II.1.1 Administrative Issues

II.1.2 Overview Part II

II.1.3 Grammars and Derivations (10.2)
 I.2.2.3. Derivations (10.2.3.)
 I.2.2.4. Language Generation (10.2.4.)

II.1.4 The Chomsky Hierarchy (12.1)
II.1.1 Administrative Issues

II.1.2 Overview Part II

II.1.3 Grammars and Derivations (10.2)
 I.2.2.3. Derivations (10.2.3.)
 I.2.2.4. Language Generation (10.2.4.)

II.1.4 The Chomsky Hierarchy (12.1)
Disclaimer

- These notes are heavily based on
 - J. V. Tucker and K. Stephenson: *Data, Syntax and Semantics, Course Notes, Dept. of Computer Science, Swansea University, 2006.*

 Substantial parts are identical to that text.

- Numbers in brackets (e.g. (10), (10.1)) in section headings, definitions, etc. refer to the sections in this book.

- In general none of the material in these slides is considered as original material.
Lecturer of Part II and Part III:
Dr. A. Setzer
Dept. of Computer Science
University of Wales Swansea
Singleton Park
SA2 8PP
UK
Room: Room 211, Faraday Building
Tel.: (01792) 513368
Fax: (01792) 295651
Email: a.g.setzer@wansea.ac.uk
Home page: http://www.cs.wansea.ac.uk/~csetzer/index.html
Usually All Slots for Lecturing Will Be Used

- As before usually all 4 slots for lecturing will be used.
- This gives me more time to make the lecture more interactive.
II.1.1 Administrative Issues

Home Page of the Module

- The homepage for the parts taught by Anton Setzer is located at
 \url{http://www.cs.swan.ac.uk/~csetzer/lectures/automataFormalLanguage/current/index.html}
- This page is linked from blackboard.
- All slides will be available on blackboard (via a link to those slides).
- Errors in the notes will be corrected on the slides continuously and noted on the list of errata available from the homepage and linked from blackboard.
- The homepage contains as well additional material for each section of the module.
 That material is not directly relevant for the exam.
- Assessment related material such as coursework, solutions, and the revision lecture will be made available on Blackboard.
II.1.1 Administrative Issues

Literature

▶ Main Course Text.

The slides used in this module will be heavily based on this text.

▶ Main additional book for this part.

▶ Classical text on theory of formal languages
Other Texts:

- The famous “Dragon Book” (because of the book cover of the first edition), the bible of compiler construction.

II.1.1 Administrative Issues

II.1.2 Overview Part II

II.1.3 Grammars and Derivations (10.2)
 I.2.2.3. Derivations (10.2.3.)
 I.2.2.4. Language Generation (10.2.4.)

II.1.4 The Chomsky Hierarchy (12.1)
Overview over Part II: The Recognition Problem

A hierarchy of grammars.

II.1. The Chomsky Hierarchy.

Regular Languages:

II.2. Basics of Regular Languages and Expressions.
II.3. Finite State Automata.
II.4. Properties of Regular Languages.
 Includes equivalence theorem and pumping lemma.

Context-free languages:

II.5. Properties of Context Free Grammars.
 Includes the Pumping Lemma for context-free grammars.
Some Notations

- $|u|$ is the length of string u.
- uv denotes the concatenation of strings u and v.
- $u^n := u \cdots u$, i.e. n repetitions of string u.
 (Applies to this module only).
- “s.t.” stand for “such that”.
- x' is not the derivative of x but is a name for a new variable.
- $\Box\Box$ stands for blank as a character (i.e. as a terminal symbol). In diagrams we sometimes write blank or Blank for it.
- On the slides defined items are denoted by \sim and green colour.
 For instance ”$|u|$ is the length of string u” defines the notation $|u|$.
- When repeating text from previous slides, we usually write it in orange colour.
Use of Colour

▶ Note Some of the slides contain some coloured parts. The colours are indistinguishable in the black and white handouts. It is recommended to look at them using the online version (on blackboard and on the web page).
Availability of Material of this Lecture

