II.4.1. Regular Grammars and NFAs (13.5)

We show that $L(A) = L(G)$:

- Assume $w = a_1 \cdots a_n \in L(A)$.

 Then there exists a sequence of transitions in A

 \[
 S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F
 \]

 or

 \[
 S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F
 \]

 But from this we obtain derivations

 \[
 S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_n A_{n-1} \\
 \rightarrow a_1 a_2 \cdots a_{n-1} A_n = w
 \]

 or

 \[
 S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_n A_n \\
 \rightarrow a_1 a_2 \cdots a_n = w
 \]

 So $w \in L(G)$.

II.4.2. Translating NFAs into Regular Expressions (13.10)

II.4.3. Equivalence Theorem
II.4.1. Regular Grammars and NFAs (13.5)

Proof of Theorem II.4.1.1.

Assume $w = a_1 \cdots a_n \in L(G)$. A derivation will have the form

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_n = w$$

or

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_n = w$$

Then there exists a sequence of transitions in A

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F$$

or

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n}} A_{n} \in F$$

So $w \in L(A)$.

II.4.2. Translating NFAs into Regular Expressions (13.10)

Example

Before proving Theorem II.4.2.1. we give an example:
Consider the following automaton for the language $L =$?

![Original automaton](attachment:image.png)

We define regular expressions and simplify them at each intermediate step in order to keep them simple.

From A to $E^0_{q,q'}$

Let $L^0_{q,q'}$ be the set of strings which allows us to get from q to q' with intermediate states in \emptyset, i.e. without any intermediate states.

We define a regular expression $E^0_{q,q'}$, s.t. $L(E^0_{q,q'}) = L^0_{q,q'}$. We can define

- $E^0_{q,q'} := a_1 | \cdots | a_n$, if $q \neq q'$ and we have transitions $q \xrightarrow{a} q'$,
- $E^0_{q,q'} = a_1 | \cdots | a_n | \epsilon$, if $q = q'$ and we have transitions $q \xrightarrow{a} q'$.
II.4.2. Translating NFAs into Regular Expressions (13.10)

Calculation of $L_{q,q'}^0$

Original automaton:

\[
\begin{array}{c}
\text{States with } E_{q,q}^0: \\
q_0 \quad 0,1
\end{array}
\]

\[
\begin{align*}
E_{q_0,q_0}^0 &= 1 | \epsilon \\
E_{q_0,q_1}^0 &= 0 \\
E_{q_1,q_0}^0 &= \emptyset \\
E_{q_1,q_1}^0 &= 0 | 1 | \epsilon
\end{align*}
\]

From $E_{q,q'}^0$ to $E_{q,q'}^q$

\[
\begin{array}{c}
\text{States with } E_{q,q'}^0: \\
q_0 \quad 0,1
\end{array}
\]

\[
\begin{align*}
E_{q_0,q_0}^q &= (1 | \epsilon) | ((1 | \epsilon)(1 | \epsilon)^*(1 | \epsilon)) \\
&= 1^* \\
E_{q_0,q_1}^q &= 0 | ((1 | \epsilon)(1 | \epsilon)^*0) \\
&= 1^*0 \\
E_{q_1,q_0}^q &= \emptyset | (\emptyset(1 | \epsilon)^*0) \\
&= \emptyset \\
E_{q_1,q_1}^q &= (0 | 1 | \epsilon) | (\emptyset(1 | \epsilon)^*0) \\
&= 0 | 1 | \epsilon
\end{align*}
\]
II.4.2. Translating NFAs into Regular Expressions (13.10)

From $E_{q, q'}^{0}$ to $E_{q, q'}^{q_0}$

States with $E_{q, q'}^{0}$:

States with $E_{q, q'}^{q_0}$:

Calculation of $E_{q, q'}^{q_0, q_1}$

$E_{q, q'}^{q_0}$:

