, there is some correspondence between the trees in W(X) and the number
of the branch, they belong to. (F6)-(F8) are usual properties of fundamental sequences.
We will in the following, if there is no confusion, write 0,1 instead of Oor, lor.

Now we are ready to define W (X):

Definition 8.11 (a) We define the sets 7'(a), , which we will include in 7(a)X in any case.
7'(a) will contain 7(a)~ except in the case T(a) = 0, to guarantee some information on 7(a),
and in the case T(a) = w, 7'(a) will be the whole set T(a)™, which makes sense, since w™ is
trivially well-ordered.



=X, if (r =np OV yg OT) then Op else if 7(x) =np w then w™ else {7(x)"},
that is, in a form, that can be read more easily,

@’P Z'fCL:N,BO\/CLﬁ/B oT
7(a) = ¢ w™ if T(x) = w
{r(a)~} otherwise.

7 : N — P(N) (note that we could define 7' : N — P¥*(N), but do not need this).

(b) We first give the definition of W (X) for X a subclass. The possibility to define W(X) for
classes (in AY — C A+ BI this can not be generally be done) is the reason, why ML\ Wgr has
strength vq, (Qr1y), rather than g, (25)): After having constructed ausgezeichnete Mengen,
which exhaust the ordinals up to I, we can form “ausgezeichnete Klassen”, distinguished
classes, which exhaust the ordinals up to Q;.,, for everyn : N, by bwilding the union of all
ausgezeichnete Mengen and iterating the step to W(X) finitely many times.

x, Yy, z are variables

TgZ’Z(x) =(yno. ANyn OT Ny < 7(x))Vyn1' ()

that is, if z =1y
Taiy(@) = (ANey 7(2)™) Uary 7'(2)

We will usually not mention the variable z, sometimes not the variable y.
We have, if T' = A € Cl,(N) for some variable z, and x # y is a new variable, then

I'z:N= Tél’fy € Cl,(N)

and
Ie:N=p: Téi;(l’) Couy OT for some p

T = 757(0) 2,

therefore
I =Yy € Ny o 747,0),

Biciya-(A) = Sy € Ny n 747 (x)

(if z,y are variables)

Wl,Cl,y,z(A> =Wz e N-Bl,Cl,y,m,z(A)>

where x 1s a new variable, y is a new variable.
and we define

Corciy.(A) (o) == Vo € NYu € By cryqs-(A) = Wiciy.(A).
sup(x,u) 2N,By 1y en(d) @ — YU € By cly.q.(A).label(uv) = z[v0]

where u,v,x are new variables, and
label := Aa.R(«, (u, v, w)u),

label(sup(r, s)) = r, label : Wy ¢y 4(A) — N.
and have, if I' = A € Cl,(N) and « is a new variable, then

Iyo: Wicry.(A) = Corery .(N)(a) type.



Weiy.-(A) == 3o € Wi ciy.(A).Corery (o) Alabel(a) =y A label(a) n OT

(where o is a new variable).

Therefore, if we have sup(r, s) : Wi cuy,-(A) such that Corcyy, .(sup(r, s)), then the predeces-
sors of sup(r, s) form a tree, verifying, then r is in the least set X with ¥y n OT.T‘CL‘l’y,Z(V) C
X —ynX.

For X,Y € Cl,(N), 2/, 2" are new variable, we define
A8,-(Y) ==y nOT AV 7 Té{l’;,, (y).ylZlnY, and have

A,.(Y) € Cl(N). We will usually omit the Indices Cl and indices and superscripts
for wvariables, assuming that for the z we choose the variable for which we habe proven
I' = A € Cl,(N), and that y is the variable usually taking for classes, and choosing the
bounded variables, such that they do not cause any problems.

(¢c) Now we define W(X) for X : P(N).

=X, z.(XN7(x)*)UT(x)). 7: P(N) > N — P(N). and VX € P(N).¥x € N7Xx C
oT
We write 7(a)X for rXa.

We define By := AX\z.Xz € N.z n 7(x)% (written B,(A) for B;A)
By :P(N) - N — P(N)

Wy = AX.Wz e N.B (X)x

Wy :P(N)—-U

indexCor Cor, = AX,a.Nr € NVs € (B(A)r — Wi(A4)).
sup(r,s) X o — Yz € By ¢i(A)r.label(sz) = r[20],

where label := AX . a.R(«o, (u, v, w)u),
label(sup(r,s)) = r, label : TIX € P(N).W1(A) — N.
Cor: 11X € P(N) W1 X — U,

W= AX\y.3a € W X.CorXa A (labela) =y ANy n OT
W :P(N)— N — P(N),

and we have VX € P(N),y € OT. WXy C OT.

We write Wy (X)) for W1 X, W(X) for WX.

We define A = XX,Y,y.yn OT AVzn1(y)Xylz]nY, A: P(N) — P(N) — P(N).
We write AX(Y) for AXY .

Lemma 8.12 Now we have induction over W (X), which we prove by using the recursion
over Wi(X):

(o) IfT' = X,Y € Cl,(N), then
= W(X) € Cl,(N),
I = AX(Y) € Cl,(N),
= W(X),AX(Y) cOT.
VX,Y € P(N).W(X)COT NAX(Y) C OT.

(b) For X € Cl,(N) or X : P(N) follows AX(W (X)) C W(X)

(¢c) If X,Y € Cl,(N) or X,Y : P(N), then
if T = AY(Z)NW(X)C Z, thenT = W(X) C Z.
More precisely we have

IfT = X €Cl,(N), T = Z € Cl,(N)and T = AX(Z)NW(X) C Z, then T = W(X) C Z.



IfVX,Z € P(N).AX(Z)nW(X)C Z - W(X)C Z,
IfT = Z €Cl,(N), thenT = VX € P(N).AX(Z)CcZ—->W(X)C Z. IfT = X €Cl,(N),
thenT =VZ € P(N).AX(Z)c Z - W(X)C Z.

Proof: (a) is obvious. (Note, that we really have, if I' = X € Cl,(N), thenI' = W (X) €
Cl,(N) with the same y.

(b) statement for classes:

Let a be a fresh variables. Assume a n AX (W (X)), that is

anOT AVz 1 7(a)™.alz] n W(X)
Therefore
Vo € (Byoi(X)[z/a]).36 € Wi(X).Cor(B) Alabel(5) = a[z0]

Let a := sup(a, s) where for = : (By,ci(X)[z/a]) we have sz =y, (x) 8 such that Cor(3) A
label(B) =w, (x) a[z0]. Since we have Cor(sz) for x : (B1(X)[z/al),

Vo € (B1(X)[z/a]).label(sx) = a[z0] and v = a < v =, (x) a V Iz € (B1(X)[z/a]).y =<
sz follows Cor(a).

The statement for subsets follows similarly.

(c) statement for classes:

Assume X, Z € Cl,(N), AX(Z)NnW(X) C Z.

We show Vo € Wi (X).Cor(a) — label(«) n Z by Induction on Wi(X).

Let o =w,(x) sup(r, s), Cor(a). Then rn OT, Vz € B(X)[z/r].Cor(sz). By IH we have,
for z : N, p: 2z n 7(a)¥, since < z,p >n By(X)[z/r], label(a)[20] = s < z,p >n Z,
therefore r = label(a) n AX(Z)NW(X) C Z.

The statements for subsets follows similarly.

Lemma 8.13 Assume X € Cl,(N) or X : P(N). Then

Ve,yn W(X).x+yn W(X).

Proof:

Statement for X : P(N).

We first prove (NF, (a,b) Aa,bn W (X)) —a+bnW(X)

Let an W(X), and Y := A\y.NF(a,y) — a+yn W(X), and have Y : P(N).

We show AX(Y) C Y (then follows W(X) CY).

Assume bn AX(Y), NF, (a,b).

If b=0, then a4+ bn W(X), bn Y. Otherwise 7(a + b) = 7(b) and Vz n 7(b).(a + b)[z] =
a+ (b[z]), and Vz n 7(b)X.b[z] n Y, e.g. since NFy(a,b[z]), Vz n 7(b)* = 7(a + b)*.(a +
b)[z] =a+ (b[z]) n W(X), a+bn W(X).

Now we prove a +bn W(X) — NF(a,b) — anW(X).

Let Y :=AyVa,zn OT.NF, (z,2) Ne +z=y — zn W(X).

Let cn AX(Y)NW(X),c=a+0b, NF,(a,b). If b =0, then a = cp W(X), and if b # 0,
then 7(c) = 7(b) and V¢ 1 7(b)~.c[¢] = a + b¢]. By (F2), (F7) and (F8) follows 7(b) # 0,
therefore a +b[0] n Y, NF(a,b[0]), a n W(X).

Now follows the assertion, by Induction on Alength(a): If NF, (a,b) follows a+bn W (X),
if a4+ b = b the assertion is trivial and if a = ¢+ d such that NF' (¢, d), a+b = ¢+ b and
Alength(c) <y Alength(a) and ¢ n W(X), and the assertion follows by IH.

Lemma 8.14 We state some easily proven results on W (X).
Assume X, X' € Cl,(N) or X, X' : P(N), a,b: N.

(a) On W(X)AVen W(X).x+1nW(X)AVr Sw.axnW(X).



(b)) (XNa=XNnaN Ve <b71(z) 2a)) - WX)Nb=W(X')Nb.
(c) If X C W(X), thenVxn Rx~ nW(X)— znW(X).
(d) X CcW(X) —{w,Q, I} C W(X).

Proof: (a) 0 n AX(W (X)) C W(X) and, if a n W(X), then
a+1n AX(W(X)) C W(X), therefore by induction on N

Vne N1-nnW(X)

and
Vo <w.xn W(X)

It follows w n AX (W (X)) C W(X), therefore Vo < w.x n W(X).

(b) Let YV := Ay.y < b — yn W(X’), in the case of X, X' : P(N), Y :=y <b—y
W (X") in the case of classes. We proof AX(Y) C Y This implies W(X)Nb C W(X').
Assume Vz 7 T(y) ylz] n Y, y < b. Then 7(y)X = 7(y)*, Vo n 7(y) .ylz] n W(X'),
therefore 3 n AX (W (X")) and thus y n W (X’).

(¢) If = n W(X), then z[r(z)"] = = + 2~ n W(X) (using lemma 8.13) and since
r(z)* Cc X U{z~} c W(X) follows by 8.13 V¢ n 7(z) N X.z[¢] = 2~ + & n W(X).

(d) wn W(X), therefore follows the assertion by Q7 =w, I~ =0.

Lemma 8.15 Let X : P(N) or X € Cly,(N), a,bn OT.

n

(a) an Lim Az <71(a)Na[z] b =2alx+1]Abn W(X)) — axnW(X), esp.
Van Lim,z n7(a)*.alz]n W(X) - 2z n W(X).

(b) an LimAal0] <b<aANbnW(X))— al0] n W(X).
(c) an Lim —bnW(X)N7(a)™ — Jzn (W(X)N7(a)").b < alz].
(d) X C W(X) = VenW(X).7(z) n W(X).

Proof: (a) Let Y := Vo n 7(a) alr] 2y < alz +1] — y n W(X) — = n W(X),
Y € Cl,(N). We show AX(Y) C Y, therefore by lemma 8.12 (¢) W(X) CY

Let by AX(Y).

Case 1: a[z] < b < alx + 1]: Then a[z] < b[0] 2 b[7(b)"] < a[z + 1] and by b[7(b)"| n Y,
xnX.

Case 2: —(a[z] < b). Then alz] = b.

Subcase z = 0: z n W(X)

Subcase x = 2’ 4+ 1: Then 7(a)” < 2/, a[z'] < b < a[z’ + 1] and by Case 1 2’ n W(X) and
by 8.14 (a) follows x n W (X).

Subcase x n Lim: Then

7(b) = 7(2) A (g < 7().alely]] = b)) V (r(b) = w A Vy < w.alzly]] = bly + 1])).
Therefore 7(b)* = 7(x)* and Vy n 7(b)*.bly] n W(X). By b n AX(Y), since 7(b) =
7(z) =w — Yy <w.y+ 11 7(b)X follows Yy n 7(x)*.x[y] n W(X), therefore z n W (X).
(b) Let Y :=al0] Ry < a — al0] n W(X), Y € Cl,(N). We show AX(Y)NW(X)CY,
therefore by lemma 8.12 (c) W(X) C Y.

Let bn AX(Y)NW(X).

If b = a[0] follows al0] n W(X) and if a[0] < b follows a[z] < b < a[z + 1] for some
e 1 7(a)%, al0] < ala] < b{0] 3 b{r(b)~] 7 Y, al0] y W(X)



(c) If b < a[0] we Chose x:=0nW(X) If a[0] < b we have by (F2) a[z] < b < a[z + 1] for
some z 1 7(a)~. By (a) we obtain z n (W (X) N7(a)™).

(d) If an W(X), then a[t(a)~] n W(X), 7(a)” n W(X) by (a), 7(a) n W(X) by 8.14 (a),
(c) and (d).

Definition 8.16 Now we define the meaning of “X is ausgezeichnete Menge”:

Let XY : P(N) or X,Y € Cl,(N).

Xla:=XnNn(a+1).

XCVY :=VenX.Xla=Yla (this is equivalent to X CY ANVzn XY Nex C X, X is a
segment of Y ).

Ag(X) =X Cc OT N X C W(X), X is an “ausgezeichnete Menge”, a “distinguished
set”.

Prog(X,Y):=Ven X XNz CY —axnY.

Prog(Y) :=Vz <0.0TNzCY —-anY.

Lemma 8.17 From the induction over W(X) we conclude induction over ausgezeichnete
Mengen:

Assume X,Y : P(N) or X,Y € Cl,(N), such that Ag(X).

(a) X C AX(X).

() XNAX(Y)CY - X CY.
(¢c) Prog(X,Y)—= X CY.

(d) XNQ COT.

(e) Prog(Y) - XNQ, CY.

Proof: We treat here the case X,Y 1 Cl,(N).

(a)an X — X|la2W(X)|a — A (X)|a = AX(W(X))|a 2 W(X)|a = X]|a.

(D) Let Y :=yn X —ynY €Cl,(N) and assume X N AX(Y) C Y. Then, since X C
AX(X), Vy n (XNAX(Y")Vzn 7(y)*.y[z] n Y therefore XNAX(Y') C XNAX(Y) CY,
therefore AX(Y) CY, X CW(X)CY' X CY.

(¢c)Let Y :'= XNy CY, we have ' = Y’ € Cl,(N) ( more precisely Y’ :=Vu € N.un
XANu<yAunOT — unY, where u is a new variable).

We show

(*) X Ny Aé{l(yl) Ca Y’

Proof: Let an X N AX(Y’) and assume bn X Na. Froman X CW(X)andbn X Na
follows by lemma 8.15 (a) b < alz] for some x n W(X)N7(a)" = X N7(a)”, (since
7(a) Ran X CEW(X). By an AX(Y’) follows a[z] n Y, X Nb C X Nalz] CY, and by
Prog(X,Y) and b n X follows bn Y for arbitrary b n X Na, therefore XNa CY,anY’,
and we have ().

By (b) and (x) follows X C Y, that is Vz n X.X Nz C Y and using again Prog(X,Y),
Ven XaxnY.

(d) Let Y :=y < Q; — Vz <y.2n X (2 a new variable). We prove X N AX(Y) C Y. By
(b) follows the assertion.

Assume a n X N Qy, a n AX(Y). From Vz n 7(a)¥.a[z] n Y we conclude a[z] C X,
alz] n W(X), and by alx] < an X E W(X), a[z] n X, therefore Vz n 7(a)*.0OTa[z] C X.
Since 7(a) 1 {0,1,w}, follows 7(a)* = 7(a), a C X.

(e) Assuming Prog(Y) follows by (d) Vx n X NQ1.X Nax CY — zn Y, therefore with

Yii=y<Q —ynY Prog(X,Y')and by (¢) XN CY.



Lemma 8.18 LetI' = X € Cl,(N) or X : P(N), Ag(X).
Then ¥z n X.1(x) n X.

Proof:

If an X, then a n W(X), 7(a) n W(X) by 8.15 (d), and, since 7(a) < an X C W(X),
7(a)n X.

Lemma 8.19 We state, that ausgezeichnete Mengen are unique, in the following sense:
Let X; € Cly(N) or X; : P(N).

]sz = W(XJ Na (Z = 1,2), then X() = Xl.

Proof: We treat the case X; € Cl,(N).

We have

(1) If U € Cl,(N) and Prog(XoUX;,U) then XoUX; CU

Proof: Assume Prog(XoU X1,U). Assume b such that XoNb C U. Then Ve < b.(cn
XiANXiNe C U) — ¢n U. Therefore we have Prog(X;Nb, U) and by lemma 8.17 (c), since
we have Ag(Xy) X;NbC U. By Prog(XoUX;,U) we have bn U for b with XoNb C U.
Therefore we have Prog(Xy, U) and using Ag(Xy) and lemma 8.17 (¢) Xy C U. Similarly
we conclude X; C U. and we have (1).

We show

(2) Prog(XoU Xy, Xo N X7)

Proof: Assume b n XoU X; and (Xo U X;) Nb C XoN X;. Then we have b < a and
XoNb=X;Nb and therefore Xo|b = W(Xo)|b= W(X;)|b= X;|b, and bn XoN X;.

By (1) and (2) follows the assertion.

Next step is to define W as the union of all ausgezeichnete Mengen. It is itself a
ausgezeichnete Klasse, closed under \z.(2, for x < I, and will exhaust the ordinals up to

I:

Definition 8.20 W :=3X € P(N).Ag(X) Ayn X, W e Cl,(N).

Lemma 8.21 VX € P(N).Ag(X) < X T W, that is: the ausgezeichnete Mengen are
Just segments of W.

Proof: “=": X C W is clear. Assume an X, bn WNa. Then there exists Y € P(N)
with bn Y and Ag(Y). X' := X|b, Y :=Y|b.

Then
WX =W(X)|b by lemma 8.14 (b)
= X1b XCW(X),anX,b=<a
~ X/
W({YHb =W(Y)b by lemma 8.14 (b)
>y b YCW(Y), byY
>~y

Therefore by lemma 8.19 X' =Y’ bnY' = X' C X.
“<"If a n X, then there exists Y : P(N) such that a n Y and Ag(Y). By the proof
of “=" follows Y C W, therefore X|a = W|a = Y|a = W(Y)la, therefore W (X)|a =
W(Y)|a = X|a, and we have Ag(X).
Lemma 8.22

Ag(W)



Proof: Let a m W. Then a n X T W for some X : P(N). It follows W|a = X]|a,
therefore W(W)|a = W (X)|a = X|a = W)|a.

Lemma 8.23 VX €¢ P(N)Ven OT. (X Na=W((X)NaxAxnW(X)) —xnW.
Proof: Assume X : P(N),an OT, XNa = W(X)NaNan W(X),and let Y := W(X)|a.
Then X Na =Y Na and therefore Y = W(X)|a = W(Y)|a, therefore Ag(Y).

Lemma 8.24 (a) (Vo SwaxnW)AVznW.a+1nW.

(b) Yen OT. QW — Quiq n W.
Proof:
(a) X := \y.y 2w :P(N), and we have Ag(X).
further, if X : P(N), Ag(X), an X, then XN(a+1) Z W (X)N(a+1) and a+1n W(X),
by 8.23 a+ 110 W.
(b): Let Q3 n X, Ag(X) for some X : P(N), Y := W(X), Y : P(N), a := Qsy1. Then
QY. XNQ, 2Y NQ;, therefore Y Na = W(X)Na = W(Y)Na, by 8.23 follows
Qs—i—l n w.

Lemma 8.25 Vo n AYW)N IL.7(x) n W.

Proof:
If 0 # an AYW), then alr(a)~] n W, therefore a[r(a)~] n X for some X : P(N) Wlth
Ag(X). Therefore by lemma 8.15 7(a)” n W(X) and, since 7(a)” = a[r(a)"] n X

]
W(X), 7(a)~ n X. We have 7(a)” n (R\ {I}) U{0,1,w}, so by lemma 8.24 (b) (
trivially in the cases 7(a) 7 {0,1,w}) follows T(a) n W.
Lemma 8.26 Vo n AYOW)NI.(3X € P(N).X ZWnuz)—xnW.
Proof:
Assume a n AV(W)N 1.
By lemma 8.25 7(a)nWV.
Let 7(a) < a and X = W Na. Then 7(a)nX and Ag(X). We prove:

(*) W(X)NacC X

Let bW (X) Na. Then there exists by lemma 8.15 xnW (X) N 7(a)™ such that b <
alr]. Since 7(a)nX C W(X), we conclude 2nWW N 7(a)™ and alz]nV Na = X. Since
W (X)|a[z] and afz]nX follows bnX, and we have (x).

Now an A (W) and X = W Na, therefore anA*(X) Cc AX(W (X)) =2 W(X).
Since X = W(X)Na and anW (X) follows anWV by lemma 8.23.
Lemma 8.27 WW)NI 2 AYW)NnI=WnlI.