- Spare copies of the notes will be put into the tray for this module opposite the Robert Recorde Room.
- There is a link on blackboard to the lecture notes (book) of John Tucker.
 - For this part of the module, no notes from John Tucker’s book will be photocopied, but if you have problems understanding something you can study his notes for clarification.
 - The slides will follow very closely John Tucker’s book.
 - Note that numbers such as (12.1) indicate to which sections of John Tucker’s book the current slides correspond.
- There is a list of errata available (on the web page only, not on blackboard)
 - A link to the web page is at the front page of each set of slides.
 - There is as well a link on blackboard.
- The slides will be continually updated after each lecture.
 So if you have problems with some material, it might be worth to check whether the online version has been updated.
II.1.1 Administrative Issues

II.1.2 Overview Part II

II.1.3 Grammars and Derivations (10.2)
 I.2.2.3. Derivations (10.2.3.)
 I.2.2.4. Language Generation (10.2.4.)

II.1.4 The Chomsky Hierarchy (12.1)
From BNF to General Grammars

You have seen grammars in BNF such as

<table>
<thead>
<tr>
<th>bnf</th>
<th>Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>rules</td>
<td></td>
</tr>
<tr>
<td>⟨Letter⟩ ::= ⟨LowerCase⟩</td>
<td>⟨UpperCase⟩</td>
</tr>
<tr>
<td>⟨LowerCase⟩ ::= a</td>
<td>b</td>
</tr>
<tr>
<td>⟨UpperCase⟩ ::= A</td>
<td>B</td>
</tr>
</tbody>
</table>
Generalisation

- **BNF** is a specific user friendly notation for context free grammars (see II.1.2) which are grammars which are simple structure.
- It is mainly used for describing the syntax of programming languages.
- General grammar notation which allows to define the more complex grammars of the Chomsky Hierarchy are denoted traditionally using the following conventions:
 - Nonterminals are **not** written in angle brackets such as ⟨UpperCase⟩.
 - Terminals are **not** written in boldface.
 - We write \rightarrow instead of ::=.
 - We usually don’t use "|" for writing multiple clauses, and instead write one clause each.
 However sometimes one uses it as a short hand.
Example 1: Letter

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammar</td>
<td>Letter</td>
</tr>
<tr>
<td>Terminals</td>
<td>a, b, c, ..., z, A, B, ..., Z, (\perp)</td>
</tr>
<tr>
<td>Nonterminals</td>
<td>Letter, LowerCase, UpperCase</td>
</tr>
<tr>
<td>Start Symbol</td>
<td>Letter</td>
</tr>
<tr>
<td>Productions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter (\rightarrow) LowerCase</td>
</tr>
<tr>
<td></td>
<td>Letter (\rightarrow) UpperCase</td>
</tr>
<tr>
<td></td>
<td>LowerCase (\rightarrow) a</td>
</tr>
<tr>
<td></td>
<td>LowerCase (\rightarrow) b</td>
</tr>
<tr>
<td></td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td>LowerCase (\rightarrow) z</td>
</tr>
</tbody>
</table>
Example 1: Letter (Continued)

UpperCase \rightarrow A
UpperCase \rightarrow B

\[\cdots \]
UpperCase \rightarrow Z
Definition of Grammars (10.2.1.)

Definition

A **Grammar** \(G = (T, N, S, P) \) consists of

1. a finite set \(T \) called the **alphabet** or set of **terminal symbols**,
2. a finite set \(N \) of **non-terminal symbols** or **variable symbols** such that \(T \cap N = \emptyset \),
3. a special non-terminal symbol \(S \in N \) called the **start symbol**,
4. a finite set \(P \) of substitution or rewrite rules, called **productions**, each of which has the form \(u \rightarrow v \) where
 4.1 The left hand string \(u \in (T \cup N)^+ \) (esp. \(u \) is non-empty),
 4.2 The right hand string \(v \in (T \cup N)^* \).
We present a grammar as a 4-tuple $G = (T, N, S, P)$ and also use a displayed version:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>T</td>
</tr>
<tr>
<td>nonterminals</td>
<td>N</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>P</td>
</tr>
</tbody>
</table>
Elements of the **alphabet** are **terminals**.

In compiler technology, strings as sequences of characters are often first broken down into **tokens**.

- A keyword such as in Java “class” would be a token. Each character of an identifier is a token.

Tokens then serve in the next phase of the compiler, the parsing of a usually context-free grammar (see later) as elements of the alphabet.