$E_{q, q'}^{q_0, q_1} = 1^* \cup (1^*0(0 \mid 1 \mid \varepsilon)^*0)$

Let $L_{q, q'}^{q_0, q_1}$ be the set of strings which allows us to get from q to q' with intermediate states in $\{q_0, q_1\}$. We define $E_{q, q'}^{q_0, q_1}$, s.t. $L(E_{q, q'}^{q_0, q_1}) = L_{q, q'}^{q_0, q_1}$:

$E_{q, q'}^{q_0, q_1} = E_{q, q'}^{q_0} \cup (E_{q, q'}^{q_0} E_{q_1, q_1}^*) E_{q_1, q_1}^{q_0}$

States with $E_{q, q'}^{q_0, q_1}$, the complete language between those states:
Proof of Theorem II.4.2.1.

Let for states \(q, q' \) of \(A \)
\[
L_{q, q'} := \{ w \in T^* | q \xrightarrow{w} q' \}
\]
We construct for states \(q, q' \) of \(A \) a regular expression \(E_{q, q'} \) s.t.
\[
L(E_{q, q'}) = L_{q, q'}
\]
If \(F = \{ q_1, \ldots, q_k \} \) then we obtain
\[
L(A) = L_{q_0, q_1} \cdots L_{q_{k-1}, q_k} = L(E_{q_0, q_1} | E_{q_0, q_2} | \cdots | E_{q_0, q_k})
\]
(If \(F \) is empty, then \(L(A) = L(\emptyset) \)).

Let \(A' \) be as \(A \), but with additional accepting state \(q_0 \), then we get that \(L(A') \) is given by
\[
E_{q_0, q_0} | E_{q_0, q_1} = 1^{*}0(0 \mid 1)^{*} = (0 \mid 1)^{*}
\]

We define regular expressions \(E_{q, q'} \) in stages by referring to \(E_{q_0, q_1} \) s.t.
\[
L(E_{q_1, \ldots, q_l})
\]
\[
= L_{q_1, q_l}
\]
\[
:= \{ a_1 \cdots a_k \in T^* | \exists p_i \in \{ q_1, \ldots, q_l \}. \quad q \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{k-1}} p_{k-1} \xrightarrow{a_k} q' \}
\]
So \(L_{q, q'} \) is the set of words which allow us to get from \(q \) to \(q' \) by using as intermediate states \(q_1, \ldots, q_l \) only.
We define \(E_{q_1, \ldots, q_k} \) by induction on \(k \).
Then we can define \(E_{q, q'} := E^Q_{q, q'} \).
Proof of Theorem II.4.2.1.

Base case $k = 0$:
Let a_1, \ldots, a_k be the a_i s.t. $q \xrightarrow{a_j} q'$. Then

$$E^{\emptyset}_{q,q'} := \begin{cases} a_1 | \cdots | a_k & \text{if } q \neq q' \\ a_1 | \cdots | a_k | \epsilon & \text{if } q = q' \end{cases}$$

(in case of $k = 0$ we have $E^{\emptyset}_{q,q'} = \emptyset$ or $= \epsilon$).

So we have

$$q \xrightarrow{v} q_k \xrightarrow{w_1} q_k \xrightarrow{w_2} \cdots \xrightarrow{w_j} q_k \xrightarrow{v'} q'$$

where $j = 0$ is possible, all intermediate transitions avoid q_k and $w = vw_1w_2 \cdots w_jv'$.

Proof of Theorem II.4.2.1.

Induction Step: Assume we have defined $E_{p,q'}^{q_1,\ldots,q_{k-1}}$ for all $p, q' \in Q$.
We define $E_{q,q'}^{q_1,\ldots,q_{k-1}}$.
A transition $q \xrightarrow{w} q'$ which uses only intermediate states q_1, \ldots, q_k can have two forms:

- Either we don't use q_k as an intermediate state.
 So we have only intermediate states q_1, \ldots, q_{k-1} and have $w \in L_{q,q'}^{q_1,\ldots,q_{k-1}}$.
- Or we reach q_k as an intermediate state. We single out
 - the first part of the transition which doesn't use state q_k until one reaches for the first time as an intermediate state q_k (note that $q = q_k$ or $q' = q_k$ is possible)
 - the second part where we several times go from q_k to q_k with intermediate states $\neq q_k$.
 - and the last part where we get from q_k to q' without using q_k.