Proof: We prove AYW)NIT =2 WNI:

“27: Ag(W), therefore W C AV (W).

“C’: Let a np AYW)NI. Then 7(a) n WAVz n WN7(a) .alz] n W. Therefore
exists @ : P(N) such that Ag(Q) A 7(a) n @ and with B := ¥z € N.x n Q Na™ exists
s: B — P(N) such that Vz € B.Ag(sx) A a[z0] n sz.

Let P:=Ay.ynQV 3dx € Byn (sx), P:P(N). Then, since P is union of distinguished
sets, follows Ag(P), PC W.

Let ¢ < a, ¢ W, then there exists x n W(W) N71(a)" (ZWnN7(a)" =2 QN7(a)”) such
that ¢ < alx], therefore, since a[z] n P C W,cn P.

We have therefore P Na = W Na and by lemma 8.26 a n W.

Now, with Y :=y < I — yn W, follows AV(Y)NT =2 AYW)NT 2 WNI, W(W)CY,
ww)ynicwnl. W c W(W) follows by Ag(W).



General Assumption 8.28 s  To show, that the ausgezeichnete Mengen and Klassen
are closed under the Veblen-function ¢, the collapsing function D, and that WV is closed
under \x.Q,, (r < I), we need some assumptions about the fundamental sequences, and
need to introduce some more functions:

(a) We assume functions R
¢,D: N— N — N

(gg is a version free of fized points of the Veblen-function, D the collapsing function)
Dicom, NFpg: N - N — B

(Dicom will be the largest Dya, contained in an ordinal. Dicom stands for “Dr-component”.
NFp(a,b) stands for Db is in normal-form and we define NFp := Az,y.atom(N Fp gzy))

Cr: N — P*(N)
(Cr(a) will be the set of a-critical ordinals)
length : N — N

(the length of an ordinal term),
subsets

G, Fi : PP(N)

(G will be the Gamma ordinals, the a such that $,0 = a, ¢ being the usual version of the
Veblen-function (with fized points). Fi will be the fixved points of A\x.S,, that is I and the
ordinals Dra)

We assume the following list of properties:

FicGCACOT,RCcG

Y,y n OT,n € N.ggyn OT A (NFp(z,y) — Dy n OT)

We want, that every element of OT s constructed by elements of smaller length:

Vo n OT. 3y, z n OT .length(y), length(z) <y length(z)A
(NFy(y,z) Nz2n ANz =y +2)V

T = QyzV

(NFp(y,z) Nz = Dyz)V
r=Q,V

r=0Vzr=1,

We demand some properties of the D-normal-form:

Vo n RNFp(z,0) A\Vyn OT.NFp(z,y) —» NFp(z,y + 1)

Ve, yn OT.NFp(z,y) — D,y < x

Vn € N.NFD(Ql, QI+l~n)

Ve, yn OT.NFp(x,y) — = n R.

We claim that Dicom(x), is the largest x € Fi below x:

VenOT.D;0 =z <1— JynOT.NFp(l,y) A Dicom(z) = Dy AN Dry <z < Dr(y + 1)

And we characterize the critical numbers:

Vo,y,21n OT (NFy(z,y) —  +y 1 Cr(2))A
(Peyn Cr(z) = z=<z)AN(xnG— (xnCr(z) < z<x)),



characterize the additive principal numbers:

Vi, yn OT.(NFy(z,y) =z +yif A) Adzyn ANO i AN
(NFp(2,y) — Deyn A)ANQun ANT 7 A

the Gamma numbers:

Va,y n OT(NFy(z,y) = 2+ yf G) Aoy y GAO0 o G
ANNFp(z,y) > Dyn G)N(x#0—Q.nG)ANInG.

the fixed points of Ax.C),:

Yo,y n OT.(NFy(z,y) — z +y 1f Fi) A bgy 1f Fil
0y FiN(NFp(x,y) = (Dyyn Fi—ax=1)NQunFi—xnFi)\NInFi.

and the regqular cardinals:

V:E,ynOT.(NF+(;E,y)—>x+y77/R)/\QASxy7/RAO7/GA
(NFD(x>y) _>Dzy V/R)/\
(QnR— (FznO0T.x=z+1))ANInR.

Further we assume w = ¢gl.

(b) We assume, that the fundamental sequences are built as follows:

(A[].0) 7(0) = 0.
(A[].1) If NFi(b,c),a=b+c, bnOT, c#0, then
T(a) =7(c), (b+c)[z] = b+ (c[z])
(Al ].2) Case a = ¢pe:
(Al ].2.1) Case b=0:
(A ].2.1.1) c=0=7(a)=1,a[z] =0
(A ].2.1.2) c=d+1=71(a) =w,
all -n] = ¢o(c) - (SSn).
(A ].2.1.3) (cnCr(d) = 1(a) = w,
all -n] =c-(Sn).
(A]].2.1.4) (¢n Lim A (cof Cr(b))) = 7(a) = 7(c),
alz] = ¢o(c[2])
(Al ].2.2) Case b=10 +1:
(Al ].2.2.1) c=0=171(a) =w,
all - n] = psssn where pg =0, psp = Gv Pn
(A]].2.2.2) c=d+l=7()=w, ~
all - n] = p, where py = ovc’, psn = Gv Pn
(Al ].2.2.3) (cnCr()) = 1(a) =w, ~
a[l -n] = psn, where py = ¢, psn = Gy pPn
(Al ].2.2.4) (¢n Lim Ac 7 Cr(b)) = 7(a) = 7(c),
alz] = ¢p(clz])
(A ].2.3) Case bn Lim:
(A ].2.3.1) (c=0AbnOT\G)=1(a) =7(b),
alz] = dpy20
(A ].2.3.2) (c=0AbnG)=1(a) =7(b),
a[z] = ¢b[z]b
(A] ]1.2.3.3) c=d+1=1(a) =7(b),

(A[].2.34)

alz] = (Eb[z]((gbcl)
(cn Cr(b) = 7(a) = 7(b),



(A] ]1.2.3.5) (cn Lim A ey Cr(b)) = 7(a) = 7(c),
alz] = ¢u(c[z])
(A ].3) Case a = Dyc:
(A ].3.1) Case ¢ = 0:
(A ].3.1.1) b#1=71(a) =w, R
a[l - n] = pgn, where pg =b", psy = ¢,,0.
(A] ].3.1.2) b=1=71(a) =w,
a[l - n] = pgsn, where pg =0, psy, = Q...
(A ].3.2) Case c = c + 1:
(A ].3.2.1) b#1=1(a) =w,
a[l ’ n] = Pn; where Po = Dbcl; PSn = Q/gpno
(A] ].3.2.2) b=1=1(a) =w,
a[l - n] = pn, where pg = Dic', p1 = Qpopi, pssn = Qpg., -
(A] ].3.3) Case ¢n Lim, 7(c) < b:
7(a) = 7(c), alz] = Dy(c[2]).
(Al ].3.4) Case cn Lim, b < 7(c):
Then 7(a) = w, all - n] = Dyc[(,], where ¢, is defined by:
(Al ].3.4.1) 7(c) #IVb<DicVb=1=
Go =0, Csn = Dx(c[Ga]), m:=7(c).
(Al ].3.4.2) (1(¢c) =IANDrc=<b=<1)=
CO = Dicom(b), Cl = QCo—i—l; CSSn = QCSH-
(A[]4) C(LSGCL:Qb, b#Qb
(Al ].4.1) Case an R:
T(a) =a, alz] =a= + 2z
(Al 1.4.2) Case a 1f R:
T(a) = 7(b), alz] = Dy or alz] = Q)41
(Al ].5) Case a =1:

alz] = $b[z]c

T(a) =1, alz] =a= + 2.

Further we assume, that in (A] ].1) we have NF (b, c[z]) and in the cases (A[].3.4) we have
Vn € N.¢, < 7(c).

The next lemma is one of the most important, it shows that W N I is closed under €2..
Lemma 8.29 (a) VX € P(N).Na,bn W(X).¢ubn W(X).

(b) If X € CL,(N), then Ya,bn W (X).¢ubn W(X).
Proof: ~
(a) Let Y := AaVy n W(X).¢,y n W(X),
we show AX(Y)N W (X) C Y, and then follows assertion (a).
Assume z n AX(Y)NW(X), let Y := \y.dpy n W(X). We show AX(Y)NW(X)CY’,
and then follows the assertion.
Assume y n AX(Y) N W(X), and let a := ¢,y.
Case y n Lim \ Cr(z): Then Vz n 7(y)* = 7(a)X.y[z] n Y, therefore ¢ yz] n W(X),
an W(X).
Assume therefore y 1 Lim \ Cr(z):
Case z = 0:
Subcase y = 0: alz] =0n W (X).



Subcase y =y’ + 1: y' n Y’ since 0 7 7(y)* and y n AX(Y"). Therefore T W (X)
and G,y 1 W (X).

Subcase y ) Cr(z): y n W (X), therefore ¢,y[1-n] = y-Sn n W(X), therefore ¢,y n W (X).
Case z =2/ + 1: Then @' Y, Yy n W(X).dgy n W(X).

Subcase y = 0: po = 01 W(X), and if p, n W(X), then pg, = ¢wpn n W(X), therefore
an W(X).

Subcase y = ¢/ + 1: ¢/ n Y, therefore py = ¢t/ 1 W(X), and if p, n W(X), then
Psn = Gupn 1 W(X), therefore a n W (X).

Subcase y n Cr(z): po =y n W(X), and if p, n W(X), then ps, = duwpn 1 W(X),
therefore a n W (X).

Case x n Lim:

Subcase y = 0, z 1/ G: Vzn 1(x)* = T(a)X.QASI[Z]O n W(X), anW(X).
Subcase y =0,  n G: Vzn 1(x)* = T(a)X.QASm[Z]x nW(X), anW(X).

Subcase y = ¢/ + 1: y' n Y”, therefore ¢,y n W(X),

therefore Vz n 7(x)* = T((Z)X-ng[z}(axy,) n W(X), anW(X).

Subcase y n Cr(z): yn W(X), therefore Vz n 7(z)X = T(a)X.ggxMy n W(X), anW(X).
(b) follows as (a) .

Lemma 8.30 Let X : P(N) or X € Cl,(N).

(a) X CW(X) —VrnXQ, e W(X).
(b) (InXANAg(X)) —-VYanXNIQ,nX.

Proof:

(a) Let Y :=Q, n W, Y € Cl,(N).

We show AX(Y)N W (X) C Y, then follows W (X) C Y.

Assume a n AX (V)N X.

Case a =0: Qp=wn W(X) by 8.14 (a).

Case a =d' +1: Qu n W(X), by lemma 8.14 (c¢) Q, n W(X).

Case Q, = a: an W(X).

Case an Lim, a # Q,: Then

Ve n 7(a)® Qqlz] = Q) V Qlz] = Qupps1, by assumption Qg n W(X) and by 8.14 (c)
Qafe+1 1 W(X) for z n 7(a), therefore Q, n AX(W(X)) = W(X).

(b) Ifa € X N1 follows Q, € W(X)N1I, Q, € X.

Lemma 8.31 W (X)/closed under D Let X : P(N) or X € Cl,(N), Ag(X).

Then Ya,bn X.NFp(a,b) — D,bn X.

Proof:

We consider the case X : P(N):

Let Y : =X yyn X —Ven X.DyynW(X),

(in case X € Cl,(N) we would choose Y :=yn X — Ve n X.D,y n W(X) for z a fresh
variable).

We show AX(Y) N W (X) C Y, and then follows W (X) C Y and, since X C W (X) and
D,b < a the assertion.

Assume z AX(Y)N X, yn X, and let a := D,y.

Case y = 0:

If © # I, then o n W(X), therefore py = =~ = z[0] n W(X) by 8.15 (b) and if p, n W(X)
follows ps, n W(X), therefore a n W (X).

If x =1, then pon W(X) and if p, n W(X), then, since p, < D;0 < I n X, X C W(X),
Pnn X, psnn W(X) by lemma 8.30 (b), therefore a n W (X).



Case y =y + 1:

If « # I, then, since ¢y n Y follows py = D,y n W(X), and by induction p,, n W(X),
an W(X).

If © =1, then py n W(X) since ¢y n Y, and by induction on n : N, since p, < a < I
and, if pg n W(X) then py + 1 n W(X), follows by lemma 8.30 p,, n W (X) and therefore
an W(X).

Case y n Lim, 7(y) < x:

Since y[z] n Y for 2 n 7(y)* = 7(a)* follows a[z] n W(X) for these z and therefore
an W(X).

Case yn Lim, z < 7(y):

In this case we always show Vn € N.¢, n W(X). Since ¢, <y n X, ¢, n 7(y)~, follows
G 7)Y, YlGl mY, all - n] = Da(y[Ga]) n W(X)

If 7(y) # I or x < Dyy or x = I, follows, since by y n W(X) we conclude by 8.15 (d)
T(y) n W(X), t := 7(y) n X, and, since y n X, if ¢, n W(X), then (, n X, z[(,] n Y,
Csn = Di(al,)) n W(X), by induction therefore VYn € N.¢,, n W(X).

If 7(y) = I AN Dy = x < I we have Dicom(x) = Dja for some y < a n OT, such
that NFp(I,a). Since Di(a + 1)[0] = Dra = & < Dy(a + 1), follows by lemma 8.15 (c)
Co = Dicom(x) n W(X), and because ¢, < I, by an immediate induction ¢, n W (X).

Now we want to exhaust the full power of M L{Wg, by forming the classes W;, that are
syntactically increasing objects (so we can not define them internal in Martin-Lof’s type
theory, but only by external meta induction), and where Wg; allows to prove transfinite
induction up to Dgq, (Qr41.1).

Definition 8.32 W, :=WnNI, Ws; := WW;) N Qri1.si-

Lemma 8.33 For alli <w AgW;) A Qri1a n Wei AW, = Wei N Qri.

Proof:

Meta Induction on 7 : N:

i = 0: By lemma 827 W, = W(W) NI, and since WNI = W, NI follows W, =
W(Wy) NI =W, N 1. Therefore Ag(Wo) AWy = Wy N Q. Further I= =0n Wy AV n
()W I[x] = 2 n Wy C W (W), therefore Qr = T n W (W) N Qrer X W,

1 = S] Wj = ng N Ql-i-l-j- Therefore Wsj = W(W]) N Q[+1.(Sj) = W(WSJ) N
QI+1~(Sj) = Wgsj N Q[+1.(5j), therefore AQ(WZ) Further QI_+1~(Sj) = Q[+1.j n ng AVx n
T(QHl.(Sj))WSJ'.QIH.(S]-)[:17] = Qi1+ 1 Ws; C W(Ws;), and we have Q1.5 1
W (Ws;) N Qri1.ssj) = Wss;

Theorem 8.34 For alln € IN we have:

MLiWr VX € P(N).WVy e NVzx e No <y »znX) -ynX) > Vy € Ny <
Do, Qry1n —yn X.

Proof:

Assume the premise of the assertion. Then X : P(N) and Prog(X), therefore by lemma
8.17 (e) and 8.33 Wg, N C X. By lemma 8.33 Q;11., n Wsp, and Q3 n WNRNI C
Wsn, N R, therefore by lemma 8.31 Dq,Q11., 7 Ws,. Since Ws, Ny E OT follows
Vy € Ny < Do, Qp1n — yn X.



Chapter 9

Properties of the ordinals

In this chapter will now do all the technical work for the introduction of the ordinal
denotation system OT'. All the work done in this chapter could be carried out as well in
HA, that is, we define primitive recursive functions and relations and only need induction
over natural numbers in the proofs.

To get unique terms, we will use in this chapter fix point-free versions for the Veblen-
function and the enumeration of the infinite cardinals.

The analysis follows well known proof theoretical techniques, which can be found in
[BS88], [Buc86], and on which the author did a lot of work in his Diplomarbeit [Set90].
Old versions of this system where studied for instance in [Buc75b] ,[BS76] We start to
introduce sets 7", T" and OT (definitions 9.2, 9.7 and 9.10). We use for introducing
sums of additive terms a construction +, which is the sum of an ordinal with an additive
principal number, to avoid the introduction of lists. We define the ordering (definition 9.4)
and introduce its properties (9.5). Further we define the set of coefficients Ga needed
for the definition of OT. Now we introduce functions like +, 2., and the set of critical
numbers (definition 9.11), show some properties for the lists Pl(a) (in some sense here we
switch back to the ordinary introduction of 77 — 9.12). We show some easy properties
on 7" (9.13, 9.16), closure properties of 77 and OT (9.14), some ordering properties of
the introduced functions (9.15, 9.17, 9.20), properties of the critical numbers (9.18) and
Gamma numbers (9.19). Now we define the fundamental sequences, first a version which
we will afterwards modify a little bit for the well-ordering proof (definition 9.21; essentially
the difference is that in 9.21 for regular cardinals a[z] := z, later we will replace this by
alz] = a~ + z to avoid fixed points of €2.). We show some easy properties (9.22 and 9.23).
In definition 9.24 we introduce a*, some predecessor relation, having the property that
for a modified length (A’ we have [h'(a*) < [h/(a) (9.25), that s* < s[[7(s)"]] (9.26)
s <t <X s — s =< t*(9.28). We get no new critical numbers, Gamma numbers,

regular cardinals or fixed points of © between s* and s (9.27). If we introduce t < s <

dn € N.O <y n A sntimes =y t (definition 9.29), we can show that it exchanges with
many functions (9.30), and that, if £ < p, then s[¢]] < s[[p]] (9.31), and conclude the
Bachmann property (lemma 9.32).

To show that OT is closed under forming the fundamental sequences and that a =
sup{a[¢]]|¢ < 7(a) A& n OT} for a n OT, we motivate on page 109 and introduce in
definition 9.33 the relation <l¢, which exchanges with many functions (9.35), allows to
deduce properties of Gra (9.36). In lemma 9.37, we show that s* < s, and in lemma
9.38, that a[z]] <, a. With these properties we can show that we have real fundamental
sequences (theorem 9.39) and that OT is closed under fundamental sequences (lemma

89



9.40).
At the end we modify the fundamental sequences, as stated before. (definition 9.43),

prove that essentially we have a[b[z]] = a[b][z] (lemma 9.44) and prove all other properties
(lemma 9.45).

Remark 9.1 We define some Gédel-numbering for the terms: + = Ax,y. < [+],<
x,y >>, +N — N — N written as a+b for +ab, which corresponds to the sum of an
ordinal with an additive principal number in normal-form,

b= \r,y. < [QAﬂ <zy>>,0: N — N— N, written as ¢.b for pab, which corresponds
to the fized point free version of the Veblen-function

Q:=\z. <[Q],z >, Q: N — N, written as Q, for Qa, which corresponds to the version
of the enumeration of the infinite cardinals, which is free of fized points

D = \x,y. < [D],< z,y >>, D : N — N — N, written D,b for Dab, which
corresponds to the collapsing function

I :=<[I],0 >, (which corresponds to the first weakly inaccessible cardinal)

Oor :=< [0],0 >, (for0),
where [D], [Q), [, [F]. [I1, [0] are different natural numbers, and < -,- > is some
primitive recursive pairing operation on N.

We will introduce three different sets of terms, T”, T’, and OT. T" will be essentially
all objects, we can construct by the operations 9.1, demanding only very small normality
properties of the terms, without reference to the ordering. 7" will be a subset of T”, by
restricting the terms to those, which have better properties with respect to <, which was
introduced on T”. OT demands some more conditions for the D,y. It is quite difficult,
to prove, that the for a,bn OT a[b] n OT (b < 7(a)), one of the technically difficult tasks
of this chapter, at first hand we only get this closure property for 7".

Besides T” we define sets Suc”, A”, G”, R", Fi", the restriction of them to 7" are Suc/,
A, G', R, F7', and, restricted to OT, we get Suc, A, G, R, F'i where (where Lim will be
the limit ordinals, A the additive principal numbers, G Gamma ordinals, F'i will be the
fixed points of Ax.€Q,, that is I and the ordinals D;a, R the regular cardinals).

Definition 9.2 We give an inductive definition of sets T”, Suc”, A", G", R" of terms
together with length(a) for — anT"U Sucd” UA” UG" U R"U Fi", such that we can in
an immediate way define T", Suc”, A”,G", R", Fi" as elements of P*(N) and length as
an element of N — N.
(T" is the set of terms, Suc” the set of successor numbers, A" the additive principal
numbers (except Oor), G" the Gamma numbers, R" the reqular cardinals, Fi" the set of
fized points of the function €2..)
(T”1)  OornT", length(Opr) := 0.
(T72) IfanT"\{0or}, bn A", then a+bnT", at+lor n Suc’,
length(a+b) = ma:vN{length( ), length(b)} +n 1.
(T73)  Ifa,bnT", then ¢ab n A", ¢00T00T n Suc”,
length(ub) := mazy{length(a), length(b)} +y 1
and we define 1o = $OOTOOT.
(T74) IfbnT", then Dibn Fi",
and if tnp R” and bnT", then Db n G",
length(Dyb) := maxy{length(m),length(b)} +n 1
(T75)  If an Fi" U Suc’ U{0or}, then Q, n R",
ifanT", then Qun G,
length(Q,) := length(a) +
(T76) InFi"UR", length(I) = 0.