Non-terminals are intermediate symbols used in a derivation, which starts with the **start-symbol** (which is as well a non-terminal).

- When we have derived a word of the alphabet all non-terminals have been reduced to strings of the alphabet.
Example 2: Grammar for English Sentence

<table>
<thead>
<tr>
<th>grammar</th>
<th>SimpleEnglishGrammarExample</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a, b, c, ..., z, A, B, ..., Z, ▼ ▼</td>
</tr>
<tr>
<td>nonterminals</td>
<td>Sentence, Nounphrase, Verbphrase, Verb</td>
</tr>
<tr>
<td>start symbol</td>
<td>Sentence</td>
</tr>
<tr>
<td>productions</td>
<td>Sentence \rightarrow Nounphrase ▼ ▼ Verbphrase</td>
</tr>
<tr>
<td></td>
<td>Verbphrase \rightarrow Verb ▼ ▼ Nounphrase</td>
</tr>
<tr>
<td></td>
<td>Verb \rightarrow go</td>
</tr>
<tr>
<td></td>
<td>Nounphrase \rightarrow I</td>
</tr>
<tr>
<td></td>
<td>Nounphrase \rightarrow home</td>
</tr>
</tbody>
</table>
Startsymbol, Terminal, Nonterminal

Sentence \rightarrow Nounphrase $\&\&$ Verbphrase
Verbphrase \rightarrow Verb $\&\&$ Nounphrase
Verb \rightarrow go
Nounphrase \rightarrow I
Nounphrase \rightarrow home

In the above example we have

- “Sentence” is the **start symbol**.
- “Sentence”, “Nounphrase”, “Verbphrase” are **non-terminals**.
- “I”, “g”, “o” are **terminals**.
A grammar G defines a formal language $L(G) \subseteq T^*$. The elements of $L(G)$ are the set of strings we can obtain as follows:

- Start with start symbol S.
- Select a production such that the left hand string is a substring of what you derived so far.
- Replace this substring by the right hand string of the production.
- Once you have obtained a string consisting of non-terminals, possibly stop.

We will first give some examples and then a formal definition of $L(G)$.

II.1.3 Grammars and Derivations (10.2)

**Derivations (Informal; see 10.2.3)
Example 2: English Grammar

Sentence \rightarrow Nounphrase \sqcup Verbphrase
Verbphrase \rightarrow Verb \sqcup Nounphrase
Verb \rightarrow go
Nounphrase \rightarrow I
Nounphrase \rightarrow home

The following derives the sentence “I go home”:

Sentence \Rightarrow NounPhrase \sqcup VerbPhrase
\Rightarrow I \sqcup VerbPhrase
\Rightarrow I \sqcup Verb \sqcup NounPhrase
\Rightarrow I \sqcup go \sqcup NounPhrase
\Rightarrow I \sqcup go \sqcup home
The derivation above corresponds to the following parse tree:
Parse Trees vs Derivations

- Derivations as above are more general than parse trees.
- They can be used for all types of the Chomsky Hierarchy (introduced below).
- Parse tree can be used only for regular and context free grammars.
Eight different Derivations of “I go home”

There are eight derivations of I go home:

- **Sentence** ⇒ NounPhrase ▶ VerbPhrase
 ⇒ I ▶ VerbPhrase
 ⇒ I ▶ Verb ▶ NounPhrase
 ⇒ I ▶ g o ▶ NounPhrase
 ⇒ I ▶ g o ▶ h o m e

- **Sentence** ⇒ NounPhrase ▶ VerbPhrase
 ⇒ I ▶ VerbPhrase
 ⇒ I ▶ Verb ▶ NounPhrase
 ⇒ I ▶ Verb ▶ h o m e
 ⇒ I ▶ g o ▶ h o m e
Eight different Derivations of “I go home”

- Sentence \Rightarrow NounPhrase \Rightarrow VerbPhrase
- \Rightarrow NounPhrase \Rightarrow Verb \Rightarrow NounPhrase
- \Rightarrow I \Rightarrow Verb \Rightarrow NounPhrase
- \Rightarrow I \Rightarrow go \Rightarrow NounPhrase
- \Rightarrow I \Rightarrow go \Rightarrow home