In the second part we have

- $v \in L_{q,q'}^{q_1,\ldots,q_{k-1}}$.
- $w_j \in L_{q_k,q_k}^{q_1,\ldots,q_{k-1}}$.
- $v' \in L_{q_k,q'}^{q_1,\ldots,q_{k-1}}$.
- Therefore $w = vw_1 \cdots w_jv' \in L_{q,q'}^{q_1,\ldots,q_{k-1}}(L_{q_k,q_k}^{q_1,\ldots,q_{k-1}})^*(L_{q_k,q'}^{q_1,\ldots,q_{k-1}})$.

Therefore

$$L_{q,q'}^{q_1,\ldots,q_{k-1}} \subseteq L_{q,q'}^{q_1,\ldots,q_{k-1}}(L_{q_k,q_k}^{q_1,\ldots,q_{k-1}})^*(L_{q_k,q'}^{q_1,\ldots,q_{k-1}})$$

One can see easily as well that for an element w in the right hand side we can derive that w is in the left hand side as well, i.e.

$$L_{q,q'}^{q_1,\ldots,q_{k-1}} \supseteq L_{q,q'}^{q_1,\ldots,q_{k-1}}(L_{q_k,q_k}^{q_1,\ldots,q_{k-1}})^*(L_{q_k,q'}^{q_1,\ldots,q_{k-1}})$$
II.4.2. Translating NFAs into Regular Expressions (13.10)

Proof of Theorem II.4.2.1.

So

$L_{q_1,q'} = L_{q_1,q_k} | (L_{q_1,q_k} L_{q_k,q_1}^*) L_{q_k,q'}$

and we can define

$E_{q_1,q'} = E_{q_1,q_k} | (E_{q_1,q_k} E_{q_k,q_1}^*) E_{q_k,q'}$

II.4.3. Equivalence Theorem

Proof of Theorem II.4.3.1.

We are going to show that

- languages definable by regular expressions,
- languages definable by regular grammars,
- languages definable by NFAs with empty moves,
- languages definable by NFAs,
- languages definable by DFAs

all define the same language.

We already have everything in order to show the above with regular grammars restricted to right-linear grammars.

Lemma II.4.3.2.

Lemma (II.4.3.2.)

Let L be a language over an alphabet T. The following is equivalent:

1. L is definable by a regular expression.
2. L is definable by a right-linear grammar.
3. L is definable by an NFA with empty moves
4. L is definable by an NFA.
5. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars, NFAs with empty moves, NFAs, DFAs can be computed from each other.
II.4.3. Equivalence Theorem

Proof of Lemma II.4.3.2.

- (1) → (2) was shown in I.3.1.1. and I.3.2.1.
 - (Finite languages are definable regular grammars. Languages definable by regular grammars are closed under the operations for forming regular expressions).
- (2) → (4) was shown in Theorem II.4.1.1.
 - Right-linear grammars can be simulated by an NFA.
- (4) → (1) was shown in Theorem II.4.2.1.
 - We can determine the language between states of an NFA as a regular expression.
- So (1), (2), (4) are equivalent.

- (3) → (4) was shown in Theorem I.4.4.1.
 - We can omit the empty moves in NFAs with empty moves.
- (4) → (5) was shown in Theorem I.4.5.1.
 - NFAs can be translated into DFAs using as states sets of states.
- (5) → (4) → (3) are trivial.
 - DFAs are special cases of NFAs, NFAs are special cases of NFAs with empty moves.
- So (3), (4), (5) are equivalent.
- So (1), (2), (3), (4), (5) are equivalent.