(T77) R'CcG'"CA"CT" Fi" CG", Sud’ CT".
Lim" :=T"\ ({0or} U Suc”).
We will write 0,1 for Oor, lor.
Definition 9.3 We define first,last, Alength : N — N, where first will be the first,
last the last additive principal number of the sequence of principal numbers, the ordinal
term is built of, and Alength be the length of the sequence.
If a f T" last(a) = first(a) := Alength(a) := 0, last(Opr) = first(Oor) = Oor,
Alength(Oor) == 0, if a n T" Nb n A", last(a+b) = b, first(at+bd) := first(a),
Alength(a+b) := S(Alength(a)) and for a n A” last(a) := first(a) := a, Alength(a) :=
1.
Definition 9.4 Definition of a <g ¢ for a,cn T". The definition will be in such a way,
that we can define it as an infix written function <g: N — N — bool.
We define a <p b by recursion on length(a) +n length(b), using in the definition a <g b
as an abbreviation for a <gbVpa =npb.
a<gb:=ffifayT"'"VbyT".
(‘< 1) (OOT =B C) = _‘B(OOT =N,B C).
¢ <5 001 = [f. B B
(<2) a,enT”, bydn A”, then (a+b <p c+d) :=
((Alength(a) <y Alength(c)) As (a+b <5 ¢))Vs
((Alength(a) =y Alength(c)) Ag (a <g ¢) Ve (a =nyp c A\gb <5 d))Vg
((Alength(c) <p Alength(a)) Ag (a <5 c+d))
(<3) a,bnT", cn A"\ {0or}, then
(a+b <pc) :==a <5 c and
(c <patb) :=c=pa
(<4) Ifa,byc,dnT”, then
(¢ab =B ¢cd) = N
((a =g cAsb <p ¢ped) Vi (a =np cAsb <p d)Vp
(C <B a N\p qgab =B d))
(=<5) Ifa,bnT", cnG", then
(¢ab <5 ¢) := (a <5 ¢ Agb < ¢) and
(c<p (Eab) = (c=2gaVgc=pb)
(<6) mpnR'bdnT", then
(Dzb <p D,d) =
(m=nppAsb=<pd)Vs(p#Ns I ANTF#np I ANT < p)Vs
([ :N7T/\7T7£N[/\D7rb—<p)\/3
(m#NBpAsp=ngl AT <5 D,d)
(<7) Iftn R’ p=n Q. orp=n1,m#Nn1,bnT", then
(Db <p p) =7 < p and
(p < Dyb) :=p <p .
(<8) byenT”, then

~

(Drb <5 Q) := Db <p ¢ and
Q. <5 Dib:=c <5 Dyb.
(<9) bnT", then
Dib<pl =t
I <5 Dib:=ff
(<8) Ifa,enT”, then
(Qa =<B QC) = (Cl =<B C)
(<9) IfanT", then



(Qu <p I) == (a <p I) and
(I <5 Q%) == (I 25 a).
Let 2= \z,y.2 <py VBT =nNp Y,
<:= Az, y.atom(z <5 y),
<:= Az, y.atom(x <5 y), all written infiz.

Lemma 9.5 (<) is a linear ordering on T", that is:
Assume a,b,cn T". Then:

(a) —(a < a).
(b) a <bVb=<aVa=nb.

(c)a<b—b=<c—a=<c.

Proof: (a) and (b) are easily checked by induction on length(a) and length(a) +x
length(b).

(¢): Long and tedious induction on length(a) +y length(b) +y length(c):

Case a =n Opr. Then ¢ #x Oor, a < c.

Case b =§ Opr or ¢ =x Opr are not possible.

Case a = d+e, b= f+g, c = h+k:

(the case distinction is in the ordering Alength(f), Alength(h), Alength(d):

If Alength(d), Alength(f) <y Alength(h) follows a < b =< h, therefore a < h, the
assertion.

If Alength(f) <y Alength(h) =y Alength(d) follows d < b < h, therefore a < c.

If Alength(f) <y Alength(h) <y Alength(d) follows d < b < ¢, therefore a < c.

If Alength(d) <y Alength(f) =n Alength(h) follows a = f =< h, therefore a < h, the
assertion.

If Alength(d) =5 Alength(f) =y Alength(h) follows d < f =< h, therefore d < h or
d=n f=nh,e<g=<kandbylIHe<k.

If Alength(h) =5 Alength(f) < Alength(d) follows d < b < c.

If Alength(d), Alength(h) <y Alength(f) follows a < f < c.

If Alength(h) <y Alength(f) =y Alength(d) follows d < f < c.

If Alength(h) <y Alength(f) <y Alength(d) follows d <b < c.

Case =(an A" Nbn A" Nen A"YN(an A”VbnA"VenA”):

Ifan A", b=y f+g, c =n5 htk follows a < f <hora < f <cora=<b=h,and the
assertion.

If a =y dte, bn A", ¢ =5 g+h, follows d < b <cord <b=<gora<b=< gand the
assertion.

If a =n dte, b=y f+g, cn A" followsa < f <cord = f <cord < b < cand the
assertion.

If a,bn A", ¢ = h+k follows a < b < h and the assertion.

If a,cn A", b= f+g follows a < f < ¢ and the assertion.

Ifben A’ a= d+e follows d < b < ¢ and the assertion.

Case a =N ¢qe, b =n ¢rg, c =n Ork:

As [BS88], theorem 14.2.

Case a,b,cn A"\ {O0or}, ~(a,b,cn G"), anG'VonG"VcnG"

Ifa:Nngde b—Nqbfg,an” follows, if we had ¢ < d, f<c<d dge < g < ¢ by IH,
¢de <c,d=<c Ifd=<c=efollowsin case of d < f e < ¢fg < ¢, e < ¢ a contradiction,
in case of d =y f, e < g < ¢, e < ¢ a contradiction, and in case of f < d, ¢de <g=<c
$de < ¢, e < ¢, again a contradiction. Therefore d < ¢, e < ¢ and the assertion.



If a =y dge, bn G, c=p $fg follows, if b X f, d < f, e < b < ¢, therefore e < ¢ and the
assertion. If f < b =< g, follows, if d < f, e < b < ¢, therefore e < ¢ and the assertion, if
d=y f,e<b=2g,e<ganda<c,andif f <d,a<b=<g,a<g,a<c.

IfanG, b=n ggde, c=n qgfg, follows, if d < f, e < ¢, therefore, if a < d, a < f and
ifa<e a=<c Ifd=yffollowse < g, maxp{d,e} < maxr{f,g}. If f < d, follows
a<b=<g,a=<g.

If a =y ¢ge, b,cn G, follows maxp{d,e} < b < c, marr{d, e} < c.

If a,cn G", b=y dge, follows a < maxp{d, e} < c.

If a,bn G, c =y dge, follows a < b < maxp{d,e}.

Case a =y Dge, b=y Dyg, c =5 Dpk:

Ifd f,h#y I ord=yN f =y h=n1followsd <X f <h,d=<hore=<g=<k and the
assertion.

Ifd=n1, f,h #n I follows a < f < h.

If f=n1,d,h+#NIfollowsd < b= h.

Ifh=nI,d f#nIfollowsd=<f <c d=<c.
Ifd=yh=n1I,f#nI, follows a < f < c.

Iff:Nh:N[,d%NI,fOHOWSd%bjC.

Ifd=yn f=n1I,h#xNI, follows a<b~< h.

Casea:N Dde,b:]\[ Qf OI‘b:N ],C:N thi

Ifd,h#n 1 followsd <b=<h,ifd=y51, h#yxIfollowsa <b=<h,Ifd#yI, h=yn1
follows d < b < ¢, and if d =y h =y [ follows b #x I, a < f < b.
Casea:NDde,b:NDefc:NQk orc=pI:

Ifde#n 1 followsd <e <c¢,ifd#y I, e =y 1 followsd 2b<c,d=<c, ifd=py I,
e#n I follows a < e <c¢,and if d=y e =y I, follows k #x I, a < b < k.

Case a =N Qd, b =N Def, C =N Dghi

Ife,g#n I followsa <e=<g,ife=yINg#yIfollowsa <b=<g,ife#yINg=n1T
followsa%e%c,andifa:Ng:N[followsa:NQd,d<b<c,d<c.
Casea:NQdora:NI,b:Nﬁeorb:NI,c:NDgh:

If g 4y I follows a < b < ¢, and if g =y I follows b =y Q., e < I therefore a #y I,
otherwise I < I, d<e<c¢,d=<c.
Casea:NQdora:NI,b:NDef,c:Nngrc:N[:
Ife%N[followsa<ejc,ife:N[followsa:NQd,a—<c:N[ora<bjg.
Casea:NDde,b:NQeorb:NI,c:Nngrc:NI:
Ife;«éNIfollowsdjb<c,ifd:N]follows,ifc:NI,a<c,ifc:NQgWitthg
a%c,andifc:NQgWithg<],b:NQe,a<e<g.
Casea:NQd,b:NQf,c:NQh:d%f%h.
Casea:N[,b:NQf,c:NQh:ajf%h.
Casea:NQd,b:N[,c:NQh:d—<bjh.
Casea:NQd,b:NQf,c:N]:d<f<c.

The Cases a =x I =y b or b =5 I =y ¢ are not possible.
Casea:NI,b:NQf,c:N[:ajf%c.

Definition 9.6 Let anT”, M, M’ : P/"(N):

M <z M’ = Vern M3gy n M'(x <5 v),
M < M 1= Vsx n M3gy n M'(x <5 y),
M <ga =M <p{a}in,
a=<pgM ={a}tpm < M.



M < M'":=atom(M =<5 M"), similarly for <.
Definition 9.7 We define a set T' CT" of restricted terms, and define:
Suc = Sud"'NT', A =A"NnT',G':=G"NT", R .= R'NT'. Lim' := Lim"NT’,

Fi' = Fi"NnT.

(T°1) Oorn T

(T2) IfanT'\{0or}, bn A”NT', b= last(a), then a+bn T’

(T°3)  Ifa,bnT’, then ¢.bn T

(T’4) Ifnrn R'NT andbnT’, then D;bn T .

(T°5) IfanT, then Qun T

(T°6) InT.

We want to construct a system, which has precisely one term for each o < 1q, (Q1).
In the set theoretical ordinals it happens, that for regular cardinals x and certain ' < 3,
Ve = B, Only if g' € Cn(ﬁ,)> B € Oﬁ(ﬁ) we have 9.3 = 9,8 — 3 = 3. Since
we want to assign (and will do this in chapter 10) for every ordinal term t a unique
ordinal o(t) by o(D,b) = 1s(4)0(b), we need to select those ordinal terms D,b, such that
0(b) € Coa)(0(b)). We will introduce therefore finite sets of ordinals Gya for bn R”, an T"
such that for a,b,c n T" we have o(c) € Copy(0(a)) < Giyc < a, and define OT as the
subset of 1", where only subterms Dyc with Gyc < ¢ occur.

Gype will be the set of the e such that Dge occurs as a problematic subterm in ¢. Prob-
lematic is Dge, if to conclude o(c) € Cypy(a) for an arbitrary «, we need to know
o(Dge) € Copy(r), and additionally Cyp () is only closed under p — 1,4 p for p < a.

Definition 9.8 Inductive Definition of Gra : P/"™(N), Gra C T", such that for a n T,
7n R, Gea C T, and we can define it as a function G : N — N — PI"(N). The
definition is by recursion on length(a).
Gra =0, if mf RNV ayT".
(Gl) GT('OOT = Q)
(G2) Ifa,bnT", then Gr(atb) := Gp(dab) := Gra U Gb.
(G3) If¢n R, bnT", then
{b}UGLEUGLD, ifm <& #N IV
fZNI/\(WjD[b\/ﬂ':N I),
Gﬂ-ng = ng ng <m=n1
0, if & <m#N I or
. é-:NI/\D[b‘<7T‘<I
(G4) IfanT", then Gr(§2,) = Gra.
(G1) G,.I:=10.
GYa = GraU{0or}.
Lemma 9.9 (o) an G,b— Gra C G,b.

(b) an Grb=length(a) <y length(b).
Proof: Easy Induction on length(a).

Definition 9.10 (a) Inductive Definition of a set of terms OT(OT C T"), such that OT can be
defined (in an obvious way) as an element P¥(N):

(0T2) IfanOT\{0or}, bn OTNA b=last(a),
then a+bn OT
(OT3) Ifmrn R NOT,bnOT, G:b<b, then D;bn OT.



(b)

(0T4)  Ifa,bn OT, then ¢sbn OT
(OT5) IfanOT, then Q, n OT
(0T6) 1nOT.

The elements of OT are called ordinal terms.

R:=RNOT(=R'NnOT),

Fi = Fi' nOT(2 Fi" n OT),
G:=G'NOT(=G"NnOT),
A=ANOT(=A"NnOT),

Suc = Sud NOT (= Sucd" NOT).

We will now introduce further functions on 7":
Definition 9.11  (a) w := ¢y, lor, w n OT.

(b)

(c)

(d)

Definition of +: N — N — N, written infiz. We define a+b by recursion on length(b):
IfayT" orbyf T", a¥b = Oor.

a+0or := a, atb:= a+b forbn A", and a+(b+c) := (a+b)+tc.

We have Vx,y n T".atyn T".

Definition of + : N — N — N, written infix. We define a + b by recursion on length(a),
side recursion on length(b):

IfayyT" orbyT", a+b:=0pr.

If b=n Oor, then a +b:= a.

If a =N Oor, then a+b:=b.

Let a, b 7éN OOT-

Ifbn A", b < last(a), then a+ b := a+b.

Ifbn A”, last(a) < b, then, ifan A", then a+b:=b, and if a =y e+ f, then a+b:=e+b.
Ifo=netf,enT" fnA" thena+b:=(a+e)+f.

We have Ve, y nT".x +yn T".

Definition of - : N — N — N, the multiplication of an ordinal with a natural number,

written infix. We define a - n by recursion onn : N:
a-0:=00r,a-Sb:=(a-b)+a. WehaweVernT".z€ Nz-ynT".

Definition of - — w, Rest(-, —w),pred: N — N,

where we write a — w for (- —w)a (the largest limes-number below a)

Rest(a, —w) for Rest(-,—w)a, (the difference between a and a —w)

pred(a) for pred a (the predecessor of a successor ordinal).

We define a — w Rest(a, —w) pred(a) by recursion on length(a):

If ayf T, then a — w := pred(a) := Opr, Rest(a,—w) := 0,

lor —w = 0or, Rest(lor,—w) =1, pred(lor) := Oor,

foranT", (a+lor) —w = a—w, Rest(a+lor, —w) := S(Rest(a, —w)), pred(a+lor) := a,
and if an A" U{0or} or a =y b+c with ¢ #x lor, then a —w = a, Rest(a,—w) = Oor,
pred(a) := a.

We prove easily

VenT". ax—wnT" ANpred(z)nT" Nz =y a—wF(lor - Rest(z, —w)) A
x—wn Lim"U{0or} A (zn Suc” — z =5 pred(z)+1or)).



(f) Definition of -— : N — N, written as a~, by recursion on
length(a) (the cardinal-predecessor of a cardinal):

a” := O0pr for a 77/];2” U {UQT, lor,w}, Oor™ = Oor, lor™ := Oor, w™ = Oor, QEOT = w,
if a n Suc”, then Qp = Qpreq@), if a n Fi’, then Q) = a, and I~ := O0pr. We have
VenT".x=nT".

(9) Definition of Q. : N — N, written as §2, for Q.a.
a if an Fi"
O — Qpred(a) ifa—wn Fi" and a1y Fi’
“ OOT if a ﬁT”
Qa otherwise.
We have Yo nT".Q, nT".

(h) maxy := Ax,y. if x <y theny else x,
miny = Ax,y. if v <y then x else x,
maxp, miny : N — N — N, and we write mazxp{a,b}, miny{a,b} for maxrab, minrab.
We have Yx,y n T" .maxr{x,y}, minp{z,y} n T".

(i) Definition of NFy3: N — N — B:
NFi g = Xx,yx =np Oor Vg first(y) <p last(x), NF; = Az,y.atom(NF; g(x,y)),
NF, :N—N—=U
We write NF, g(a,b), for NF gab, similarly of NF,.

(j) Definition of Pl : N — Nlist, which is the list of the additive principal numbers, an ordinal
is sum of:

We define Pl(a) by recursion on length(a):

Pl(a) := nil, if a f T" or a =y Oor, Pl(a+b) := append(Pl(a), PI(b)), and for a n A"
Pl(a) := cons(a,nil).

(k) Definition of Cr : N — P%(N), where Cr(a) should be the set of a-critical ordinals. We
define Cr ab by recursion on length(a) +n length(b):
Cr ab:= false if a o T" Vb of T", and for a,b,c n T", Cr alor = ff, Cr a(b+c) = ff,
Cr agpc :=a <5 b, and for bn G", Cr ab = a <5 b.

We write Cr(a) for Cr a.

(1) Definition of Dicom : N — N such that Dicom(a) n T" for a n T', Dicom(a) := Oor
otherwise. Dicom(a) should be the largest component Drc contained in a
Dicom(a) := O0or if ayfT",
Dicom(0or) := 0or, Dicom(atb) := Dicom(¢b) :=
maxp{ Dicom(a), Dicom(b)}.
Dicom(Dyb) := Dicom(a) for a #x I, Dicom(Dja) := Dra, Dicom(Q,) := Dicom(a),
Dicom(I) = 1.

(m) Definition of NFpg: N — N — B written as NFp g(a,b):
NFpp(a,b) :=anR'NbnT" NG,b<pb.
We will now characterize the ordering of ordinals, which are not principal additive numbers
by the lexicographic ordering of Plist.
Lemma 9.12 (a) Yz n T". Alength(z) =y (h(Pl(z)) A (z #n Oor — (first(z) =n (Pl(a))o A
last(x) =n (PU®)) yiength(z)=1)) A Vi <y h(Pl(z)).(Pl(x)); € A”.



(b) YenT"anT
(Vi € N.Si <y Alength(x) — (z)s; = (z);) AVi <y Alength(z).(z); n T".

(c) Vz,y n T".Pl(x+y) Znis append(Pl(z), Pl(y)).
(d) Ve nT'.xnOT < Yi < Alength(x).(Pl(z)); n OT.

(e) If a,bnT", la := Pl(a), lb:= Pl(b), then
a < b (i <y miny{lh(la),lh(lb)}.(la); < (Ib);\
Vj <wi.(la); =y (1b);) V (Ih(la) <y lh(Ib) AV <y lh(la).(la); =N (ID);).

(f) If a, b n T”; la gNlist PZ(CL); lb gNlist Pl(b); then
a=x b (Ih(la) =y Ih(Ib) AVi <y lh(la).(la); =y (Ib);).

(9) Let

Q(a,b,i) == i <y Alength(a) N (Vj <y Alength(a).i <y j — (Pl(a))o < (PL(b)):) A
(i # Oor — (PU(b));-1 = (Pl(a))o)

Then Ya,bnT".b # 0or — (Fi € N.Q(a,b,i))A
(Vi,j € N.Q(a,b,i) NQ(a,b,j) — i =n j)A
Vi.Q(a,b,i) — Pl(a+ b) = append(Sublist(Pl(a),i), Pl(D))

(h) Vo € T".Grx = U™ ¢ _Pl((z),).
(or the formalization of this theorem).

Proof:

(a) follows by an easy induction on Alength(z)

(b) Induction on Alength(z):

If x =n Oor, then x n T" and Pl(x) = pnyis nil.

If © n A", then Pl(x) Zpnus cons(z,nil), x n T" < (Pl(x))y n T and we have the
assertion.