- Sentence \Rightarrow NounPhrase \Rightarrow VerbPhrase
- \Rightarrow NounPhrase \Rightarrow Verb \Rightarrow NounPhrase
- \Rightarrow I \Rightarrow Verb \Rightarrow NounPhrase
- \Rightarrow I \Rightarrow Verb \Rightarrow home
- \Rightarrow I \Rightarrow go \Rightarrow home
Eight different Derivations of “I go home”

- Sentence ⇒ NounPhrase □ □ VerbPhrase
 ⇒ NounPhrase □ □ Verb □ □ NounPhrase
 ⇒ NounPhrase □ □ g o □ □ NounPhrase
 ⇒ I □ □ g o □ □ NounPhrase
 ⇒ I □ □ g o □ □ h o m e

- Sentence ⇒ NounPhrase □ □ VerbPhrase
 ⇒ NounPhrase □ □ Verb □ □ NounPhrase
 ⇒ NounPhrase □ □ g o □ □ NounPhrase
 ⇒ NounPhrase □ □ g o □ □ h o m e
 ⇒ I □ □ g o □ □ h o m e
Eight different Derivations of “I go home”

- Sentence ⇒ NounPhrase ▲ ▲ VerbPhrase
 ⇒ NounPhrase ▲ ▲ Verb ▲ ▲ NounPhrase
 ⇒ NounPhrase ▲ ▲ Verb ▲ ▲ home
 ⇒ I ▲ ▲ Verb ▲ ▲ home
 ⇒ I ▲ ▲ go ▲ ▲ home
 ⇒ I ▲ ▲ go ▲ ▲ home

- Sentence ⇒ NounPhrase ▲ ▲ VerbPhrase
 ⇒ NounPhrase ▲ ▲ Verb ▲ ▲ NounPhrase
 ⇒ NounPhrase ▲ ▲ Verb ▲ ▲ home
 ⇒ NounPhrase ▲ ▲ go ▲ ▲ home
 ⇒ I ▲ ▲ go ▲ ▲ home
All the above 8 derivations correspond to the same parse tree
Example 3

Consider the grammar

\[G^{[01]^1} = (\{0, 1\}, \{S\}, S, \{S \rightarrow 1, S \rightarrow 0S, S \rightarrow 1S\}) \]

displayed as follows

<table>
<thead>
<tr>
<th>grammar</th>
<th>(G^{[01]^1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>0, 1</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>(S \rightarrow 1, S \rightarrow 0S, S \rightarrow 1S)</td>
</tr>
</tbody>
</table>
Example 3 (Generation of Strings)

We assign numbers to the production rules:

Rule 1 \(S \rightarrow 1 \)
Rule 2 \(S \rightarrow 0S \)
Rule 3 \(S \rightarrow 1S \)

A derivation of \(1001 \in L(G^{[01]*1}) \) is as follows:

\[
\begin{align*}
S \Rightarrow & \quad 1S \quad \text{Rule 3} \\
\Rightarrow & \quad 10S \quad \text{Rule 2} \\
\Rightarrow & \quad 100S \quad \text{Rule 2} \\
\Rightarrow & \quad 1001 \quad \text{Rule 1}
\end{align*}
\]

A derivation of \(011 \in L(G^{[01]*1}) \) is as follows:

\[
\begin{align*}
S \Rightarrow & \quad 0S \quad \text{Rule 2} \\
\Rightarrow & \quad 01S \quad \text{Rule 3} \\
\Rightarrow & \quad 011 \quad \text{Rule 1}
\end{align*}
\]
Derivations of Strings in $G^{\{01\}^*1}$

The following shows all strings derivable in this grammar. Note that this is not a derivation tree, it's the tree of all possible derivations in this language.
We can see that the elements of \(L(G^{\{01\}^*1}) \) are the strings in \(\{0, 1\}^* \) which end with a 1:

\[
L(G^{\{01\}^*1}) = \{w1 \mid w \in \{0, 1\}^*\}
\]

Remark

\(G^{\{01\}^*1} \) *is an example of a regular grammar (this notion will be introduced in II.1.3)*.
Example 4 (Grammars)