Equivalence of Left-Linear and Right-Linear Grammars

- It remains to show that left-linear and right-linear grammars are equivalent.
- This is shown as follows:
 - The languages derived by left-linear grammars are L^R for languages derived by right-linear grammars.
 - Regular Expressions are closed under the reverse operation, i.e. if L is definable by a regular expression, so is L^R.
 - Therefore as well right-linear grammars are closed under the reverse operation, therefore left-linear and right-linear grammars are equivalent.

Right-Linear Languages are the Reverse of Left-Linear Ones

Lemma (II.4.3.3.)

1. Let G be a left-linear grammar. Then there exist a right-linear grammar G' over the same alphabet s.t. $L(G) = L(G')^R$. G' can be computed from G.
2. Let G be a right-linear grammar. Then there exist a left-linear grammar G' over the same alphabet s.t. $L(G) = L(G')^R$. G' can be computed from G.
Proof of Lemma II.4.3.3.

We prove only (1), (2) is analogously.

Let G be a left-linear grammar with alphabet T, nonterminals N and start symbol S.

Let G' be identical to G but with rules

$$B \rightarrow aC$$

$(B, C \in N, a \in T)$ replaced by

$$B \rightarrow Ca$$

G' is right-linear. Further it follows immediately for any $w \in (N \cup T)^*$ that

$$S \Rightarrow_G w \text{ iff } S \Rightarrow_{G'} w^R$$

Therefore

$$L(G') = \{ w \in T^* | S \Rightarrow_G w \}$$

$$= \{ w^R \in T^* | S \Rightarrow_G w \}$$

$$= \{ w \in T^* | S \Rightarrow_G w \}^R$$

$$= L(G)^R$$

Regular Expressions Closed Under $L \mapsto L^R$

Lemma (II.4.3.4.)

1. For every regular expression E there exists a regular expression E^R s.t. $L(E^R) = L(E)^R$.

E^R can be computed from E.

2. Similarly for every language L definable by a right-linear grammar G there exists a right-linear grammar G^R defining L^R.

G^R can be computed from G.

Proof of Lemma II.4.3.4.

(1) We show the existence of E^R by induction on E:

- For $E = \emptyset$, $E = \epsilon$ or $E = a$ $L(E)^R = L(E)$, so define $E^R := E$.
- For $E = E_1 | E_2$ we have define $E^R = E_1^R | E_2^R$.
- For $E = E_1E_2$ define $E^R = E_2^R E_1^R$.
- For $E = E_1^*$ define $E^R = (E_1^R)^*$.

(2) Follows since languages definable by right-linear grammars are exactly the languages definable by regular expressions.
II.4.3. Equivalence Theorem

Left-Linear and Right-Linear Grammars are Equivalent

Lemma (II.4.3.5.)

Let \(L \) be a language over an alphabet \(T \). The following are equivalent:

1. \(L = L(G) \) for a left-linear grammar \(G \).
2. \(L = L(G) \) for a right-linear grammar \(G \).

The left-linear and right-linear grammars can be computed from each other.

Proof of Lemma II.4.3.5.

- Assume \(L = L(G) \) for a left-linear grammar \(G \).
 - Then \(L^R = L(G') \) for a right-linear grammar \(G' \).
 - Right-linear grammars are closed under \(L \mapsto L^R \).
 - Therefore there exists a right-linear grammar \(G'' \) s.t.
 \(L(G'') = L(G')^R = (L^R)^R = L \).
- Assume \(L = L(G) \) for a right-linear grammar \(G \).
 - There exists a right-linear grammar \(G' \) s.t. \(L(G') = L^R \).
 - There exists a left-linear grammar \(G'' \) s.t. \(L(G'') = L(G')^R \).
 - Now \(L(G'') = L(G')^R = (L(G)^R)^R = L(G) = L \).

Proof of Theorem II.4.3.1.

By the above.