If 2 =y bte, then 2 nT" — (b T' Aen A Ae = last(a) =n (@) genginay-1) < (Vi €
N.Si <y Alength(b) — (b)si = (b)) ANVi <y Alength(b).(b); n T') Nen A ANe =
(0) atengthpy=1) < (Vi € N.Si <y Alength(a) — (a)s; = (a);) A Vi <y Alength(a).(a); n

T").
(d) follows in a similar way.
(c) follows by an easy induction on Alength(y)
(e), (f): Let
Less(a,b) := (Fi <y miny{lh(Pl(a)),lh(PL(b))}.(Pl(a)); < (PI(b));A

Vj <n i.(Pl(a)); =n (PL(b));)V

(Ih(Pl(a)) <n Ih(PL(b)) AVi <y Ih(Pl(a))-(Pl(a)); =n (PI(b)):),
Eq(a,b) := (Ih(Pl(a)) =y Ih(PIL(b)) AVi <y lh(Pl(a)).(Pl(a)); =~ (PL(b));),
and m := maxn{lh(la),lh(lb)}.
We show Va,b n T7".(a < b < Less(a,b)) A (a = b < FEgq(a,b)) by induction on
Alength(a) + Alength(b). Assume a,bn T", and let la := Pl(a), Ib:= PI(b).
If b =y Oor, follows —(a < b), ~Less(a,b), a =5 b« b=y Oor < [h(lb) =0 < Eq(a,b).
If a = Oor, b %y Oor follows a < b, and lh(la) <y Uh(Ib) A Vi <y lh(la).(la); =y (Ib);,
Less(a,b), further a #y5 b, lh(la) #n Lh(lb), ~(Eq(a,b)).
Case a =y c+d, b=n e—T—f. If Alength(c) <y Alength(e) follows m =y Alength(a) =x
miny{Alength(a), Alength(e)}, a < b < a < e < (Less(a,e) V Eq(a,e)) < Less(a,b),
and a #n b, ~(Eq(a,b). If Alength(c) =y Alength(e) follows m =y Alength(a) =



S min{Alength(c), Alength(e)}, a < b < (¢ < eV (c =y eNd < f)) < (Less(c,e) V
(Eq(c,e)Nd < f))) <> Less(a,b). Furthera =5 b < (c =n eAd =§ f) < (Eq(c,e)ANd =n
f) < Eq(a,b). If Alength(e) <y Alength(c) follows the assertion symmetrically to the
case Alength(c) <y Alength(e).

Case a =y c+d, bn A’. Then [h(lb) =1 <y Ih(la),m=1,a < b+ c < b« Less(c,b) <
Less(a,b), a #n b, 7(Eq(a,b)).

Case a n A, b =x ctd. Then [h(la) = 1 <y Ih(lb), m =1, a < b < a =X ¢ <
(Less(a,c) V Eq(a,c)) < Less(a,b), a #n b, =(Eq(a,b)).

Case a,bn A’. Then a < b < Less(a,b), a =5 b« Eq(a,b).

(g): The existence and uniqueness of ¢ is easy. We show Q(a, b,i) Ab #n 0or — Pl(a +
b) =niist append(Sublist(a,i),b) by main induction on Alength(a), side induction on
Alength(b):

Case a =y 0p7. Then ¢ =5 0 and we have the assertion.

Case a #y Oor:

Case bn A”:

If b < last(a), then i =y Alength(a), a + b =x a+b, Pl(a + b) = append(Pl(a), PL(D)).
Ifan A’ a<b, then i =y 0, Sublist(a,i) =nys nil, a +b =y b.

If a =5 ctd, d < b, then Q(c,b,7), a+ b=y ¢+ b and we have the assertion.

Case b =y e+f. Then Q(a, e, i), Pl(a+b) Znus Pl((a+ e)+f) Zniist

append(append(Sublist(Pl(a), i), Pl(e)), PL(f)) ZNuist
append(Sublist(Pl(a),i), PL(b))
(h): Easy induction on Alength(z).
Lemma 9.13 Let a,b,c,dnT".
(a) a =nOorV (3d nT.a =5 d+lor)Van Lim’

(b) a =N Oor — —(an Suc VanLim') and
an Sucd — ay Lim/.

(c) a =N d+lor « (an Sud Ad' =y pred(a))

(d) a,bnT", then
b #n Oor — last(a+b) =y last(b),
a #n Oop — first(a+b) =y first(a),
Alength(a+b) =xn Alength(a) +y Alength(b).

(e) Vo, y,znT" (x4+y)+z =n v+ (y+2)
(f) Ve,y,z2nT' (v +y)+ 2=y 2+ (y+ 2).

(9) Yo,yn T atynT' < (x =y 0or A first(y) = last(z)) (< NFy(z,y)).
Vo,y n T'".NF(z,y) =z +y =y 2+y.

(h) (a,b,enT' Ne<b) — (NFy(a,b) = NF(a,c)) Na+b<a+ec.

Proof: (a) - (e) are easy.

(f) as usual using 9.12 (b) and (g).

(g): Use 9.12 (b) and (c).

(h): first(c) < first(b), the second assertion follows as usually.



Lemma 9.14 (a) Vz,ynT'Vz€ Nao+y,x- 2z, — w,pred(z), x~, Q,, mazr{z, },
ming{z,y}, Dicom(x) n TN (yn R — Guo CT') AN (NFy(x,y) — z+ynT").

(b) Y,y n OTNz € Nx +y,x - z,x —w,pred(x),x”, Qp, maxp{z, }, minp{z,y},
Dicom(z) n OT A(yn R — Gz C R) A (NFy(x,y) — x+y n OT).
Proof:
(a): for + and F the assertion follows by 9.12 (b), (c) and (g). The other assertions are
easy.
(b) Use 9.12 (d), 9.12 (c), 9.12 (g), (a) for +, +. For the other functions the assertion is
easy.

Lemma 9.15 (a) If a,a’,b,t/ n T", Alength(a) =x Alength(d'), then a+b < d'+¥ < (a

aVi(a=yxad ANb=<b), and atb =y d+b < (a =y d Nb=y1).

(b) If a,b,b',cnT", atb = c < a+V, then c =y a+c for some ¢! n T" such that b < c <.

(c) atbn T — a=atbAb = ath.

(d) Vo,y e T", 7 € R".Gry C Gr(z +7y) C Grx UGy AGr(zty) = Graz UGy
(e) Yrn R'.m #n I — length(n™) <y length(r).

(f) Ya,b n T .a < b Ab < Gab.

(9) YanT.a<Q,.

(h) Ve R ,anT.a <7 — a< Dra.
Proof:
(a), (b), (c): Use 9.12, and the common known properties of the lexicographic ordering.
(d) follows by 9.12 (c), (g) and (h).
(e) Trivial. (f) (i) We prove b < ¢qb by induction on length(b):
If b =y Oor this is trivial, if b =y c+d follows ¢ < qgac < qgab by IH and (c).
Case b =y (bcd If ¢ < a follows d < (bad < ¢a(¢c ), therefore the assertion. If ¢ =y a
follows d < ¢c =y b and the assertion. If a < ¢ follows (bcd < b, ¢cd < ¢a
If b n G’ follows the assertion by definition.
(ii) Now we prove a < ¢gb by induction on length(a):
If a = =n Oor this follows by definition, if a =x c+d follows ¢ < q§cb < ngab by IH, therefore
a<¢ab Ifa—N¢cdfollowsbyIHc<a and since d < a, b<¢abby() d<¢db<¢a
If a n G’ follows the assertion by definition.
(g) By Induction on length(a):
The cases a =y Oor, a =n I follow by definition.
If a =y b+c follows by IH b < Qb, therefore a < Qp < .
If a =y ngbc follows b < Q < Q , = Q. < Q .» therefore ngbc < Q,.

Ifa=y Dy _ cfollostb<Q , Q7 <Q ca<Or o <05 < Q.

b+lor

Ifa =N Dﬁbc, b=n D;dorb=pn ], follows DﬁbC < Qb < QD@ c-
b
If a =x DA ¢, follows DA c=Qopr < Qp .
oo

Yor Soor
If a =x le follows a < Q by definition.
If a =y Q follows by ITH b < Qb, therefore a < Q.

(h) If a =n Opr this is trivial, if @ =y I follows a < 7~ < D,a.

bFlor b+1o

<



If @ =n btc follows b < Db =< D.a, therefore a =< D,a, if a =y @bc follows b, ¢ <
D.maxr{b,c} =< Dra. If a =n D,b follows if p < 7 and © #y I, a < 7~ < Dya, if
p < m =y I follows by IH, since length(p~) <y length(p), p~ < Drp~ =< D,a, therefore
a < p < Da, further if 7 < I =5 p follows from a < ma <7~ < Dya, and if p =y 7
follows by IH b < Db, a =y Db < D, a.

If a =x Qb follows, in case of 1 =y I b < D;b < D,a, a < Dya, and if 7 #x5 I,
a=<n" < D,a.

Lemma 9.16 (a) Vz nT".~(x < Oor).

(b) YenT".x < lor < = =y Oor.
(c)VenT o <w—3In€ Nax=ylor- n.

(d) a #n Oor, anT'" — lor = a.
Proof: All by 9.12 (b) and (e) and Ve n A'.x =y Opr Vo =y5 lor VI =y wVw < .
Lemma 9.17 (a) Ve n R\ {[}Vyn (RUFi')y<z—y=<x".

(b) Yen R\ {I}VYyn (RUFi)a” 2y=x—yn{z,z}.

(c)Ven RNynAy<zx—az +y<uzx.
Proof:
(a) x =n QOOT is not possible. If 7 =x QajrloT, Y =N Q. follows e < at1pp therefore
e=a,y = Q. =n 2. If in the same case y=n I, follows I < a+lor, I <a, I < Q., and
if y =n Dyd follows y < a+lor, y < a < Qa. If v =n Qa - =ya,x =N Drforx=yI,
Y =N Qe, follows by e < a, Q. < a, and if y =y I or y =n Dyd, follows y < a.

(b) by (a). ~
(c) fyn A’ y <z~ this follows by v~ < z, if x= < y n A’ this is trivial, and if y = y1+y»
follows £~ + y; < = and the assertion.

Lemma 9.18 Assume a,b,cn T'.
(a) anCr(b) — b= a.
(b) anCr(b) — ((a < dye — a=¢c)A(dye = a— c=<a)).
(¢) by Cr(a) = 6,7,,,00r 2 b.
(d) Gab < ¢ = da(bFlor) = cof Cra) UG
(e) (bn Cr(a) Ab=<c= dab) — cif Cr(a) UG'.
(f) a = ¢0or — aif Cr(b).

Proof:
(a) If @ =y ¢ed with b < ¢ follows b < ¢ < a, and if a G’ we have b < a.

(b) If a =y (Efg with b < f follows the assertion by definition, and if b < a =y G’ follows
in the first part of the assertion a < ¢pc — a < maxp{b,c} < a < ¢ and in the second
part dyc < a < maxp{b,c} < a < ¢ < a.

(c) Ifa=n bed with a < ¢, follows atlor < ¢, ¢

maxT{cHtloT, OOT} < b, ggaIlOTOOT < b.
(d) Assume ¢ n Cr(a). By (b) follows b < ¢ = b+1or, ¢ =5 b+lor a contradiction. If

c¢n G follows ¢ n Cr(a).

Oor = a, and if a < b n G’ follows

aI—IOT



(e) Assume ¢ 1 Cr(a). By (b) follows b < ¢ < b+1pr, ¢ =y b+1lor a contradiction. If
cn G follows ¢ n Cr(a).

(f) Assume a n Cr(b). By (b) follows a < 0o

Lemma 9.19 (o) Ve n R\{I}VNz2nT' 2= <2 <D,0or — 29/ G".

(b)) Vo n R\ {I}Yy,zn T .Dyy < 2 < D.(y+lor) — 29 G".
Proof: (a), (b): Assume z n G'. If z =y Dyd follows z= < z < z, which yields a
contradiction.
If 2 =5 Dge with d #5 I follows in (a) 2~ < d < z, in (b) < d < z, in both cases
therefore d = z, further in (a) e < Opr and in (b) ¥ < e < y+1o7, both a contradiction.
If z =y Qg follows in (a) 2~ < z < x, in (b) & < z < z, both yields a contradiction.

Here follow some properties of Dicom(a):
Lemma 9.20 (a) Let anT’, ¢ := Dicom(a), Csn := Q.
Then Dicom(a) =n Oor and a < (, < D{0or for somen : N, or
Dicom(a) =y D1b for some b and Dib < a < ¢, < Di(b+1o7) for somen : N,
or Dicom(a) =5 I and I < a,
especially we habe Ya n T'.Dicom(a) < a.

(b) If tn R and anT’, then G,Dicom(a) C Gra.
Proof:
(a) By induction on length(a): If a =x Oor, b+, oue, Dyc, Q, I this follows trivially or
by IH, if a =y Dyc with I < b follows Dicom(a) =5 I < a, and if a =y Dyc with b < I
follows Dicom(a) =5 D;d with Dyd < b < (, < D;(d+1o7), Drd < b since b n R', and
Did < Dyc < Cn < D[(d‘T‘lOT). R
(b) By induction on length(a): If a =y Oor,b+c, dpe, Drc, Qy, I follows the assertion
trivially or by IH, if a =y Dyc with I < b follows GDicom(a) =prin(ny Gzl =prin(n) 0
and if a =y Dyc with b < I follows, if 7 < Dicom(a) = a or 7 =5 I, GDicom(a) C
Grb C GrDyc by TH, and if Dicom(a) < 7 #y I follows G(Dicom(a)) =prin(n) 0.

Now we are ready to define the fundamental sequences in OT. We will start with a
version, where a[[z]] =n z for a n R”, where the ordinals only behave well as long as
7(a)” < z (in fact they behave well as long as Dicom(a) < z, the problem occurs only
when we have fixed points of €., but the approach starting with 7(a)~ seems to be a
little bit more uniform). In the well-ordering proof we use alz] := a[[7(a)™ + z]|. For the
analysis of the sequences, it seems to be easier to introduce and analyze first -], where
we do not have problems with the sum and in a second step to define later -[-] and transfer
the properties proven.
Definition 9.21 Definition of 7(a) und a[[£]] foranT", EnT", £ < 7(a), such that we
can define it as primitive recursive functions, have
7:N— N []:N— N — N, and we have
VoenT".7(x) n {O0or, lor,w} UR" and Ve nT"NEnT".E < m(x) — x[[€]] n T".
If 7(a) =n w we define only a[lor - n]], a[[z]] := a[[lor - length(x)]] for arbitrary r < w
which is for x =x lor - n consistent with the first definition.
Forxf T" 7(x) := 0or, and for x f T" vV E f T" vV = (€ < 7(2)) z[[£]] :== Oor.

(1 1-0) 7(0or) == 0.

(a1-1) Ifa=nbtc, bnT", cn A", then

7(a) = 7(c), (b+o)[l¢]] == b+(c[[¢]))

~

(1-2) Case a =y dyc:



2Ly
(11.2.1.3)
M1.2.1.4)
o)
M1.222)
11.223)
M1.224)
o)
17.2:32)
11.2:3.3)
(7.2.34)
(11.2.3.5)
1-3)
T
17.31.2)
o)
11.3.2.2)
(1-3-3)
(I1]-34)
17.34.1)
(111.3.4.2)

Case b =n Oor:
c=n 00~T = 7(a) := lor, allé]] == O0or
c=n C/+1OI = 7(a) == w,
a[[n]] := ¢oyp () - SSn.
(cn Cr(b)) = 7(a) = w,
al[n]] :==c¢- Sn.
(ecn Lim" A ciyf Cr(b)) = 7(a) :=1(c),
all€]] = oo (c[€]))
Case b =5 V' +1or:
c=n0or = 7(a) == w,

a[[lor - n]| := psssn where po := Oor, psn = O P
c=nd+lor = 7(a) = w, ~ ~
al[lor - n] := p, where py := duc’, psn = G pn
(cn Cr(b)) = 7(a) = w, R
[[1OT n]] ‘= PSn, where Po ‘= C, PsSn = ¢b’pn
(cnp Lim” A (cyf Cr(b)) = 7(a) := 7(c),
all€]] = dy(c[€]))

Case bn Lim”:

(c=nO0or AbnT"\ G") = 7(a) :==7(b),
all€]] := ¢y Vor

(c=n0or ANbn G") = 7(a) == 7(b),

al[€]] := 95,,[[5]]’)
c=nC +1OT = T(a) :=71(b),
all€] = oy (&nc')
(cn Cr(b)) = 7(a) :=7(b),
allé]] = ¢ b[[e]]€
(cn Lim" A cyf Cr(b)) = 7(a) := 7(c),
all€]] := ¢u(cl€]])

Case a =N Dyc:
Case ¢ =n Oor:
(b#n I = 7(a) == w,

a[[lor - n]| == psn, where py :=b", pgn = ﬁgpnoor
b=n1=17(a) =uw,
a[[lor - nl| := pssn, where po :=0or, psn =y,

Case c =N d+1op:
(b#n 1= 71(a) = w,

al[lor - n|| := pn, where py := Dy, psn := QASpnOOT.
b=yI=7(a):=w,
al[lor - n]] :== pn, where po == D¢, psn :=Q,,.

Case ¢ Lim", 7(c) < b:
7(a) = 7(c), al€]] == Dyc[E]]-
Case cnp Lim”, b < 7(c):
Then 7(a) := w, a|[n|] := Dyc[[¢,]], where ¢, is defined by:
(T(C) #N]\/b{D[C\/b:N]i
Co =77, Con = Dx(c[[Gall), m:= 7(c).
(T(C) :N[/\D[Cjb-<1)2>
Co := Dicom(b), Copn = Q.



(1 1-4) Case a =y Q-

(1-4.1) Case an R":
7(a) :==a, al[§]] .= ¢
(1 1-4.2) Case a1if R": -
7(a) = 7(b), allf]] :=
(1-5) Case a =y I:
7(a) =1, a[[{]] :==¢

We deﬁnij/(\:) = MXNEN T " NE < 71(y) AN7(y)~ =X &, and have 7'( )N — P*e(N),
VenT"m(x) CT".
Lemma 9.22 (o) Vo, {nT'E < 1(x) = z[[]| n T' ANz[[€]] < x AT(2) = 2.

(b) In the situation of [[ ]].3.4 we have ¥n € N.(, < 7(c), and if b,c € T" then ¥Yn € N.(, € T".

(¢) Y,y n Ty #n Oor — NFy(z,y) —
(r(zt+y) =~ 7(y) AVEN 7(y) - (x+y) €] =v 2 +(ylE]))-
Proof: (a), (b): (a) follows by an easy induction on length(x), using in ([[].1) ¢[¢] <
c— aten T — atc[¢] n T' by 9.13 (h) and proving in the situation of [[ ].3.4 (b) by
side induction on V.
(c) Easy induction on Alength(y).

Lemma 9.23 Assume a,&,pnT".

(a) &< p<7(a) = all€]] < allp]]

(b) (T[ ? ;ﬁq) /\3 =7(a)) = (§ 2 al§]AVrn R.(m # 1V 7 X 7(a)) = Gr§ 2 Gral€]]) (where

(c) (OF£aNnary R) < 7(a) < a.
(d) (anOT — 7(a) n OT)A.
(e) af G"— anLim" — 1< z[r(a)”].

Proof:

(a) By an induction on length(a) in an easy way, where in the cases 7(a) = w we show
first by induction n := length(&) length(p) = Sn — a[€]] < a[[p]] and the assertion follows
by side induction on length(p) — length(§).

(b) Case a = bie: € < c[€] < bcle] )

Case a = ¢pc: If ¢ Lim' \ Cr(b) follows § < c[[€]] X gpe[[]] by TH and G (§) = Gre[[§]] =
Gral&]). I bn Lim' A ((cf Lim' vV ¢ n Cr(b)) follows & < b[[¢]] =< gzﬁb[[g]]e = a[[¢]] for some
e and G (§) = Gxb[E]] = Gra[l€].

If a = Dyccn Lim/, 7(c) < bfollows & < Dy(§) = Dyc[[€]] by lemma 9.15 (h) and £ =< ¢[[¢]].
Further, if # < b # [ or b = landdr < Dyc[[£]] follows G £ = Grc[¢] =< (Db €1)-
Ifb<m#IV({ =bADi[] <n < 1) follows, since £ < 7(¢c) < b <m # I or
E<DiE XDyl <7 # T Gr(§) 2 0. b <7 =11is not possible by assumption.

If a = Q, and if a[¢]] = a~ + £, follows the assertion immediately and if a[[¢]] = Qb[[ A

~

follows € = B[] < 0. Gr(€) < GblE] = Gral].

(c) Trivial.

(d): Induction on length(c): The cases 7(a) = 0,1,w or 7(a) = a are trivial, otherwise
the assertion follows by IH.



(e) If z = bte, then w < ¢ =X b < z[[r(x)7].

If 2 = gpe, follows, if b= 0, ¢ = dF1, 1 < ¢oc’ - S9n, if ¢ n Lim/ \ Cr(b) Ab =0 follows
=(cnG), 1 <c[r(c)7 ], 1 < z[[r(x)"], and if ¢ Lim’ \ Cr(b) N0 < b, 1 < dpc[[7(b)7] =
[l (z)7]-

Ifb=0, cnG follows 1 < c¢- Sn. R ~

If b=0b+1, cof Lim' \ C(b), follows z[[n]] = ¢wd for some d # 0 or z[[n] = ¢pc’ and we
have the assertion.

If bn Lim' \ G, ¢ = 0 follows 1 < b[[7(b) ]| < z[[7(z)"].

1£bn G, c=0follows 1 < g, qb.