Consider the grammar

\[G^{a^n b^n} = (\{a, b\}, \{S\}, S, \{S \rightarrow ab, S \rightarrow aSb\}) \]

displayed as follows

<table>
<thead>
<tr>
<th>grammar</th>
<th>(G^{a^n b^n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>(a, b)</td>
</tr>
<tr>
<td>nonterminals</td>
<td>(S)</td>
</tr>
<tr>
<td>start symbol</td>
<td>(S)</td>
</tr>
<tr>
<td>productions</td>
<td>(S \rightarrow ab, S \rightarrow aSb)</td>
</tr>
</tbody>
</table>
Derivations of strings in $G^{an bn}$

Note again that this is not a derivation tree, but a tree determining all possible derivable strings in this language.
We can see that the elements of $L(G_{a^n b^n})$ are the strings of the form $a^n b^n$:

$$L(G_{a^n b^n}) = \{a^n b^n \mid n \geq 1\}$$

Remark

$G_{a^n b^n}$ is an example of a context-free grammar (this notion will be introduced later).
Consider the grammar

\[G^{a^n b^n c^n} = (\{ a, b, c \}, \{ S, B, C \}, S, \]
\[\{ S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, \]
\[aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc \}) \]

displayed as follows

<table>
<thead>
<tr>
<th>grammar</th>
<th>(G^{a^n b^n c^n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>(a, b, c)</td>
</tr>
<tr>
<td>nonterminals</td>
<td>(S, B, C)</td>
</tr>
<tr>
<td>start symbol</td>
<td>(S)</td>
</tr>
</tbody>
</table>
| productions | \(S \rightarrow aSBC, S \rightarrow aBC, \)
 | \(CB \rightarrow BC, \)
 | \(aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc. \) |
A derivation of $aaabbbccc$ in Example 5 is as follows:

\[
\begin{align*}
S & \Rightarrow aSBC = aSBC \\
& \Rightarrow aaSBCBC = aaSBCBC \\
& \Rightarrow aaaBCBCBC = aaaBCBCBC \\
& \Rightarrow aaaBBBCBC = aaaBBBCBC \\
& \Rightarrow aaaBBBCBC = aaaBBBCBC \\
& \Rightarrow aaBBBCBC = aaBBBCBC \\
& \Rightarrow aaBBBCBC = aaBBBCBC \\
& \Rightarrow aaabBBCCC = aaabBBCCC \\
& \Rightarrow aaabbBCCC = aaabbBCCC \\
& \Rightarrow aaabbbCCC = aaabbbCCC \\
& \Rightarrow aaabbbCcCC = aaabbbCcCC \\
\end{align*}
\]

(Blue parts denote the left hand and red parts the right hand side of the production applied)
We can see that the elements of $L(G^{a^n b^n c^n})$ are the strings of the form $a^n b^n c^n$:

$$L(G^{a^n b^n c^n}) = \{a^n b^n c^n \mid n \geq 1\}$$

Remark

- $G^{a^n b^n c^n}$ is often in books and web pages presented as an example of a context-sensitive grammar (this notion will be introduced later).
- It is not, but can be transformed into a context sensitive one, see Sect. II.1.3, Example 5, below.
Derivations (10.2.3.)

Definition

1. Let $G = (T, N, S, P)$ be a grammar, $w \in (T \cup N)^+$ be a non-empty word, $w' \in (T \cup N)^*$ be a possibly empty word.

We say that w' is derived from w in one step, with notation $w \Rightarrow_G w'$

iff there exists a production $u \rightarrow v \in P$ such that

- u occurs in w,
- w' is the result of replacing one occurrence of u in w by v.
Definition ⇒ (Cont.)

Definition (Cont)

2. We say as well w' is immediately generated from w or w' is one-step generated from w, or

$$w \Rightarrow w'$$

for $w \Rightarrow_G w'$.

- So w has the form sut for some $s, t \in (T \cup N)^*$, and $w' = svt$ where $u \rightarrow v$ is a production.
- Informally w' is the result of replacing in w a substring, which is equal to the right hand string of a production by the left hand string of that production.
Definition \Rightarrow^* (Cont.)