If B n Lim', ¢ = ¢ +1, follows 1 < $b[[T(b),]] oy, since 0 < gy
If ¢ Cr(b), bn Lim/, follows 1 < ggb[[T(b)_]]c = z[[r(x)"].

We will now introduce a* for a n T’, which will be some sort of predecessor of a. a*

——
has the property, that [h/(a*) <y (h/(a), so, we have Ya n T".3n € N.s ntimes = (), and we
can use induction over the length of the descending sequences. We will use -* to prove
the property al[z]] < b < af[z+1]] — az]] < 07 (b)~].

Definition 9.24 (a) Definition of -* : N — N such that s* nT" for snT', s*nT" for snT"
(s* =0 for sy T").
0*:=1":=0.
(atb)* = a—E(b*).
Ga(b") if bof Cr(a) U {0},
b ifa=0AbnCr(a)U{0}
ifb=0NanG
o0  ifb=0Aa=1
barb  if (b Cr(a) Aa#0)V (b=0A
ay G'U{0,1})
Q=w, QO ==a foran Fi', QO = Qu for ay Fi' U{0}

D.(b*) ifb#£0
(ow)*:{ﬁ ifb=0Am#1..
Qo ifb=0AT=1

Q

(&ab)* =

(b) Definition of IW' : N — N. Ih'(n) :=0 fornyT'. R
IN(0) := 0, IW(I) := 1, IW (a+b) := IN(a) +n IN (D) +n 1, N (¢b) := N (a) +n IN (a) +N

I~

IN(b) +n 1, LW (Dgb) :=1h'(a) +5 W' (D) +5 3, I () := W' (a) +n5 3.
Lemma 9.25 Let a,b,cnT’.

(a) (cF1) =c, w* =1, Go(bF1)* = dub.
(b) c#0— IW(c*) <y IH(c).

(c) If n: N, follows (1-(Sn))* =1-n.
(d) If b # 0, then (a+b)* = a+(b*).

(e) a#0—a* <a.

(f) b = (dud)*.



a) By definition.

b) Easy induction on length(c), using that for an R a= = a*.
¢) By induction on n’ : N.

d) By induction on Alength(b).

e) Immediate by induction on length(a).

f) Immediate, using b* < b.

Lemma 9.26 sn 1" — s* < s[[7(s)7].

Proof:

Induction on length(s).

If s =0, the assertion is trivial.

If s n R follows s* = s[[7(s)~].

If s = a+b follows b* < b[7(b)7]), a+(b*) = a+b[[7(b)7].
Case s = ¢gb: If (a = 0Va = a/+1) and (b= 0Vb = '+1Vb n Cr(a)) follows immediately
& < sfr(s) ], o

If by Lim" \ Cr(a) follows b* < b[[7(b)~]] by IH therefore ¢,(b*) = ¢ (b[[7(b)~].

If an Lim'\ &, b =0 follows s* = .0 =< ¢a[[7(a)*]]0 = s[[7(s)7] since a* = a[[7(a)”] by

H and 0 < 6,1 70-

=

If an G, b=0 follows s* =a < (Ea[[ 18 = s[r(s)~ ]

If an Lim’, b = b'+1 follows s* = ggab’ < ¢ offr(@)-] (¢ab') = s[[T(s)7].

If a n Lim!, by Cr(a), follows s* = ¢geb < ¢ offr@) ]]b = s[[7(s)7].

Case s = D,b:

If byf Lim/ follows s[[7(s ) | X s* immediately.

Ifbn Lim/, T(b) <aora=7b) #ILlora=<710b) =IA(a =< DbVa=1I)follows

s = D, (1) 2 ([[()]]): s[r(s)" -

If b n Lim', a 2 7(b) I, Dib < a < [ follows s* = Dy,b* < D,(b]7(b)7]) =
J

D, ({Dicom(8)]) = s[r(s)"] o
Case s =, sy R': a* =< CLH ( ) ]], Q=< Qa[[T(a)_]].

Lemma 9.27 Assume a,b,cnT”.
(a) (a1 Cr(c) Na* <b=a) — by Cr(c).

) (af G'ANa* <b=a)— by G

(¢) (af FI' UR' Aa* <b=a)— by Fi' UR.

(d) (af Fi' Na* <b=a)— by Fi.

(e) by Cr(a) U{0} — (b < ¢ = gob— b =< c*)
(f) bn {Lw,Qy,} — (b<a<1—b=a").

VYanT'I<a—1=a".

Proof:

(a) Induction on length(a), side induction on length(b). Assume a,b,c n T', such that
a1 Cr(c) and a* < b =<a, bn Cr(c)

Case a = ci—T—e: Then b = d+ f such that e* < f < e, especially f # 0.

Case a = ¢ge: Then d < c.



Case e if Cr(d) U {0}: Then ¢ze* < b < dge, and since by Cr(c) C Cr(d), e < b =< e,
and, since e i Cr(d), e if Cr(c), b1 Cr(c).

Case d = 0 and e n Cr(d) U {0}. Then e < b < ¢qe, and by lemma 9.18 (c) and (e)
follows b 3/ Cr(d), b1 Cr(a).

Case e = 0 A dnG": Then by lemma 9.18 (c) follows the assertion.

Case (e Cr(d)ANd#0)V (e=0Adn T\ (GU{0,1}). Then ¢ge < b =< ¢qe, and
since b n Cr(c) C Cr(d), e < b < e, a contradiction.
Case d=1Ae=0: 9.18 (c).
Case an G b=a=c¢ by Cr(c).
(b) Induction on length(a), side induction on length(b). Assume a,b n T', such that
ayfG'and a* <b=a,bnG
Case a = (1—7—6: Then b = d+ f such that e* < f < e, especially f # 0.
Case a = ¢gqe:
If ey Cr(d) U{0} ord=0o0re=0Adn G follows d < (¢pge)* < b, and if we had b7y G’
we had b n Cr(d) contradicting (a). If e n Cr(d) Ad # 0 follows d < e < ¢g-e < b and
by the same argument the assertion, and if e = 0 A d i G’ U {0, 1} follows from b n G,
d* = maxp{d*, e} < b =< maxr{d,e} = d, contradicting d 5 G’ and the IH. If d = 1Ae =0
follows b < $,0 < dg 0, by G,
(¢) Induction on length(a), side induction on length(b). Assume a,b n T’, such that
ayf Fi' UR and a* <b=<a, bn G’
Case a = 0, a = d+e, dge: Then b1 G’ by (b).
Case a = Dge, d # I: Then d- < a* < b < d which is not possible.
(d) Induction on length(a), side induction on length(b). Assume a,b n 1", such that
ay Fi" and a* < b <a, bn Fi
Case a =0, a = dFe, gge : Then b1/ G’ by (b).
Case a = Dge, d # I: Then by Fi' by (c).
Case a = Qq. Ifdn Fi follows d = a* < b < a, d < b < d, not possible, and if d i Fi'u{0}
follows a* = Qg+, d* < b < d and the assertion by IH. If d = 0 follows a < D;0, a 1f F7'.
(e) The case b = 0 is trivial. Let b n Cr(a). Induction on length(c): By lemma 9.18 (e)
¢ 1f Cr(a) UG, therefore ¢ = d¥e or ¢ = dge with d < a.
If ¢ = d+e follows b < d < ¢*.
Case ¢ = (Ede.
Subcase d < a: Then b <X e < ggall If b =en Cr(d) follows ¢* = e or ¢* = (Ed*e, b=<c. If
b < e follows by IH b < €*, ¢* = ¢qe* or ¢* =€ or ¢* = QASd*e, b < c*.
Subcased = a: Thenb <e <b,c= (Bab, c*=borc" = $a*bor = (Eol/\d =1Ne=0=0.
(f) Immediate.
Lemma 9.28 Vs, tnT'.s* <t < s — s* < t*.

Proof: Induction on length(s) +y length(t).

Case s = a+b: atb* < t < a+b, therefore t = aFc for some b* < ¢ < b, b* < ¢,
st =atb <t

Case s = ¢gb: Then by lemma 9.27 (a), (b) ¢ i/ Cr(a) U G, therefore t = aFb (in which
case, since s*n A, s* <a <t*),ort = ggcd with ¢ < a. Let t = ggcd.

Subcase b #£ 0, by T'\ Cr(a): ¢ob* <t < dgb.

If ¢ < a ¢ob* < d = ¢ob. If d = s*, follows d 1 Cr(c) \ G, t* = s* or t* = Qgc*d, therefore
s* 2 t*. If s* < d follows by IH s* < d*, d # 0, therefore t* n {d, ¢.d*, p~d}, s* < t*.
If ¢ = a, follows b* < d =< b, by IH b* < d*, and, since b 1 Cr(a), d 1if Cr(a) and d # 0.
Therefore s* < ggab* = t*.

Subcase a = 0Abn Cr(a) U{0}: by lemma 9.27 (e).



Subcase b =0Aan G'. If ¢ < a follows a n Cr(c), a < d = (Bab. If d = a follows t* = d
ort*:ggc*d,ajt*,andifa<d,ajd*jt*. If c=a follows d <b=0, s =1t.

Subcase (bn Cr(a) Na#0)V (b=0Aan G\ {0,1}):

Then ¢g:b < t < dab. R
Subsubcase ¢ < a*: Then s* < d < s. If in this case d = s*, follows t* = d or t* = ¢.d,
s* < t*, and if s* < d follows s* < d* < t*.

Subsubcase ¢ = a*: b < d < ¢,b, by lemma 9.27 (¢) b < d*. If then ¢* = ¢.d*, follows
s* 2 t*. If t* = d, d 1 Cr(c) U {0} follows d 1) Cr(a*), by b < d, @¢-b < d. The case t* = c
does not occur, because d # 0. The case t* = ngc*d occurs only, in case of d n Cr(c), ¢ # 0,
and by b < d, follows ¢a b=<d= ¢c +q. The case t = ¢10 is not possible.

Subsubcase a* < ¢ < a: If b=0Aan G\ {0,1} follows a* < ¢*, s = o0 =< od* = t*
or §* = ¢l < ¢ = t* where ¢ ) G', or s* = ¢od <t Ifan’r( ) A a # 0 follows
from s* <t =< s, b < ded = ¢ob, b = d = ¢ob, b < d* < t* or b = d n Cr(c),
§* = gr0 < rd = t*.

Subcase a =1Ab=0: w < s <1, by 9.27 (f) follows w < s*.

Case s = Dyb: s* n G’, so in case of t if G’ follows by lemma 9.27 (b) s* < t*. Let
therefore t n G'.

Subcase b # 0: Then D, (b*) <t =< D,b.

Subsubcase a # I: Then t = D,c with b* < ¢ =< b, b* < ¢*, s* 2 D,c* = t*.

Subsubcase a = I: If t = D.d with ¢ # I follows D,b* < ¢~ < t*. If ¢ = [ follows the
assertion as in the case b # [. If t = Qc follows s* < ¢ <X s, if ¢ = ¢* = D;b* follows
tr=gs*if s" < ¢, sF L F Lt

Subcase b=0Aa # I: a= <t <a,t= Dyd, d =0, therefore t = s.

Subcase b = 0 Aa = I: Then QO < t =< D;0, and by lemma 9.27 (f) QO < t*. Case
s = Q,: If a = 0 follows the assertion by lemma 9.27 (f). Otherwise follows s 1 G’ and
the assertion in case t iy G'. Let t n G'.

Subcase s* = s~. Then t = D,c, s~ < t*.

Subcase s i R/, s* = Q. Ift = D.d, with ¢ # I follows Q- < c, Q- <c* =<t If
t = Dyc follows a* < t < a, since t n Fi', a n Fi', contradicting t* = Qg+. If t = Q, follows
by IH a* < ¢ < a, a* < ¢* and the assertion.

Case s = I: Then the assertion is trivial.

Definition 9.29 ¢t < s < 3l € Nlist.0 <y lh(l) A (Vi <y IR(I).(1); n T") A (1)g =
t A (l>predN(lh() =sAVie N.Si <y lh(l) (l) (l)z*,

that is, informally written,

t<s< dne N,3sg,....,Ssn T .50 =5NASg, =t ANVi <n.sg; = s,

or even more informal:

——
t< s dne NO<ynA s ntimes = ¢,

In the following lemmata we will refer to the informal definition, and all assertions can
easily be transformed into formal proofs, which can not be read any more.
In the situation of the second definition we define lh(s,t) :==n.

Lemma 9.30 Letr,s,tnT'.

(a) Forrn{0,1} we haver <s —r < s, and
forrn{l,w,Qy} we haver < s < I —r < s.

(b) r <rts, andr < s — t+r < t+s.

() r<sA(YenTr <z =% s— (w9 Cr(t) — dir < dis.



(d) (7"<<5/\(V:U77T’7’<a:<s—>(:v7/G’))—>$r0<<aAﬁsO,
(57 Cr(r) = 5 < ¢,9),
(tn Cr(s) Ar < s) — oot < Psl.

(e) IfrnG', snT, S-<$T;IO, then r < ¢ys.

(f) (r < sAmnR)— Dyr < Dys.

() 7= <s=r,rn R, thenr- <s.

(h) (r < sA\VenT'r<z=<s—cyFi') = Q, <Q,).

Proof:

We use [h/(s*) <n Lh/(s). (a) By induction on [h'(s) since r < s — r < s* by lemma 9.27
(a).

(b) by induction on IA'(s) follows the first, by induction on lh«(r, c) the second assertion.
(¢) Induction on lh(r,s). (aﬁtsSZ) = (bt(sSZ) = ¢tsl since sg; 77 Cr(t) A sg;i # 0.

(d) Induction on lhe(r,s), A/ (r), lhe(r,s).

(e) Induction on Ih'(s).

(f), (h) Induction on lh(r,s).

(g) Induction on [h/(s). If s = r follows s* = r~. Otherwise follows if = = w, by lemma
9.27 (f), if r = I trivially, and if r— n (R U Fi') and Ve n T'.r~ <z <r — x 9 R U F7
by lemma 9.27 (c) 7~ < s*.

(h) Induction on lh(r,s).

Lemma 9.31 Ifs,&,pn T, 7(s)” 2 &< p<7(s), then s[[€]] < s[[p]]-

Proof: by Induction on length(s). In case of 7(s) = w, it is sufficient to show

Vn € N.s[[1-n]| < s[[1-Sn]. If s[[1-n] := pgi, for some 7 in Definition 9.21, we will prove
Pn K psn by side induction on n : N.

If s =0, the premise cannot be fulfilled.

If s = a+b, the assertion follows by b[¢]] < b[[p]] and by lemma 9.30.

Case s = (Eab:

Subcase a = b = 0 is not possible.

Subcase a = 0, b = b/ F1: s[[1-n]] = ¢ab' - SSn < Pab - SSSn = s[[1- (Sn)].

Subcase b 1 Lim' \ Cr(a): b[[]] < blp]l, b* =< b[7(b)~]] = b[&]] < bllp]] = b, therefore by
lemma 9.27 (a) and 9.30 (c) ¢a(b[€]]) < da(b]p]))-

Subcase a = 0, bn Cr(a): s[[1-n]] =0b-(Sn) < b-(SSn) = s[[1-Sn].

Subcase a = a’+1, b = 0: if n = 0 we have py = 0 < ¢x0 = p;. In the step from n to
Sn we have p, < ps, < (Ea,jrl(), therefore Ve n T.p, < ¢ < psn — ¢ 1if Cr(d’), therefore
PsSn = ¢a’pn < Qia’pSn = pSé‘n‘ R

Subcase a = a'+1, b = V+1: py = @b, Ve n T".s[7(s)7]] < ¢ = s — cif Cr(a). By
lemma 9.30 (d) po = Pobl < Gu bl = p1, and in the side induction step by lemma 9.30
(C) PsSn = ¢a’pn~<< ¢a’pSn = PSSn-

Subcase a = a’+1, b n Cr(a). By lemma 9.30 (d) pg = b < p1, by lemma 9.18 (e) and in
the side induction step follows, since Yz 7 T".pp = p, < = s — x 17 Cr(a), by lemma
9.30 ( ) PsSn = Qba’pn < ¢a’p5n = PSSn-

Subcase a n Lim'\ G', b = 0: Then Ve n T".a* < ¢ = a — c1f G' by lemma 9.27 (b), by TH
a* = al[t(a)7]] 2 allé]] < a[p] < a, therefore by lemma 9.30 (d) s[[¢]] = ¢a[[5ﬂ0 < s[p])-

Subcase an G', b= 0: a[¢]] < a[lp]l, a n Cr(a[p]), therefore ega[[g]]a < O[]



Subcase a n Lim/, b = V' F1. al[¢] < allp], ¢ab/ 1 Cr(a[p]), therefore (Ba[[f]]@“b/) <

Pl[o]) (Pab):

Subcase a n Lim', bn Cr(a): a[[€]] < a[[p], %[[5]]6 < (ba[[p]]b.

Case s = D,b.

Subcase a # I, b = 0: By lemma 9.30 (¢) py = a~ < ¢o-0 = py, and in the Step from n
to Sn follows from p, < psy, for a= = p, < ¢ =2 ps, < D,0 by lemma 9.19 (a) cf G,
9,0 < Gy, 0. )

Subcase a =1, b=0: VenT'.c <s— cif Fi'. pg =0 < Qy = p; by lemma 9.30 (a) and
in the induction step follows from p, < ps, < s, since Ve n 7.0 < ¢ < D;0 — c1yf Fi',
Psn = Qpn < st = PSSn-

Subcase a # I, b = b¥'+1: By lemma 9.19 (a) Ve n T".pp = DV < ¢ < s — cyf G'.
By lemma 9.30 (d) py < $p00 = p1, and in the Step from n to Sn follows p, < pgn,
PsSn = ¢pn0 < ¢p5n = PSSn- R

Subcase a = I, b=V+1: Yen T .py = Dbl <c < s — cv/Fz =DV < Qp,a = p1,
and in the induction step follows from p,, < psn < S psn = Q << stn = Pssn-

Subcase bn Lim/, 7(b) < a: b[[¢]] < b[[p]], therefore D,b[[{] < Dab[[p]].

Subcase b n Lim/, a < 7(b) =: m: We show (, < (g, by induction on n : N. Then
bCa]) <€ iG] by TH and Da(b[G) < Da(bCnl).

Subsubcase m # [ Va < D;bVa = I. By lemma 9.30 (h) {y = 7~ < D, (b[[¢o]]) and in the
induction step follows from (,, < (s, b[[Cn]] < b[[Csnl], Csn = Drb|[Cn]] < Drb[[Csn]] = Cssn-
Subsubcase m = I, D;b < a < I. Then by lemma 9.20 and since D;b < a < [ follows
Dicom(a) = Dyc for some ¢ and Djc < a < Dj(c+1), therefore (by an immediate
induction) Drc < ¢, < Csn < Dr(ct+1), Ve n T'.¢, < ¢ = (sn — ¢ of Fi'. Therefore(y =
Dicom(a) < Q Dicom(a) = ¢1 and in the induction step follows from ¢, < (sy Csn = an <
Qcs,, = Cssn- R

Case s = Q, Vs = I: If s[[z]] = z the assertion is trivial, and if sz]] = Qa[[z]] follows for
a* < c=acy Fi since ayf Fi' and, since a* < a[[{]] < a[[p] < a, follows by lemma 9.30
) @, <)

Lemma 9.32 If s, t,&nT' E+1 < 7(s), s[[&]] <t < s[[€+1]], then s[[€]] <X t]r(¢)7]).
Proof:

s[[€]] < s[[€+1]], therefore exist s, . . ., S5, such that s = s[[¢]], ss, = s[€+1] and s; = s%;.
Then s; <t = sg; for some i <y n, s[¢]] < s; = s%,; St Lt[7(t)7].

The most complicated  task in this chapter is, to prove, that for a,z n OT, z n
7(a) \ 7(a)” we have a[[z]] n OT, and that sup{a[z]!z n (7(a) \ 7(a)”) N OT} = a for
Limes ordinals. To prove the latter in the case of (D,b)[[1 - n]] = Dy (b[(.]]), we will
argue, that by knowing D,b[[(o]] < Dof < Dub, and D,f n OT we know f < G,f, and
have therefore some information on the components of f, which we want to relate to the
components of b to have D,f < D,b[(,]] for some n. The components of D,b[[(,] are
built by iterated applications of the collaps and building b[[z]]. Therefore we need some
relation, that interchanges in some way with the collapsing functions, allows to relate z
to a[z]] and gives some informations on the G sets. To prove a[z]] n OT we need again
such a relation.

The relation that solves this problem is a <1¢b, which relates Gra to the Gcfora < ¢ X,
and allows to prove lemma 9.38, that relates a[z]|] to z. Lemma 9.36 allows to infer from
Db n OT to Dya n OT in by <-controlled situations. The relation interchanges with



some ordinal functions (see lemma 9.35). Theorem 9.39 and lemma 9.40 are the desired
lemmata we need.

Definition 9.33 Let s, tnT".

sdet s <tAVmrnT s 2rt—Grs =2 G.r UG,

and this is equivalent to VrrnT'.s <r 2t — Grs < G,r UGY.

Lemma 9.34 Let a,b,cnT',mn R.
(a) Yx n G:b.Grx C G:bAlength(x) <n length(b).
(b) a < D0 — Gra = .
(¢) Gam =0
(d) (t(b)=mn R NGrc<aAc=<b)— c=<b[Dra].
(e) If a < m, anOT, then a < D;b <« Gra < b.
(f) m=p#1=G,aC Gra.
(9) m < Dra, G:b<a, bn OT = G1b < a.
(h) If pn R, Grp~ = Grp.

Proof:

(a) Immediate by induction on length(a).

(b) Induction on length(a).

The cases a = b+c and a = ¢y follow by IH. If a = Dye with (b#£1Vb=m#I), follows
b<m Gra=0. If a= Dyrc, m < I follows a <, Gra=0. If a = Dyc, b < I = 7 follows
Gra = 0.

(d) Induction on length(b), Side induction on length(c):

Case bn R': Then b[D,a]] = Dya. If ¢ = d+e, ¢pqe follows the assertion by side IH for d,
e.
Subcase ¢ = Dee. Then § < nv{=1. If 7 = followsen Grc < a,c < Dya,if & <m#1
follows ¢ < Dya, if £ < m = I follows & < b, G £ = Gc < a, therefore £ < D,a, ¢ < D,a,
and if 7 < £ = I follows Dee < m — Dee < D;b.

Subcase ¢ = Q. Then if © # I follows from ¢ < 7, ¢ < Dya, and if 7 = I follows by IH
e < Dyra, ¢c < D;,a.

Subcase ¢ = I,0: trivial.

Case b = f+g¢: if ¢ < f the assertion is trivial, otherwise ¢ = f+d with d < g and by IH
follows the assertion.

Case b = ¢;g, b[[2] = ¢4(g[lz]). If ¢ = dFe the assertion follows by TH for d. If ¢ = gge
follows if d < f e < b, by IH e < b[D,al], ¢ < b[Dya], if f =d e < g, by IH e < g[[D,a]
and the assertion, if f < d c =< g, ¢ # g since g 1y Cr(f), ¢ < g[[Dra] and the assertion.
If ¢ n G’ follows ¢ < f or ¢ < g and therefore ¢ < g[[Dra]|, ¢ < b[[Dral.

Case b = ozg, b2l = 0,19 ¢ =g =0o0r g = fnG and g =0org = drg" and
g=¢g"+1lor g =gnCr(f). If c = d+e follows the assertion by IH for d. If ¢ = bae
follows, if d < f, d < f[[Dxal], further e < b, e < b[Dra]], therefore ¢ < b[Dra], if d = f
follows e < g, either e < g” A ¢"+1 = g therefore ¢ < ¢', ¢ < qbf[[D a]]g’, ore=<gnCr(f)

therefore ¢ < ¢', ¢ < (Ef[[D aﬂg’, and if f < d follows ¢ = g X ¢, ¢ X b[Dral. f ¢ n &

follows by ¢ < b ¢ = mazr{f,g}, g < ¢ = f is not possible, therefore ¢ < g or ¢ < f, by
IH ¢ < mazr{f[Dral, g} ¢ < a[[Dra].



Case b=D,f, m=71(f) < p.

If c = d+e, que follows the assertion by side IH for d, e.

If ¢ = Ded with £ < p # 1, the assertion is trivial.

Ifc=Dedwith§ < p=Tfollows§ <D, f. If 1 X {or{ < m=1Ifollows G § C GrDed <
a, if £ < m # I follows £ < 77, Gr§ = () < a, therefore by side IH § < D, f[Dxa]|, and
the assertion.

If c=Dyd, p <1, follows ¢ < p, ¢ < D, f[Dra].

If ¢ = D¢d with € = p follows Grd C Grc < a, d < f, d < f[[Dxa]] by IH, ¢ < b[D,a]].

If ¢ = Qg follows, if p # I, ¢ < p, ¢ < D,f[Dxa], and if p = I by IH d < D,f[[Dxal,
¢ < D, f[Dra].

If ¢ =0, 1, the assertion is trivial.

Case b=Q,, byf R'.

If c = d+e, (Ede follows the assertion by side IH.

If c = Ded, £ # I follows £ < b, since by R', £ <b. If 1 < & or { < m = I follows
Gr£ CGrb<a,and if £ < 7 # I follows G, = 0 < a, by side IH & < b[[D,a].

If ¢ = Dyd follows ¢ < e, ¢ # e, therefore ¢ < e[[D,b]].

If ¢ = Qq, d < f follows Gd < a, by IH d < f[[Dal], ¢ < b[[D.al.

If ¢ = 0, I the assertion ist trivial.

(e) “«” follows by (d), with b := 7. Proof of “—” by Induction on length(a).

If a = c+d, (Ebc, Q., the assertion follows by IH, and if a = 0, I the assertion is trivial.
Case a = D,c.

If p <7 # I follows Gra = 0.

If p<7m=1follows p < Db, Gra = G,p < b by IH.

If 7 < p =1 follows a < D0, Gra = (.

If p = follows ¢ < b, Gra = G,m U GrcU{c} < b, since Grc = G c < ¢, Gem = ().

(f) Induction on length(a).

If a = btc, (Ebd, (), the assertion follows by IH, and if a = 0, I, the assertion is trivial.
Case a = D¢b. If p < € # I follows G,a = {b} UG,a UG£ C {b} UGraUG{ = Gra. If
p =2 DibANE =1 follows Gpa = {b} UG,a UG, C {b} UGraUGLE = Gra. Otherwise
follows G,a = ().

(g) Induction on length(b).

If b= c+d, (ECd, Q. the assertion follows by IH, and if b = 0, I the assertion is trivial.
Case b = D,c.

If p <7 follows b < p 21 < Dja, G;b < a.

Ifm<p=<1Ifollows G,p C G;b<a,byIHGrd=Grp < c.

Subcase p = I: If b < Dya follows ¢ < a and, if Dra < b, by G0 = G,c UG I U{c} <a
again ¢ < a, therefore in both cases, since by bn OT, Gc < ¢, Gib = Gre U GrI U{c} <
¢ < a.

If I < p follows Gd = 0.

(h) If p = I this is trivial, if p = chrl follows Grp & Gr(c+1) & Grc = Gp, and if
p =, with p~ = ¢ follows Grp = Gre.

Lemma 9.35 Let a,b,c,,pnT’, b<¢c.

(a) an{O,l,w,Qo,I}, a<b—a<gb.
(b) Ifa<de¢c,a 2b=<d=<c, VrnR.Gb=<GraUGE then b<¢d.
(c) If a < ¢, then a <4, c.

(d) If a<d¢b, VYV R.G:{ X Grp (e.g. £=0), thena <, b.



(e) If ¢ # 0, then a <I¢ a*tc.
(f) NF,(a,c) — atb<¢a+tec.
(9) ¥dnT'b<d=c—diyCr(a)) — ¢ub<e ac.
(h) bn Cr(a) U{0}, then b <o dab.
(i) Ifb=0Vbn Cr(a) and a’ <t¢ a, then ¢ub <te dab.
() Ifan G, a< 6,0,
(k) If an G', d’ ¢ a, then bar ¢ $40.
() @ 4 — Budab < BT,
(m) pol <o $10.
(n) Dub <l¢ Dyc
(0) Q<1 Q.
(p) If sm R, then s~ <y s.

(q) a= <o Dyb.

(a) Trivial, since Gra = (.
(b) b < r < d, then G,;b < GraUG% < G.r UGL.

(c), (d): trivial
(e) If a < d < a+c follows d = a+e for some e and we have the assertion
(f) atb < d = ate, then d = ate with b < e < ¢, Gzb = Gre UGY%, G (ath) =

GraUGre UG =2 G (ate) UG.

(8) 5 := dub = d = ¢oc :=t. Then d yf Cr(a) since otherwise b < d < ¢. We show
Grs = Grd U G by induction on length(d). If d = e+ f follows s < mazr{e, f} = Bac,
Grs = Gymazr{e, f} U Gof If d = ¢f with e < a follows s < f < ¢ and again the
assertion by IH. If d = (ba f follows b = f < c and by b <¢ c the assertion. d n G’ is not
possible, otherwise a < dub < d, d n Cr(a).

(h) The case b = 0 is trivial. Let therefore b Cr(a), b < d =< ¢ob. Then d i Cr(a)
since otherwise b < d < b. We show G.b = GYd by induction on length(d). If d = et f
follows b < € < dub, G b= Gle Ifd= dof with e < a follows b < f < &b and again the
assertion by IH. If d = ba f follows b <X f <b, b = f and the assertion trivially. d n G’ is
not possible, otherwise a < b < d, dn Cr(a).

(i) Let ¢ub < d = ¢ub. Then d 1if Cr(a) since otherwise b < d < b. We show GW% b <
Grd U Gof by induction on length(d). If d = e+ f this follows by IH. Case d = ¢, f.
If e < a follows gzﬁab’ < f= bab and by IH the assertion. If ' <X e = a follows
b < dub < qbef < ob and by(h) Gb < ngzﬁerGOg and with a’' <¢a, Gra' < GYeUG,E,
therefore Groub < Grdof U GY¢. dn G'U{0} is not possible.

(j) Let a < d < ¢40. Then d 1f Cr(a). We show Gra < G.d by induction on length(d).
If d = e+ f this follows by IH. Case d = ggef. If e < a follows a < f =< $o0 and by IH the
assertion. If e = a follows Gra < G%. dn G’ is not possible.

(k) Let s := bwa < d = ¢,0=:t. Then d 17 Cr(a). We show Grdwa < G%d by induction
on length(d). If d = e+ f this follows by TH. Case d = bof. If e < a follows s < f <t and



by IH the assertion. If @’ < e < a follows a < ¢pa = def <t and by (j) Gra = GOQASEf,
and with @’ <¢ a, Gra' < Gre U G2, therefore Gﬂgba b < ngzﬁef UGYE. dn G'u{0}is
not possible.

(1) Let s := udab < d = ¢o(b+1) =: t. Then dab < d =< t, therefore d if Cr(a). We
show Grs < Grd U GY% by induction on length(d). If d = e+f this follows by IH. Case
d = qbef If e < a follows s < f <t and by IH the assertion. If a’ < e =< a follows
gzﬁab < qba qbab < qbef <t and by ( ), since b <o b+1 Gﬂqﬁab < Gogzﬁef and with o' <¢ a,
Gra' < Gre UGYE, therefore Grdyheb < Grdef UGLE. dn G'U{0} is not possible.

(n) Let s := D,b < d < D,c =:t. We show G,s < G,d UG£ by induction on length(d).
If d =etford=¢.f follows s < maxr{e, f} = t, Gzb < Grmazr{e, f} UGLE. Case
d=D.f: fa#1Ve=1I,follows e =a,b =< f =< ¢, and in all cases the assertion by
bdee, b= f. lfa=INe#1followse <[ and s e =<t Grs=0orm <Drb=<eor
7 =1and Grs X Gre UG C G,(D.f) UGY¢.

Case d = Q.. This is only possible, if a = I, s < e < t. Then by TH G,s <X Gre UG =
GrdUGYE.

Cases d = 0, I: not possible.

(m) Grpol =0

(0) Let s := Qp < d < Q. =: t. We show Grs < Grd U G2 by induction on length(d). If
d=eFf, dof follows s < maxp{e, f} <t, Gb < Gemazr{e, f} UG by IH or trivially
(if s = maxgp{e, f}).

Case d = D.f: Ife=1I, follows b < d < ¢, Grs = Grb < G,dUGE. Otherwise s < e < t.
If in this case 1 < s < eor e X 7 = [ follows Grs < Gre UGY% C G,.D.fUGY%. If
s < m # [ follows G s = (.

Case d = {),. Then the assertion follows immediately by b < e < ¢ and b < c.

(p) If s = Q , this follows by a <19 a+1, s~ = = Q, and (o). If s n {Q, 1,9} follows
Gr(s) =0.

Case s = Qp,p, let s = Drb < d = Qy. We show Grs' < Grd UG by induction on
length(d). If d = e+ f, b f follows s < mazr{e, f} = s, Gz’ X GSmaxr{e, f} by IH or
trivially (if s = maxr{e, f}).

Subcase d = D, f: Then e # I, since otherwise D;b < d < D;b. Therefore s’ < e < s,
e=t Ifnownm <s=cors <n =1, follows Gps <X Gre UG C G.D.fUGY. If
s < m # I, follows s < D0, Grs = (.

Case d = Qe. Then D;b < e < Dyb.

(q) Follows by (p), (b).

Lemma 9.36 Ifb<.a, Gra <a, Gyz<b, then G;b<b.

Proof:

Since Gb is finite and Ve, y n T'.x < yVz =yVy < z, follows Gb < bV Icn G,b.b < c.
Assume ¢ n Grb with minimal length(c) such that b < ¢. Since Grc¢ C G,b and for all
d n Gre, length(d) <y length(c) follows Grc < b. Further G;b < GLaUG%z < a therefore
b=c=a,byb<,a follows cn Grb <X GrcUG% < b, a contradiction.

Lemma 9.37 (a) If s # 0, then s* g s.

(b) r < s=r<ygs.
Proof: (a) By Induction on length(s).
If snR s~ =s*<gs.
If s = a+b follows b* <1 b, therefore the assertion by lemma 9.35 (f). If s = ¢,b follows the
assertion by IH, lemma 9.35 (g) and lemma 9.27 (a), or lemma 9.35 (h), or lemma 9.35
(j), or lemma 9.35 (i) and IH or lemma 9.35 (m). If s = D,b follows the assertion by 9.35
(n) or 9.35 (q) and 9.35 (a). If s = Q,, s if R’ follows by lemma 9.35 (0) the assertion.



(b) By (a).
Lemma 9.38 LetanT'.

—

(a) If zn m(a) NT', then a[[z]] 4. a.
(b) a #0— a[[r(a)"]] <o a.

Proof of (a), (b) simultaneously by Induction on length(a). If 7(a) = w we show (except
in some cases where the proof is trivial) by side induction on n : N a[1-n]] <¢a, and (b)
follows by (a).

If @ = 0 this is trivial.

If an R, follows (a) by 9.35 (c), further a[[7(a)~]] = a~ <¢ a by 9.35 (p).

Case a = b+c: by IH and 9.35 (f).

Case a = ggbc:

Subcase b = ¢ = 0: trivial.

Subcase b = 0, ¢ = ¢+1: By lemma 9.35 (g) doc’ <o doc, further Grdoc - Sn = Grdoc,
by 9.35 (b) follows doc’ - SSn <o doc.

Subcase ¢ g Lim/, ¢ if Cr(b). c[z] <. ¢, c[[t(c)7] <o c by IH, ¢ <X ¢[[r(c)7] < c[z] < ¢,
therefore by lemma 9.27 (a) and 9.35 (g) the assertion.

Subcase b =0, ¢n Cr(b): Lemma 9.35 (h) and (b).

Subcase b = b'+1, ¢ = 0: By lemma 9.35 (i) p1 <o a, and Gra[[l - Sn]| = Gpy, therefore
al[l1-n]] < a.

Subcase b = b'+1, ¢ = ¢+1: By lemma 9.35 (g) po <o a, and Gra[[l - Sn]] = G,po, since
Gra = Gra' U G0, therefore a[[1 - n]] < a.

Subcase b = b'+1, ¢ n Cr(b): By lemma 9.35 (i) p1 <Ig a, and Gra[l - Sn]] = G,p,
therefore a[[1 - n]] <19 a.

Subcase bn Lim/, ¢ = 0,41V ¢ n Cr(b): b[[z]] <1 b, b][7(b)~]] <o b, lemma 9.35 (i), (k),
(1).

Case a = Dyc:

Subcase ¢ = 0: By lemma 9.35 (q), (a) follows py < a, and Gra[l - n]] = G.po.

Subcase ¢ = ¢+1: By lemma 9.35 (n) follows a[0] <1¢ a, and Gra[[1 - n]] = G.a[0].
Subcase ¢ n Lim/, 7(¢) < b: Lemma 9.35 (n) and IH.

Subcase ¢ n Lim', b < 7(c):

Then a1 - n]] = Dy(c[[¢.]])- By IH we have ¢[[(,,]] d¢, ¢. Assume (Dyc)[[1-n]] < d < Dy,
7 n R'. We show G, ((Dyc)[[1 - n]]) < G%d by side induction on length(d).

If d = etf follows G.((Dpc)[1-n]) = G C G, if d = ¢.f follows the assertion
similarly with e replaced by mazr{e, f}, and the case d = Q. is only possible if b = I,
and the assertion follows by side IH for e.

Subsubcase d = D.f, e # b: Then b = I, a1l -n]] < e < a. If a][l -n]] < © # I follows
Gra[[l-n]] 20, and if 7 < a[[1-n]]Vr = I follows by TH Gra[[1-n] < G,eUGY¢ C GLdUGYE.
Subsubcase d = Dy f: It b < m # I or Dy(c[¢,]]) < 7 < IAb =T follows Gra[[l-n] = 0. If
b <m =1 follows Gra[l-n]] = G.b = G.d. Therefore assume 1 <b# IV (b=1A (7w =<
Dycl¢,) v =1)). Then Grall - n]] = G,bU Gc[[(.]] U{c[]}, and, since ¢[[¢,]] < f,
Grd=GbUG.fU{f}.

We show by side induction on m : N
(+) Vm <y n.Grc[[¢n]] = G2,
We have by main IH ¢[[(,]] ¢, ¢ A c[[Gn]] 2 cllGa]] 2 f =< ¢, therefore

(%) Grcl[ém]] X Grf UG, € Grd UG, C Grd UG,



Case m = 0: If 7(¢c) = I A Dyc 2 b < [ follows G,(y = G.Dicom(b) C Gb C G,d
by lemma 9.20 (b) and by (x) follows the assertion, otherwise, we have (, = 7(c),
c[Co]l <o e A e[l = f = e, therefore Grc[[¢n]] < G f U Gb.

Case m = Sm': If 7(¢) # I or b < Dyc or b = [ follows with ¢ := 7(c):

Gre[[Gnl Gf UGG

Grf UGy Dycl[Gr]

Grf UG U GLelG]] U {elGur ]I}
Grf UG U Gl ] U {cllGm]]}
GYfUGldU{f}

God

1A

1A TA TA

since 7 < b < 7(c) and Gt = G.( =X G (c[[¢]]) 2 G%d by lemma 9.23 (b) or 7(c) = I
and Gt = (.

If Dic < b < 7(c) =1 follows G2(,, = G2y, Grcl[Cn]] X Gof UG2 = GYd.

Now we can conclude (+) Gal[l-n]] = GbUGc[¢U{é]} 2 G bUG?rdU{f} ~ G04.
Case a = Q, a if R'. Then by IH b[[2]] <1, b, b[7(b)"]] <i¢ b and by lemma 9.35 (o) follows
the assertion.

Theorem 9.39 Vs, tn OT.s[[7(s)"]] 2t <s— 3 nOTN 7'/(;)5[[5]] =<t < s[[E+1]).

Proof by Induction on length(s), side induction on length(t). If 7(s) = w it is sufficient
to prove In € N.t < s[[1-n]}, or (if s[[1 - n]] = pgi, to prove In € N.t < p,) and for the
minimal such n : N follows the assertion.

Case s = 0: trivial.

Case sn R': Let £ =1t.

Case s = bt+c. Then b+(c[[r(c)])) Xt < bte, t = b+d with c[[r(c)”]] 2 d < ¢, by IH
c[[€]] < d < c[[¢¥1] for some £ n OT N 7(c) and with this ¢ we have the assertion.

Case s = ¢pc: Then by lemma 9.27 (a) and (b) t 5 Cr(b) UG’

Subcase b= c = 0: Then t =0, let { = 0.

Subcase b = 0, ¢ = ¢F1: Then ¢o¢ < t < doc. If t = e follows by t if Cr(0), d = 0,
¢ <t < ¢, which is not possible, therefore ¢ = d+e. Then by IH or trivially we have
d < s[[1-n] for some n: N, e =t < ¢oc, e < doc’, t < s[[1-5n].

Subcase b = 0, ¢ 7 Cr(b): Similar to the case ¢ = ¢/+1.

Subcase ¢ ) Lim’\ Cr(b): If t = d+e follows the assertion by side IH for d. If t = ¢g4e and
d < b follows the assertion by side IH for e, and if d = b follows by main-TH d[¢]] < e <
d[[¢+1]] and the assertion.

Subcase b = b'+1, ¢ = 0: If t = d+e follows the assertion by side IH for d. Subsubcase
t = gge: If d < V follows the assertion by side IH for e. If d = ¥ follows by side IH (or
trivially if e < po) e < py, ggde < ggb/pn = psn. If d = b follows e < 0, a contradiction.
Subcase b = b'+1, c = ¢/+1: If t = d+e follows the assertion by side IH for e. Subsubcase
t = $de: If d < b follows the assertion by side IH for e. If d = ¥’ follows by side IH (or
trivially if e < pg) € < pn, bae < $b/pn = psn. 1f d = b follows e = ¢/, let £ = 0.