3. Let $G = (T, N, S, P)$ be a grammar, $w, w' \in (T \cup N)^*$ be a possibly empty words.

We say that w' is derived from w, with notation $w \Rightarrow^*_G w'$ iff

- either $w = w'$
- or there exists a sequence of words $w_0, \ldots, w_n \in (T \cup N)^*$ s.t.
 - $w_0 = w$,
 - $w_n = w'$
 - for $1 \leq i \leq n - 1$ we have $w_i \Rightarrow_G w_{i+1}$.
Definition \(\Rightarrow^* \) (Cont.)

4. We say as well \(w' \) is generated from \(w \) or \(w \Rightarrow^* w' \) for \(w \Rightarrow^*_G w' \).
Example

In example 5 above we have the following derivation:

\[
S \Rightarrow aSBC \\
\Rightarrow aaBCCB \\
\Rightarrow aaBBCC \\
\Rightarrow aabBCC \\
\Rightarrow aabbCC \\
\Rightarrow aabbcC \\
\Rightarrow aabbcc
\]

Therefore we have for instance

\[
S \Rightarrow^* aabbcC \\
S \Rightarrow^* aabBCC \\
aaBCCB \Rightarrow^* aabBCC \\
aaBCCB \Rightarrow^* aaBCBC
\]
Remark

The above definitions introduced relations

\[\Rightarrow_G \subseteq (T \cup N)^+ \times (T \cup N)^* \]

\[\Rightarrow^*_G \subseteq (T \cup N)^* \times (T \cup N)^* \]

\[\Rightarrow^*_G \text{ is the reflexive and transitive closure of } \Rightarrow_G \]
Language Generation (10.2.4.)

Definition

Let $G = (T, N, S, P)$ be a grammar. The *language generated by the grammar* G, denoted by $L(G) \subseteq T^*$ is defined as the set of terminal strings generated from the start symbol, i.e.

$$L(G) := \{ w \in T^* \mid S \Rightarrow^*_G w \}$$

Remark

If a language is generated by a grammar, then there are infinitely many grammars which generate the same language.
Equivalence of Grammars

Definition

We say that two grammars G_1 and G_2 are equivalent iff

\[L(G_1) = L(G_2) \]
Example

We show that

\[L(G^{a^n b^n}) = \{a^n b^n | n \geq 1\} \]

One can easily show that

\[S \Rightarrow^* t \iff \exists n \geq 0 (t = a^n S b^n \lor t = a^{n+1} b^{n+1}) \]

- "⇒" follows by induction on length of the derivation \(S \Rightarrow^* t \).
- "⇐": show first the assertion for \(t = a^n S b^n \) by induction on \(n \). Then the assertion for \(t = a^{n+1} b^{n+1} \) follows as well.
II.1.1 Administrative Issues

II.1.2 Overview Part II

II.1.3 Grammars and Derivations (10.2)
 I.2.2.3. Derivations (10.2.3.)
 I.2.2.4. Language Generation (10.2.4.)

II.1.4 The Chomsky Hierarchy (12.1)
Chomsky Hierarchy

The **Chomsky hierarchy** is the classification of grammars by means of 4 properties of its production rules:

- **Regular grammars (Type-3).**
 - Simple to parse. Used for dividing the input stream of characters into tokens.

- **Context-free grammars (Type-2).**
 - Easy to understand and supported by parse generators.
 - In language design one aims at languages having an underlying context-free grammar.

- **Context-sensitive grammars (Type-1).**
 - It’s usually an accident if the basic grammar (excluding features such as variables need to be declared) of a language is context-sensitive. C and C++ have some context-sensitive aspects (dealt with by selecting correct strings after the parsing).

- **Unrestricted grammars (Type-0).**
 - The limit of grammars.
Examples of Equivalent Grammars

- We give grammars of each type for defining the language

\[L^{a^{2n}} := \{ a^i | i \text{ is even} \} \]

- Note that it belongs to all 4 types of the Chomsky Hierarchy, especially to the highest one (regular grammars)

- The grammars for the lower types of the Chomsky Hierarchy will be a bit artificial, since they are made more complicated in order not to belong to the higher type ones.
Type-3 Grammars: Regular Grammars

Definition

1. A grammar G is **left-linear**, iff all its productions have the form

 $$A \rightarrow Ba \text{ or } A \rightarrow a \text{ or } A \rightarrow B \text{ or } A \rightarrow \epsilon$$