Subcase b = b'+1, ¢ Cr(b): As the last subcase.

Subcase b Lim’ \ G', ¢ = 0: The assertion follows by IH if t = d+e or t = dge with
d < b[7(b)~]. Otherwise follows t = pge with b[[7(b)"]] = d < b, b[[¢]] = d < b[¢F1] for
some & 1) OT N 7(b). By t < b follows e < ¢,0. If e < (Eb[[sil]]o follows s[[¢]] < ¢ < s[[¢+1].

Otherwise, s[7(s)7]] = s[[{+1] = e < s, by side IH s[p] = e < s[p+1] for some
£ < p=7(s)". Since d < b[[p+1]] follows s[[p]] =t < s[[p+1].



Subcase b n G', ¢ = 0: The assertion follows by IH if ¢ = dFe or t = ¢ge with d <
b[[7(b)"]]. Otherwise follows t = gqe with b[7(b)"]] < d < b, b¢]] = d < B[[§+1]] for
some £ 7 OT N7(D). b= s[r(s)"]] < dae < &0, d < b n G, therefore b < e < §,0. If
e < $b[[£+1]]b follows s[[£]] < t < s[[¢+1]]. Otherwise, s[[7(s)7]] < s[[¢+1]] < e < s, by side

IH s[[p] < e < s[[p+1] for some & < p. Since d < b[[p+1] follows s[[p] <t < s[p+1].
Subcase b7 Lim', ¢ = ¢'+1: Again the only interesting case is t = qbde,Ab[[T(b)_]] =d =<0,
blE]] < d < b[[§+1]] by IH. ¢ [ ]]qbbc = dge < dpe, I B[T(D) ] = d, o < e < ¢ = Py,

and if b[[7(b)7] < d, by < ¢de < ¢pe and, because d < b, ¢pd < € < dpc, in any
case therefore gy < e < gpe. If e < s[€F1] follows s[[¢] < t < s[€F1]]. Otherwise,
s[r(s)7] = s[é+1] X e < s, by side IH s[p] < e < s[[p+1] for some & < p. Since
d < B[] follows s[[p] Xt < s[[p+1]).

Subcase b Lim/, ¢ n Cr(b): Again the only interesting case is t = dae, ,O[T(b)7 ] 2d <),
b€] = d < b[EF1] by IH. ¢ ol[r)-] € < pge < Pye, therefore ¢ < e < gpe. If e < s[[¢F1]

follows s[¢]] <t < s[€+1]). Otherwise, s[[r(s)7] = s[[¢+1] = e < s, by side IH sp]] =<
e < s[[p+1] for some £ < p. Since d < b[[p]| follows s[lp]] <t < s[lp+1].

Case s = Dyc: Then t n R’ only possible if b =

Subcase c=0,b# I. If ¢ = d+e follows from the side IH for d or trivially d < p, for some
N, t < Pmaepiniy. 1= qbcd follows ¢,d < s, In € N.c,d < py, gbcd < ¢pn0 t = Dge, Q. I
is not possible.

Subcase ¢ = 0, b = I: If t = d+e, (Ede follows by side IH or trivially d,e < p,, for some
n:N,t =< p, Ift= Dgefollows a # I, d < p, for some n, t < p,. If t = Qe follows
e<s,e=p,forsomen: N, t=<pg,.

Subcase ¢ = ¢/+1, b # I: If t = d+e follows d < p, for some n, t < p,. If t = ggcd follows
c,d < s, c,d < p, for somen: N, ggcd < ggpnO. If t = Dge follows t = pg, and t = Q., 1 is
not possible.

Subcase ¢ = ¢F1, b= I: If t = d¥e, dge follows by side IH or trivially d, e < pn for some
n:N,t<s[l-n]. Ift= Dgefollowsd= 1T and t = pgord < I, d < pn, d < p, for some
n,t < py. If t = Q, follows e < s, e < p, for some n: N, t < pgn.

Subcase ¢ n Lim/, 7(c) < b: If t = d+e follows by side TH s[[£]] < d < s[¢+1]], s[€]] =
t < s[¢F1], and if t = ¢ge follows similarly the assertion by side IH for mazy{d,e}. If
t = Dge follows, if b # [Vd = b, first d = b, by TH ¢[[£]] < e < c[¢+1]], s[€]] <t < s[[€+1]],
and if b=1,d# 1, s[€]] = d < s[€F1], s[€] <t < s[EF1]. If t = Qg follows b = I,
s[[€]] =X d < s[[€+1]], and further s[¢] <t < s[[£+1].

Subcase ¢ n Lim', b X 7(c) =: . If t = 0,1 the assertion follows in all cases trivially, if
t=d¥eVit=deeV (t=DgeNd#£Db)V (t=CQyAb=1I) by side IH. Let t = Dye.
Subsubcase 1 #IVb<Djicvb=1

We show by induction on length(f):

=

() Grf <c— 3Ine NG.f <[]

If f = gFh, o.h,Q, follows () by IH. Let f = Deh.
Ifr &4 IV(E=I1IN(r=1Vnr = D) follows G.£ UGhU{h} < ¢, by IH
GrE UG h < c[[(,] for some n : N. Further G.h < ¢[(,]] A7(c) = 7 A h < ¢, therefore by
lemma 9.34 (d) h < c[Dxc[[Cu]l]] = ¢[[sn]]- Otherwise G.f =0, or G.f = Gr£ < ¢[G]]
for some n.

Now by ¢t n OT follows Gye < e < cand since b <m #IVw =0V (7
follows by lemma 9.34 (f) and (g) G.d < ¢, by (%) In € N.G.d < ¢[.]. 7(c
therefore by lemma 9.34 (d) d < ¢[Dxc[[Cu]l]] = cllCsnll; t < Doc[[Csn]] = a1 -

/\b—<D[C)
)—7r/\d<c

Sn].

,_n/\



Subsubcase m = I A (Dyc < b < I): We show by Induction on length(f)
(*) Gof <cNf<I—3neN.f=<(,

If f=g+h, gggh, Qg the assertion follows by IH, if f = 0, [ trivially.

Case f = D,g, p # I: If p < b follows, since by lemma 9.20 (a) b < (, for some n, p < (,.
Ifb=<p=<1Itollows Gyp C Gpf < c A p <1, therefore f < p < (, for some n.

Case f = Drg. If b < f, follows Gy f = G UGygU{g} < ¢, f < Drc < b a contradiction.
Therefore f < b < (, for some n by lemma 9.20 (a).

Now we have ¢[0] = ¢[Q]] < ¢[[¢] < e < ¢, by IH we have c[[¢]] < e < ¢[[¢F1]. By
lemma 9.31 and 9.37 (b) follows c[[£]] <1¢ c[[€+1]], therefore by lemma 9.23 (b) Gy¢ =<
Gyel[€]] X GYe < e < ¢, &€ < I, therefore by (x) & < (, for some n, t = D;d < Dd[[¢+1] <
Dyd[Csa] = [T - Sn]. B

Lemma 9.40 Ifan OT, zn OT N7(a), then a[[z]] n OT.

Proof: Induction on length(a).

Case a = 0: Obvious.

Case a = b+c. By IH c[[z]] n OT, ¢[z]] < ¢, b+c n OT, therefore by lemma 9.13 (h)
bt-c[z]] n OT.

Case a = ggbc: The assertion follows in all cases by IH, in some cases by induction on
length(z) (if 7(a) = w).

Case a = D,c:

Subcase ¢ = 0: Obvious, since 7~ n OT.

Subcase ¢ = ¢/+1: Since D, (c¢'+1) n T" follows G,(¢'+1) < (¢+1), ¢ <1y d+1, by lemma
9.36 therefore G’ < ¢, therefore a[[0]] n OT (since ¢/, m n OT). We conclude a[[1-n]] n OT
by induction on n : N.

Subcase w <X 7(c) < m: c[[z]| n OT, c[z]] 4, ¢, Grc < ¢c. z < 7(c) < 7, by lemma 9.15 (h)
2z < Dz <X Dyc|z]], by lemma 9.34 (e), since z n OT Grz < c[z]], therefore by lemma
9.36 Gc[[z] < c[[z]], a[z]] n OT.

Subcase m < 7(c) =:t, t #1V m < DycV 7 = I: We show by induction on m

(%) Vm <y n.Grcl[Gnl] < c[[Gnll A Giel[Gnll < ellGnl] A cllGnll n OT

If m = 0 follows ¢[[(o]] = ¢[[7(c)7]] <o ¢, Gzec < ¢, by lemma 9.34 (f) and (g) Gic < ¢ and
therefore therefore by lemma 9.36 Gxc[[(o]] < c[[¢o]] and Gie[[¢o]] < ¢[[Co]l-

If m = Sm/, follows by IH ¢[[(,]] n OT, Grc[(w]] < c[[Cn] and Gic[[(n]] < ¢[[(]] and
therefore (g 1 OT, c[[(n] n OT. Further c[[Cop]] <¢g,, ¢ GrCom = GrDyc[[(]] C
GrtUGre[[Cu | U{c[[Gu]]}- Grt = Gar(c) = Gat(c)™ 2 Gre[[T(c) 7] = Grel[Go]] < c[[Co]] =
cl[Gu]l, therefore GCsm = ¢[[Gnr]] < ¢c[Csm]], Gre < ¢, therefore Grc[[Csm]] < ¢[[Csm])-
GiCsm = GiDye[[Gr]] € Git U Giel[Gu]] U {c[Gurll} = e[[Gm]] < €[[Gml; and we have ().
From (x) follows D,c[[(,]] n OT.

Subcase Drc <7 < I =7(c): Gz = Gy = GrDicom(c), Dicom(c) = D.d for some d,
Did = ¢ < Di(d+1), Dyd <19 Dr(d+1), therefore Dicom(c) <1 ¢, by Grc < ¢ and lemma
9.36, GrDicom(c) < Dicom(c). Since c[G,]] ¢, ¢, Grec < ¢, GG, = Gl < (o = ][],
follows Gc[[¢n]] < ¢[[¢.]] by lemma 9.36. From ¢ n OT follows Dicom(c) n OT, therefore
G m OT and it follows D,c[[(,]] n OT.

Now we prove the property (F5), first the corresponding property for -[[-]):

—

Lemma 9.41 Ifa,bn Lim, bn 7(a) follows

7(af[B]) = 7(b) AVE 0 7(b).alB][[E] = albl[E]]
(Note that Lim = Lim' N OT.



Proof:
Induction on length(a). Since b n Lim, w < 7(a). Note that, if a n Lim < 7(a) n Lim,
therefore in the situation of this lemma follows, if 7(z[[b]]) = 7(b), z[[b]] n Lim.

If ap R’ the assertion is trivial.
If a = c+d follows by IH

v n 7(0).a[b€])]) = eF(d[bE]]) = eF(d[bN[E]) = (cFd[oD)[€]) = alB][<].
If a = ¢.d, dn Lim \ Cr(c) follows, since d* < d[[7(d)~]] < d[[b] < d by lemma 9.27 (a)
d[[b]] of Cr(c), by IH d[[b]}  Lim, therefore by IH 7(a[[b])) = 7(¢.(d[[b])) = (d[[b]) = 7(b),

and V¢ 1 7(0).a[b€]] = e(d[b[yl]) = de(dB[[E]) = (Ded[[b]) (€] = allb] (]
If a = 0, ¢ n Lim \ G follows, since ¢* =< ¢[r(c)7] ]
clb]l v G', by IH ¢[[b]] n Lim, therefore by IH 7(a]

[
ve 0 7(b).allb[€]]] = Qgc[[ LI1° = [[ 10 = (¢ [ €] = allo] [€]-
If a = ¢,0, ¢ n G follows ¢ n Cr(c[p]]), by IH c[[b] n Lim, the
T (¢c[[b]] ¢) = 7(c[b]) = 7(b), and V¢ n 7(b).a[b[E]] = 50[[b[[y]]]]0 =
56[[1,]] o)[[€]] = a[[o][[€])-
If o = ¢(dF1), ¢ n Lim follows ¢.d n Cr(c[b]), by IH c[[o] n Lim, therefore by
I (afb]) = (6, gpéud) = relbl) = r(b), and € 1 70)alblel] = b6t =
50[[,,]] ] od = (¢ o ]]¢ d)[[€]] = a[[b]][€])-
If a = ¢.d, ¢ n Lim, d n Cr(c) follows d n Cr(c[b b)), by TH c[[b] n Lim, therefore by IH
7(a[[b]) = T(fgc[[b]]d) = 7(c[[b]) = 7(b), and V€ 7 7(b).a[b[E]] = & [lIe = ¢ Ll =
(6. DIE] = alle]
If @ = Drc, 7(c) < m, follows by IH 7(c[[t]]) = 7(b) =
7(Dx(cf])) = 7(c[b]) = 7(b), and V& n 7(b).a[b[]] = Dalc[by]])

(D (c[[B]))I€]] = al[bI[E])-
If a =Q,, a1y R, follows by TH ¢[b] n Lim, since ¢* < ¢ [7(c)7]] < c[[b]] < ¢ by 9.27 (d)

oI f Fi', therefore by IH 7(afb]) = (@) = r(cll]) = (5) and ¥ y 7(5).a[b€]] =

~

Q0] = L) = e €] = alBllED:

erefore by IH 7(a[[b]) =
L]l =

= —

S

No we change from -[[-]] to -[-]. For the last property, we need to know something about

(m + a)[€]):
Lemma 9.42 Ifzn Lim' NT', z < mn R U{w,1} follows

AN 5777( )-(m +2)[E]] =7 + (z[E) v
( 7(2) =wAVE<7(2).(r7 + 2)[[6+1]) = 7 + (2[[€]))-

Proof:

Induction on length(z).

If 2 = a{tb follows 7~ + z = (7= 4+ a)+b, (= + 2) = 7(b) = 7(2), (7~ + 2)[¢] =
(= + ) b)) = 7 + (aFb{E]) = 7 + =[€]. )

If zn A, z <7 follows (7~ + 2)[¢]] = (7~ +2)[&]] = 7~ +(2[[£])) = 7~ + (2[&]]) by lemma
9.22 (c) and 9.13 (h).

If 7= = 0, the assertion is trivial, let therefore 7= # 0.



Case 7~ < zn A: Then 7~ + z = 2. If in this case z[[¢]] n A and 7~ < z[[7(c)”] follows
(m= 4+ 2)[€&]] = 2[&]] = 7~ + (2[€]]) and we have the assertion.

Subcase z = @ob: If T # Qp follows 7~ n &', 7= < mazr{a,b}, and if 7 = Qy follows
a=0—1=<b.

a = b = 0 is not possible.

Subsubcase a = 0, b = ¥'F1: If 7 £ Qp follows 7= < b, 7= <V, (7~ + 2)[L-n]] =
doll - SSn =7 + (¢ob - SSn) = 7~ + (2[[1-n])). If 7 = QO follows, if 1 < ' 7~ < ¢ob’ and
the assertion as before, and if b = 1, (7~ + 2)[nF1] = ¢ob/ - SSSn = 7~ + (Gob' - SSn) =
w4+ (:[1-n]). ) )

Subsubcase a = 0, b n Cr(a): If 7 # Qg follows 7= < b, and if 7 = Qq, we get 7= < b
directly. If now 7= = b follows (7~ +2)[[1-n+1]] = b-SSn = 7~ +(b-Sn) = 7~ +(z[[1-n]),
and if 7= < b follows (7~ +2)[1-n]]=b-Sn=7"+(b-Sn) =7~ + (z[[1 - n]).

In the cases a # 0V bn (Lim \ Cr(a)) we have z[[£]] n A and we show 7~ < z[[7(2)~].
Subsubcase b n Lim \ Cr(a): If 7 # Qq follows, if 7= < a, 7= < ¢u(b[[7(b)]), and if
a<m",m =Xb,since by Cr(a) 7= < b, therefore by lemma 9.27 (a), since 7~ n Cr(a),
7 =< < b[r(b)7] < 2[r(2)7]. If = Qq follows if 0 < a, 7~ < z[r(2)7], and if a = 0,
bn Lim, therefore by lemma 9.23 (e) 1 < b[[7(b)~ ]|, 7= < z[[7(2)7].

Subsubcase a = a/F1, b = 0: If © # Qg follows 7~ < mazr{a,b} = a, 7~ < a’ < z[[0]. If
7 = Qq follows 7~ = w < z[[0]].

Subsubcase a = a’F1, b = ¥'+1: If 7 #£ Q follows 7~ < maxp{a,b}, 7= <X maxr{a,b'},
7~ < z[[0]). If # = Qq follows 7~ = w < z[[0]].

Subsubcase a = a/F1, by Cr(a): If © # Qq follows 7= < mazr{a,b}, 7 < mazy{a’, b},
7= < z[[0]. If 7 = Qq follows, since 1 < b, 7~ = w < z[[0].

Subsubcase a n Lim \ G', b = 0: If m # Qo follows 7~ < maxr{a,b} = a, 77 # a,
since a if G/, 7~ < a, 7 = af[r(a)”] < z[r(2)7]. If 7 = Qq follows, by lemma 9.23 (e)
1< afr(0) T, v = o < 2[r(z) . )
Subsubcase a n G', b = 0: If 71 = Q follows 7~ < mazr{a,b} =a < z[[7(2)"]. If 7 =Q
follows, by lemma 9.23 (e) 1 < a[[7(2)7 ], 7~ =w < z[[7(2)" ]

Subsubcase a n Lim, b = V/'F1: If 7 # Qq follows 7~ < maxp{a,b}, 7= X maxr{a,b'},
T < ¢ab < z[[T(2)7]. If 7 = follows the assertion immediately.

Subsubcase a =n Lim, by Cr(a): If © # Qq follows 7= < mazr{a,b} = b < z[[7(2)7],
and if 7 = € follows the assertion by 1 < b.

Subcase z = D,b. Then, since [~ =0, p=m # I, 7~ < z[[7(2)7] and z[&]] n A.

Subcase z = Q Since 77 < z < 7w follows m = I, 7= = 0, (7~ + 2)[¢]] = 7~ + (z[¢])
Subcases z = 0, I: not possible.

Definition 9.43 Now we define the fundamental sequences, as we needed them in chapter

8:

1] = Az, yafr(z)” +yl.

We write r[s] for (-[-])rs

Lemma 9.44 Vx,y n Lim.y < 7(z) — 7(z[y]) = 7(y)A

(V€ < 7(y)-z[y]l¢] = z[y[¢]])V

7(x) = w AVn nw.zly|[n+1] = z[y[n]].

Proof:

T(z[y]) = 7(2[[7(z)” +y]]) = 7(r(x)” +y) = 7(y) and for all z < 7(y) z[y][z] = z[[7(z)” +
()~ + 2] = #flm(=)” + (ylr(y)~ + 2] = z[y[2]], or

)"+ y)r()” + 241 = 2[r(2)” + Wlr(y)~ + 2] =

Lemma 9.45 OT fulfills all the properties of General Assumption 8.10 and 8.28



Proof: This is all proven in this chapter or easy, only most properties of -[-] are not
immediately proven, but similar results are proven for -[[-]] and can be easily transferred
by using

Vo, 2,2 nOT.7(x) " nOT ANT(x)"+2n0TAN(z<2 —7(a)” +2=<7(a)” +2)



Chapter 10

Comparison of OT with the ordinals
in [Buc92b]

In this chapter we prove that the ordinal denotation system OT' is in accordance with
the functions we used in 7.8, which correspond to the system of [Buc92b]. We follow the
lines of [Buc86jand [BS88]. In this chapter we will use 7', OT < etc. for the sets, functions
and relations, which are defined in HA and correspond to the definitions used in chapter
9.

We introduce the ordinal functions as used in [Buc92b](definition 10.1, 10.2), and cite some
lemmata (10.3, 10.4). Next we introduce ¢ and Q as ordinal functions (definition 10.5),
the interpretation of the ordinal denotations (definition 10.6). To prove the equivalence,
we show that C'(«, 3) can be defined in a more restricted way (definition 10.8 and lemma
10.9), that we can invert functions like + and Q. (lemma 10.10), and that the ordinals
are ordered as the denotations (lemma 10.12). Now we prove, that we can define C(a, 3)
in a way such that we allow ¥,a only for @ € C;(«). Now we can define G on ordinals
(definition 10.19), and conclude, that the interpretation of ordinal denotation is correct
(lemmatal0.21, 10.22 and 10.7).

We first repeat the definitions of [Buc92b]:

Definition 10.1 (variant of definition 4.1 of [Buc92b]) Let # be the direct sum on ordi-
nals. Qp =0, Q, =N, for g > 0.

We assume the existence of a weakly inaccessible cardinal, e. ¢. a reqular fixed point of
o — €, and define

I := min{o|oregular Cardinal A Q, = o}

It = sup{Gu|n < Q}, where (o := Qri1, Gur1 =,

On = {ala ordinal ,a < I}

R:={o € On|lw < o Aoregular} = {I} U{Qy 1|0 < I}

Let k,m, T denote elements of R, «, 3,7,0 elements of On.
Let ¢ be the usual Veblen-function.

Definition 10.2 (variant on definition 4.1 of [Buc92b]) By transfinite recursion on «,
we define ordinals V.o and sets C(a, ) C On (k € R) as follows:

Ve = min{ |k € C(a, B) NC(a, B) Nk C G}
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o the closure of B U{0, 1} under the functions
Ol ={ o o (6m) v 4ok fe <0 m € )

(Note that by I.H. ¥ is already defined for all £ < a, m € R.)
We define ¢, - On — On, (o) = e, Cu(a) = C(a, ).
Lemma 10.3 (Lemma 4.4 of [Buc92b])

(a) B < = cardinality(C(a, §)) <

(b) C(a, B) = Uy<s Cla,n), for each limit ordinal 3.
(¢) ke Ca, k).

(d) Ci(e) Nk = tpa.

Proof:
All statements are immediate consequences of definition 10.2.

Lemma 10.4 (Lemma 4.5 of [Buc92b)])

(a) Ypa <K Nhya & C(a)

(b) (o < aNag € Cular)) = Ypap < P

(c) (g < aNay € Cula) = Peap < Yo

(d) Q, € Cla, ) = 0 € C(a, B)

(e) Q004 € C(a, ) = {&o, .-, &} € Cle, B)
(f) k= Q11 = Qp < par < Qpin

(9) Qo = Y1a
(h) (% <7< Qi Ay €C(a,B) =0 €C(a,B).

(i) ap < o= (Yeap < Yo A Chlag) C Cu(a))

Proof: See [Buc92b]

Definition 10.5 A := {«a € On|a principal additive number} =

{a € OnVB,y < a.f+v < a}l,

Lim := {«a € On|aLimes ordinal},

Suc = {a+ 1|la € On},

G :={a € OnjaGamma ordinal} = {a € On|a = ¢,0},

Fi = {a € On|afized point of o — Q,} = {a € Onja = Q,}.

Cr(a) :={y € Only = ¢oy} For a =w™+, ..., +w, g > -y, we define:

last(a) = w™, first(a) := w*, length(a) := n.
last(0) := first(0) := 0, length(0) := 0.

(v=0NaeG)VyeCr(a)

R bo(B+1) ifIn<w,v.B=7+nA
¢aﬁ =
bal3 otherwise



Q. {Qa+1 if In<w,fa=pF+nApe Fiu{0},
«r Q. otherwise.

or1 =8y, I7:=0.

NF (a,p) e a#0ANB e ANG <last(a).
(Note, that this definition differs from definition 9.11 (i).

Definition 10.6 For a € OT we define an ordinal o(a) € On:

We will prove the following lemma:
Lemma 10.7 (a) Cq,(I1)={o(z) |z € OT}.
(b)  Va € OT such that a < Q:

o(a) = ordertype({x € OT | x < a}, <).
(¢c) o, It = ordertype{z € OT | z < Qy}, <).
Proof: At the end of this chapter.

Definition 10.8 Let o, 5 € On.

C%a,B) = BU{0,I}
C"Ha,B) = C™a,8) U {$,0,Q]y,6 € C"(a,B)}
U {/7 + 5|’77 o€ Cn(av 6)7 NF+(77 5>}
U {Yl|m, & e C™(a, ), T€ R, § < a}
CMa) == C™"(a, ¥ra).
Lemma 10.9 U,.,C"(a, ) = C(a, §).
Proof: “2”: If § € C(a, (), then 6 +1 € C(a, ), therefore C°(, ) C C(a, ), if
7,0 € C(o, B), then ¢,0 € {¢,0,0,(0 +1)} C C(ev,B), and Q,, € {Q,Q41} C C(e, B),
therefore C™(«v, 5) C C(av, ().
“2>”: By induction on n follows easily, if w” + -+ +w™ € C"(a, 3), 71 > -+ > Yn, then
Wl € C™(av, B), especially v+ 1 € C"«, ) — v € C™(av, ).
Therefore we have, if 7,8 € C™(a, (), then ¢,0 € {¢,8,7,0} € C™(a,3) or § = &' + 1
and ¢,0 = 9575’ € C""(a, 3), in a similar way follows v € C"(a, 8) — Q, € C" (o, ).
If v,6 € C™(«, ),

’y:wyl_i_..._‘_w’y"’ r}/lz...Zf}/n’

S=w 4 g 5 > >4,

next |
’y—|—5:w71+...+w7i+w51+,“+w5mEcn+z(a’ﬁ)

for some 3.
Therefore we have “C”.

Lemma 10.10 (a) If v+ 6 € C(a, 3), NF(v,0), then v,6 € C(a, B).
(b) ¢,6 € C(a, B) — 7,0 € C(a, B).



(c) Q, € C(a, ) = v € C(e, B).

(d) ¥,y € Cla, B) — 7 € Ca, B).
Proof: (a) - (¢):
We have:
If NF(7,0), NFL(,6"), v+6 =+"+ 0, then v =/, § = §'. Further follows in this case
7+5¢AO[¢M§%¢MEA
If ¢7(5 = ¢7 0, then v =4/, § = ¢, further (byé ¢GU{0}, I Q. np € G.
If Q, le,then'y ~', further Q, € R\ {I}, ¢¥xp & R.
Now we prove by induction on n, that if v+ 0 € C"(a, ) 7,9 as before, then v, €
C™(a,B3): If y+ 6 € C%a, B), then v,0 <+ 6 < 3, 7,0 < 3, and in the induction step
follows the assertion by the uniqueness above. Similarly follow assertions (b) and (c).

(d): If 7 = I this is trivial. Otherwise let 7 = Qs. Ity < 3, follows 6 < 3, 8 € C(a, B),
7 € C(a, 8). Otherwise, if 1,y € C"(a, B)\ C™ (v, B), ¥y = ¥y with 7,9 € C"(«, 3).
Lemma 10.11 (a) (p,r€ RAp<m#I1)—p<m7~,

(b) p<I"—p~ <ia<p,

(¢c) pra<p#I—Yra<p.
Proof:
(a) trivial.
(b) 10.4 (f) and (a).
(c) If p=Qui1, Yoo = Qyya < Qop1, then Yo < o.
Lemma 10.12 (a) 0 #a — 0 < a.

(b) If NF(a,7), NF (3,0), then
a+y<f+6—
((Alength(a) < Alength(B) N+~ < B)  V(Alength(a) = Alength(8) A a < BV

(=B Ay <9))
V(Alength(5) < Alength(a) ANa < 3+ 9)

(¢) If NFy(a, 8), 7 € A\ {0}, then
a+ <y e a<y,
y<a+pfey<a.

(d)

P < G0 (<ANB< )V (a=7AB <)
V(Y < angaf<6)

(¢) If 6 € G, then:
P} <0 < maz{a, f} < 0.
d < ¢o 8 — & < max{a,[}.

(f) If m,p € R, ™ # p, then
wwa<¢pﬂ<_>
[#m<p#)VI #pATm=1INYa<p)V(p=IANT<Y,0)



(9) Ifm,pe R, a € Cr(a), B € C,h(B), then
e < Ppff
(m=pha<fB) VU #r<p#)VU #pAT=1NYa<p)V(p=IANT<YP,0)
Further if a € Cy(v), a < 8 follows (o) < ,(5).

(h) If p,m € R, m # I, then

p <Yz (p<m)
B < p o (m < p)

(i) Yra < Qg o < 5,
Qﬁ < Yra — G < Yra.

(3) Yra<1.
(k) Qu < Qg = a < p.

(1) Qo <I—a<l.
I < Qa — [ <oa.
Proof:
(a): trivial.
(b):Let v = w® + -+ - +w*, ag > -+ > oy, n = Alength(a)n,
B=wh 4. g WP By > > B, m = Alength(S).
Then

a+y< B+ (n<mA (Vi <n.ag = 6;) Ay = wnt)

(Fi < min{n,m}.(Vj <i.a; =F;) ANa; < 5)
(n<mA (V) <naj=6;) Ay <wt)
(
(

n=mA (Vj <n.a; =0 ANy <9)

If n < m we have

a+y<fe (Vi < n.ay = Bi) Ay < wfrit)
> a+7<6+6

and the assertion for Alength(a) < Alength(5). The caseAlength(a) = Alength(f)

is obvious and the case Alength() < Alength(a) follows as the case Alength(a) <
Alength(p).

(c) Let a =w® + -+ 4+ w* oy > -+ > ay,. Then
a+fB=w+- W+ <y W <y a<y, and
y<a+feoy<w oy <a
(d) Let

B +1 ifdn<w,f.0=0F+nA

ﬁ:{ (B eCria)v(f=0Nnae@))

16} otherwise



Analogously we define 9.
Then

bu  B<O0
o Gufl < B
S (@<AANB <o)V (a=7AB <)V (a>yNAdaf <9)

Further, 1fa—7,thenﬁ<5H6<5 1foz<7,thenﬁ<<bﬂ,5<—>6<¢ﬂ,5 and if v < «a,
then ¢of < 0 < ¢of <6 (since if § = bl — 6 =0+ 1), and we have the assertion.

(e) We have first ¢,0 < §d = ¢s0 « (e < IANB < Ps0 =) V(a=IA[F<0)V(§ <
a A ¢ <0)) « max{a, B} <6,

Therefore (3 being defined as before) baf} < 0 = maz{a, 3} < 6 — maz{a,f} <6, and
5 < Gl o ~(Bafl < 8) = 6 < mar{a, B},

(f) Case m,p # I: Then 7~ < ¢ra <7, p~ < 1,0 < p. Therefore if 7 < p, then 7 < p~,
Yroo < . If p <, then p < 77, ﬂ(zﬁwa < 1,0) and therefore the assertion in this
case.

Case p <7 =1I: Then p~ < 9,0 < p. If now p < ¢, follows 9,8 < Yo, and if a0 < p
follows a0 < p~™ < 9, 3.

Case I =7 < p: Then .o < p,9,0.

Case m < p = I: Then if 7 < 9,8 follows Yo < m < 9,0 and if ¥,8 < 7 follows
V3 <m0 < Yra.

Case p < 7w = 1I: Then ¢,8, p < Yra.

(g) If m # p the assertion follows by (f).

Case m = p. f a < B, a € Cr(a) C Cr(p) follows by 10.4 (b) ¢y < 1,03, and if 5 < «,
%ﬁ < Yra.

(h) 7~ <¢Ypa,and p<mTAp <7 orm<p.

(i) Let Q4 = Q5. Then ¢y = Q0 < Qp = Oy o ra < f o dra <.

Q@ < Yra ﬂ(l/)[a < Q@) — [ <Yra.

(j) trivial.

(k), (1) easy.

Lemma 10.13 (Lemma 2.7 of [BS88]) If « < 3 and for alla < 6 < 8 we have § & C, (),
then C,(B8) = C,(a) and ¥, = Vo

Proof: “D” is trivial, for “C” we prove by induction on n for v € C?(3), that v € C?(«).
The only difficult case is v = 1,0, d < a, 7,6 € C* (). But in this case § < 3, and we
are done.

Lemma 10.14 (Lemma 2.8 of [BS88]) If 5 = min{{|la < £ € Cy,(a)}, then C,(a) =
Cy(8), Yoo =13, and § € C,(3).

Proof: 10.13

Lemma 10.15 (Corresponds to lemma [BS88]2.11.)

Let 7,v,70 € C*(«), 0 <7 AB < . Then

¢ :=min{¢|ly < £ € C7(B)} € CF(a),

¢ == min{¢|y < ¢,,¢ € Cr(B)} € CF(a),

Proof: Induction on n.

Case n =0, v < Yya: If v < 1.3 follows 0 =, & <~ < .0.

If .0 <, follows ¢, < v < ya < o < 7. Since C.(B) N7 =, 6, 7 € C.(H) follows
d=1,71€CMa). & <ford =70 €Ca), similarly for 6.



Casen=0,vy=0,I: 6 =7, €{0,I} C C.().

Case n=n'+1,7= v+, NFy(y1,7%), 7 € C*(B): Let &; be chosen for ;. If v < §;
follows § = ;. Otherwise v1 < 6 < v1+ 72, 01 =11 +p € C-(F), 0 < p < 72 and by
NF,(71,7) 71 € C-(B). Therefore 71 + vo < 6 < 1 + 0o, 0 = 1 + p with 5 < p < do,
p € C.(B), p = 09, we see that 6o € A, therefore § = 0, + 62 € CZ(B). &' = §], where
01 € Cy(a) by the second IH for ;.

Case n =n'+1, v = @172, v € C™(B): Let 6; be determined for ;. If v < 6
follows § = 0;. Let 6; < v (i = 1,2). Then §; < § < @51(52, therefore § ¢ G, otherwise
0 = maz{dy,d2}.

If § =83+ 04, NF(03,64), we had v < 03 < 0, d3 € C;(3), a contradiction. Therefore
0= 55354, v << 955152. If 63 < 71, we had v < 94 < §, 64 € C,(3), a contradiction.
Therefore v; < 03 € C(3), 61 < d3. If 0 < 03, we had v < § < Jy, a contradiction,
therefore 6; = d3, 6, = 65 € C7'(«) by the second IH for ;.

Second part in this Case: If 7y < 71 follows ' = 6, if 79 = 71, &' = o, and if vy > 74
chose 84 for 4o, 7. If 75 < ¢y0), 6 = 04, otherwise § = &, + 1.

In all cases, where v € G, for the second assertion we have 0’ = 0, if v < vy, &' = 0
otherwise.

Case 7 = 1,72, Vi € Cl (). 72 < a. Let §; be chosen for ;.

If 6 = 05 + 04 with NF(63,04) or 0 = 5,04, follows v < 83 < § or v < 64 < §. Therefore
we have § € G. If y; < §; follows v; A1 0 = 1. If v3 =01 = 9 or v = 9, we are finished,
too. Therefore let v; = 01, ¥ < d < 71

Subcase 71 # I: Then § = 10,03 12 < d3 < § < a d5,03 € C.(f3), therefore §, < d3, and
by minimality and since 1,05 < 1,03, § = 1,02 € C”(«).

Subcase v, = I. If § = Qj, follows v < &5 € C-(3), a contradiction, and if § = 15,04 with
03 # I follows v < 05 < 6, 93 € C(3), therefore § = 1);04, and as in the Subcase before
follows the assertion.

Case y=1: 6=1.

Case y=0: 6=0,¢ =0.

Case v = (AZ%: Let 6; be chosen for v;. If v < 61, we have § = §;. Otherwise follows
6 € G, 8 # 1bs,04 with 65 # I (otherwise v < d3). Therefore § = I or = Qg, (therefore
d3 = 01) or 6 = 1163 (but in this case v < le < 6, a contradiction).

Lemma 10.16 Let

(o, 8) = BU{0,1}
C" o, B) = O, B)U {40, ]y,0 € O (e, B)}
U{7 +9]y,0 € C" (e, B), NFy.(7,9)}
U{vpélm, € € O (a, B), m€ R, § < a, & € Cr(€)}

C'(a, ) := Uneo C""(, B), C" () := C' (v, ).

Then C'(a, V() = Cla, hy(a)) = Cya).

Proof: C""(«,3) C C™(«, 3), the only difficulty is, to show: C?(a) C C')(«), and here
the only difficulty is the case v = 9,3 € C""}a), 7,0 € C*a), f < a. If T < o or
7 =1 and ¥ < o follows v < 9, (), otherwise follows by 10.15 3y := min{{|5 = £ €
C(8)} € CHa) C C"™(a), by 10.14 ¥ 3 = 1.0, Bo € C7(Bo). If B = [y follows fFy < a.
Otherwise 8 & C.(6y) = C(B), if 7 # I follows by 0 < 7 ¢ C,(0s), since 5 € C,(a),
fBo < a, and if 7 = I we have 0 < 3, and from § & C.(fy) follows by 1,5y < ¥, o,
B & Cy(fp) and again By < a. Therefore vy € C" ().



Lemma 10.17 If (€ Co(B)N (- <yve GAm#)Vr=1<7)), then

30 € Cr(B).y = Q) V
(3p,0 € Co(B)y =10 A6 <BA(r < pVp=1I)Ab e C,0)).

Proof:

Case v < 93 Then, since 7= < v < .3 follows Ip < Babrp < v < . (p+ 1), therefore
v = p, p < 3, and by 10.13 p € C(p).

Case m < ~: 10.16.

Lemma 10.18 (o) [ #k€ RUIT — Cy(a) =C'(a, k™ +1).

(b) Co,(I") = C'(I7,0)

Proof:
(a) “D” is obvious. For “C” we prove by induction on a:
p € va — pe Ca,k” +1) (= Yya C C'(a,k~ + 1) and further C'(a, k= + 1) =
C'a, ) = Cy(a)). R ~
If p < k™, this is obvious, and if p = p1 + pa, NFy(p1,p2), O p = ¢, p2 Or p = Q,, this
follows by IH. Otherwise follows 30.0 € C,(d) Ad < a A p = 6. Then § € C.(9) =
C'(0,k~+1) C C'(a,k~ + 1) by IH, 9.6 € C'(a, k= + 1).
(b): Co,(IT) =C"(IT,w+1)=C"(I1,0).
Definition 10.19 Definition of G(«) for a € Cq,(IT) = C'(I7,0) by recursion on the
minimal n such that o € C"(I1,0).

(G1) G,0:=10.

(G2) NF. (a,) — Gz(a+ () = GraUGfA.

(G3) Ifpn R, B€GyB), then

[ UGpuGB, ifr<prIv
p=IN(r<yBVrm=1I),
G ,8 = Grp ifp<m=1
0, ifp<m#1 or
p=1INYB<m<I.

~

(G4) Gr(Q,) = Gra.

(G1) G,.I:=10.
Lemma 10.20 If a € Cq,(I7), then a € Cr(3) < Gr(a) < 3.
Proof:

Induction on n, such that o € C'(I7,0).

Ifa=~+dand NF,(vy,0) or a = 9575, QW, 1,0 the assertion follows by IH or immediately.
Let a =9,&, £ € C,(), &, pe C'(17,0).

If 7 = p follows a € C(f) < a < ¥, « & € Cr(B) NE < B (using £ € Cr(€))
= &meCr(B)NE < B o Grla) < B.

If p<m # 1 follows Gr(a) =0, a € Cr(5).

If # < p# 1 follows o € Cr(8) < p, & € Cr(B) NE < B.

If 7 < p=1 follows, if ¥,& < ,& € Cr(B), Gr(a) =0, and if m# <Y €, ¥,& € Cr(ar)
p,§ € Cr(B) NE< B Gr(a) < .

If p<m=1follows a € Cr(B) < 6 < Uff = p < Urff = p € Cr(f) & Grp < <
Gr(a) < f.

Lemma 10.21 Let a,u,c € OT. Then follows:

(a) o(a) € Cq, (IT).
(b) a € G — ola) € G, similarly for Lim, Suc, A, R, F'i.



(¢c) Go(u)(o(a)) = {o(z) | x € Gua}.
(d) a <d=o(a) < o(d).

Proof by induction on length(a) + length(u), simultaneously for (a) - (d):
1. a = Dyc: Then Gye < cand b, c € OT.

(a) By IH o(b),0(c) € Cq,(I") und G,pyo(c)

={o(z) | z € Gyc} < o(c). By lemmata 10.20 follows

o(b) € I N Cypy(0(c)) and therefore o(a) = ,mo(a) € Co, (IT).

(b) trivial.

(¢) Immediate by IH and definition of Ga.

(d) follows by side induction on length(d) using 10.12. The only difficulty is the case
d=D.f. If e # b we use 10.12 (f), and if b = e we have a < d < ¢ < f — o(c) < o(f) —
o(a) < o(d) by 10.12 (g).

2. All other cases follow immediately, using in (c¢) again side induction on length(d) and
10.12.

Lemma 10.22 For all « € C"(I1,0) exists a € OT a = o(a).

Proof:

If o = 0,1 this is immediate, and if & = v+ ¢ with NF(v,d) or a = @5, QV this follows
by IH for v, § and if o = 4,6, 0 € C,(9), that is G,(§) < ¢ follows p = o(r) for some
r € R, § = o(d) for some d € OT, G,(d) < d by 10.21, o = o(D,d) with D,d € OT.

Proof of lemma 10.7: (a) is proven. Further {o(z)|z < Qg Az € OT} = Cqo,(IT) N Qy =
Yo, I, and of-) is an order preserving map {z|z < Qg Az € OT} — 1o, I,

and for a < Oy, {o(z)|z < a Az € OT} = Co,(IT) No(a) = o(a), again of-) is an order
preserving isomorphism.
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