2. A grammar G is **right-linear**, iff all its productions have the form

 $$A \rightarrow aB \text{ or } A \rightarrow a \text{ or } A \rightarrow B \text{ or } A \rightarrow \epsilon$$

3. A grammar G is of **Type-3** or **regular**, iff it is left-linear or right-linear

In the above we have $A, B \in N$ and $a \in T$.
No Mixing of Left-Linear and Right-Linear

Remark:
In a regular grammar either all productions must be left-linear or all productions must be right-linear, so no mixing of the left-linear and right-linear is allowed.
Remark

- Productions of the form $A \rightarrow B$ are called silent productions.
- One can transform regular grammars having silent productions into equivalent ones which don’t have silent productions.
- Until 2014/15 we didn’t allow silent productions as part of regular grammars.
- This was following traditional definitions of regular grammars.
- We decided to allow them since this is becoming general practice when teaching regular grammars.
Left Linear (Regular) Grammar for $L^{a^{2n}}$

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G_{\text{leftlinear},a^{2n}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S, A</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow \epsilon$</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow Aa$</td>
</tr>
<tr>
<td></td>
<td>$A \rightarrow Sa$</td>
</tr>
</tbody>
</table>
Right Linear (Regular) Grammar for L^{2n}

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G_{right linear, a^{2n}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S, A</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow \epsilon$</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow aA$</td>
</tr>
<tr>
<td></td>
<td>$A \rightarrow aS$</td>
</tr>
</tbody>
</table>
Complexity

- Regular languages are exactly those languages which can be recognised using a constant space algorithm. So the memory used for parsing is fixed (apart from the input).
- This algorithm will be an automaton, and will recognise the language in linear time
 - i.e. in time $O(|s|)$, where $|s|$ is the length of the string.
Types-2 Grammars: Context-Free Grammars

Definition

Any grammar G is of **Type-2** or **context-free**, if all its productions have the form

$$A \rightarrow w$$

where $A \in N$ is a nonterminal, which rewrites to a string $w \in (T \cup N)^*$.
Context-Free Grammar for $L^{a^{2n}}$

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G_{context-free,a^{2n}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow \epsilon$</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow aSa$</td>
</tr>
</tbody>
</table>
Context free languages can be recognised in $O(|s|^4)$ time, where $|s|$ is the length of the input stream. If three tapes are allowed they can be recognised in $O(|s|^3)$ time.

Most practical examples belong to subclasses such as the LL(n)- or LR(n)-languages, which can be recognised in linear time (i.e. $O(|s|)$).
Type 1 Grammars: Context-Sensitive Grammars

Definition

Any grammar G is of **Type-1** or **context-sensitive**, if all its productions have the form

$$uAv \rightarrow uwv$$

where $A \in N$ is a nonterminal, which rewrites to a non-empty string $w \in (T \cup N)^+$, but only where A is in the context of strings $u, v \in (T \cup N)^*$. Furthermore a production

$$A \rightarrow \epsilon$$

is allowed, but only if A does not occur in the right hand side of any production.
Context-Sensitive Grammar for $L^{a^{2n}}$

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G_{\text{context-sensitive}, a^{2n}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S, T</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow \epsilon$</td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow aa$</td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow aaT$</td>
<td></td>
</tr>
<tr>
<td>$aT \rightarrow aTaa$</td>
<td></td>
</tr>
<tr>
<td>$aT \rightarrow aaa$</td>
<td></td>
</tr>
</tbody>
</table>
Complexity

- The class of context sensitive is PSPACE complete, where PSPACE is the class of languages, which can be recognised with polynomial amount of space.
- The complexity class PSPACE is at least as big as P (polynomial time) and a strict subset of EXPTIME (exponential time).
Type-0 Grammars: Unrestricted Grammars

Let in the following four definitions $G = (T, N, S, P)$ be a grammar.

Definition

Any grammar G is of **Type 0** or **unrestricted**, so any production

$$u \longrightarrow v$$

for $u \in (T \cup N)^+ $, $v \in (T \cup N)^* $ are allowed.
Unrestricted Grammar for $L_{a^{2n}}$

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G_{unrestricted, a^{2n}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow \epsilon$</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow aa$</td>
</tr>
<tr>
<td></td>
<td>$a \rightarrow aaa$</td>
</tr>
</tbody>
</table>
Complexity

- The class of unrestricted grammars is equal to the set of **computably enumerable languages** (also called **recursively enumerable** languages).
- This means that we cannot decide whether a string belongs to such a language. However there exists an algorithm, which
 - if a string belongs to a language, eventually will accept it,
 - if a string does not belong to the language possibly will run forever.
- Computable and computable enumerable languages will be discussed in part III of this module.
A Hierarchy of Languages

Definition

A language $L \subseteq T^*$ is **regular**, **context-free**, **context-sensitive**, or **unrestricted**, iff there exists a grammar G of the relevant type such that $L(G) = L$.

Remark

For any language L we have L regular $\Rightarrow L$ context-free $\Rightarrow L$ context-sensitive $\Rightarrow L$ unrestricted.
Warning In the exam we often see students writing “this language is not context free because it is regular”. This is wrong. Regular languages are a subset of the context free languages, any regular language is as well context free.
II.1.4 The Chomsky Hierarchy (12.1)

Hierarchy of Languages

We have that

- every regular grammar is context-free.
- every context-sensitive grammar is an unrestricted grammar.

However not every context-free grammar is context sensitive, since context-sensitive languages allow only productions $A \longrightarrow \epsilon$ if A does not occur at the right hand side of a production. (Otherwise all unrestricted languages would be context-sensitive).

However one can construct from a context-free grammar a context-free grammar of the same language, which has only productions $A \longrightarrow \epsilon$, if A does not occur on the right hand side of a production. This grammar is therefore context-sensitive as well.
Hierarchies of Languages

- Regular languages
- Context-free languages
- Context-sensitive languages
- Unrestricted languages
Example 1 (Grammars of the Types of the Chomsky Hierarchy)

grammar	G
terminals	a, b
nonterminals	S
start symbol	S
productions	$S \rightarrow aSa, S \rightarrow bSb, S \rightarrow \epsilon$

$L(G) = ?$

G is of which type?
Example 2

grammar	G
terminals	a
nonterminals	S
start symbol	S
productions	$S \rightarrow a$, $S \rightarrow aS$

$L(G) = ?$

G is of which type?
Example 3

Grammar

- **Terminals**: a, b
- **Nonterminals**: S
- **Start symbol**: S
- **Productions**:
 - $S \rightarrow ab$
 - $S \rightarrow aSb$

$L(G) = ?$

G is of which type?
Consider the grammar

grammar \(G^{a^n b^n c^n} \)

terminals \(a, b, c \)

nonterminals \(S, B, C \)

start symbol \(S \)

productions

\[
S \rightarrow aSBC, \quad S \rightarrow aBC, \\
CB \rightarrow BC, \\
aB \rightarrow ab, \quad bB \rightarrow bb, \quad bC \rightarrow bc, \quad cC \rightarrow cc.
\]

Example 4 is not a context sensitive grammar (although often referred to as context sensitive). Why?
Here is a variant which is context sensitive:

<table>
<thead>
<tr>
<th>grammar</th>
<th>$G^{a^n b^n c^n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>a, b, c</td>
</tr>
<tr>
<td>nonterminals</td>
<td>S, B, C, H</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow aSBC, S \rightarrow aBC,$</td>
</tr>
<tr>
<td></td>
<td>$CB \rightarrow HB, HB \rightarrow HC, HC \rightarrow BC,$</td>
</tr>
<tr>
<td></td>
<td>$aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc.$</td>
</tr>
</tbody>
</table>
Example Derivation

A derivation of \textit{aabbcc} in Example 5 is as follows:

\[
\begin{align*}
S & \Rightarrow aSBC \\
& \Rightarrow aaBCBC \\
& \Rightarrow aaBHBC \\
& \Rightarrow aaBHCC \\
& \Rightarrow aaBBCC
\end{align*}
\]
Examples

- Regular: \(\{a^n \mid n \geq 1\} \)
- Context-free: \(\{a^n b^n \mid n \geq 1\} \)
- Context-sensitive: \(\{a^n b^n c^n \mid n \geq 1\} \)
- Unrestricted