II.4.1. Equivalence Theorem for Regular Languages
 II.4.1.1. Regular Grammars and NFAs (13.5)
 II.4.1.2. Translating NFAs into Regular Expressions (13.10)
 II.4.1.3. Main Theorem
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Main Theorem
Theorem II.4.1.1

Theorem (II.4.1.1)

For every right linear grammar G there exists an NFA A s.t.

$$L(G) = L(A)$$

A can be computed from G.
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)

Proof of Theorem II.4.1.1

We show that \(L(A) = L(G) \):

- Assume \(w = a_1 \cdots a_n \in L(A) \).

 Then there exists a sequence of transitions in \(A \)

 \[
 S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F
 \]

 or

 \[
 S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F
 \]

 But from this we obtain derivations

 \[
 S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \\
 \rightarrow a_1 a_2 \cdots a_{n-1} a_n = w
 \]

 or

 \[
 S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_n A_n \\
 \rightarrow a_1 a_2 \cdots a_n = w
 \]

 So \(w \in L(G) \).
Proof of Theorem II.4.1.1

Assume \(w = a_1 \cdots a_n \in L(G) \).
A derivation will have the form

\[
S = A_0 \rightarrow a_1A_1 \rightarrow a_1a_2A_2 \rightarrow \cdots \rightarrow a_1a_2 \cdots a_{n-1}A_{n-1} \\
\rightarrow a_1a_2 \cdots a_{n-1}a_n = w
\]

or

\[
S = A_0 \rightarrow a_1A_1 \rightarrow a_1a_2A_2 \rightarrow \cdots \rightarrow a_1a_2 \cdots a_nA_n \\
\rightarrow a_1a_2 \cdots a_n = w
\]

Then there exists a sequence of transitions in \(A \)

\[
S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F
\]

or

\[
S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F
\]

So \(w \in L(A) \).
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Main Theorem
Theorem II.4.1.2

Let $A = (Q, q_0, F, T, \rightarrow)$ be an NFA.
Then there exist a regular expression E s.t. $L(E) = L(A)$.
E can be computed from A.
Example

Before proving Theorem II.4.1.2 we give an example:
Consider the following automaton for the language $L = \ast$.

![Automaton Diagram]

We define regular expressions and simplify them at each intermediate step in order to keep them simple.
From A to $E^\emptyset_{q,q'}$

Original automaton:

Let $L^\emptyset_{q,q'}$ be the set of strings which allows us to get from q to q' with intermediate states in \emptyset, i.e. without any intermediate states. We define a regular expression $E^\emptyset_{q,q'}$, s.t. $L(E^\emptyset_{q,q'}) = L^\emptyset_{q,q'}$. We can define:

- $E^\emptyset_{q,q'} := a_1 \mid \cdots \mid a_n$,
 if $q \neq q'$ and we have transitions $q \xrightarrow{a_i} q'$,

- $E^\emptyset_{q,q'} = a_1 \mid \cdots \mid a_n \mid \epsilon$,
 if $q = q'$ and we have transitions $q \xrightarrow{a_i} q'$.
Calculation of $L_{q,q'}^\emptyset$

Original automaton:

\[
\begin{align*}
E_{q_0,q_0}^\emptyset & = 1 \mid \epsilon \\
E_{q_0,q_1}^\emptyset & = 0 \\
E_{q_1,q_0}^\emptyset & = \emptyset \\
E_{q_1,q_1}^\emptyset & = 0 \mid 1 \mid \epsilon
\end{align*}
\]
From A to $L_{q,q'}^{\emptyset}$

Original automaton:

States with $E_{q,q'}^{\emptyset}$:
From $E_{q,q'}^\emptyset$ to $E_{q,q'}^{q_0}$

Let $L_{q,q'}^{q_0}$ be the set of strings which allows us to get from q to q' with intermediate states in $\{q_0\}$.

We define $E_{q,q'}^{q_0}$ s.t. $L(E_{q,q'}^{q_0}) = L_{q,q'}^{q_0}$:

$$E_{q,q'}^{q_0} = E_{q,q'}^\emptyset | (E_{q,q_0}^\emptyset (E_{q_0,q_0}^\emptyset)^* E_{q_0,q'}^\emptyset)$$
Calculation of $E_{q, q'}^{q_0}$

$E_{q, q'}^{q_0} = E_{q, q'}^{q_0} \mid (E_{q, q_0}^{q_0} (E_{q_0, q_0}^{q_0})^* E_{q_0, q'}^{q_0})$:

\[E_{q_0, q_0}^{q_0} = (1 \mid \varepsilon) \mid ((1 \mid \varepsilon)(1 \mid \varepsilon)^*(1 \mid \varepsilon)) = 1^*\]

\[E_{q_0, q_1}^{q_0} = 0 \mid ((1 \mid \varepsilon)(1 \mid \varepsilon)^*0) = 1^*0\]

\[E_{q_1, q_0}^{q_0} = \emptyset \mid (\emptyset (1 \mid \varepsilon)^*0) = \emptyset\]

\[E_{q_1, q_1}^{q_0} = (0 \mid 1 \mid \varepsilon) \mid (\emptyset (1 \mid \varepsilon)^*0) = 0 \mid 1 \mid \varepsilon\]
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

From $E_{q,q'}^\emptyset$ to $E_{q,q'}^{q_0}$

States with $E_{q,q'}^\emptyset$:

States with $E_{q,q'}^{q_0}$:
From $E_{q,q'}^{q_0}$ to $E_{q,q'}^{q_0,q_1}$

Let $L_{q,q'}^{q_0,q_1}$ be the set of strings which allows us to get from q to q' with intermediate states in \{q_0, q_1\}.

We define $E_{q,q'}^{q_0,q_1}$, s.t. $L(E_{q,q'}^{q_0,q_1}) = L_{q,q'}^{q_0,q_1}$:

$$E_{q,q'}^{q_0,q_1} = E_{q,q'}^{q_0} \mid (E_{q,q_1}^{q_0}(E_{q_1,q_1}^{q_0})^* E_{q_1,q'}^{q_0})$$
Calculation of $E_{q_0,q_1}^{q_0,q_1}$

$E_{q_0,q_1}^{q_0,q_0} = 1^* | (1^*0(0|1|\epsilon)^*\emptyset)$
$= 1^*$

$E_{q_0,q_1}^{q_0,q_1} = (1^*0) | (1^*0(0|1|\epsilon)^*(0|1|\epsilon))$
$= 1^*0(0|1)^*$

$E_{q_0,q_1}^{q_1,q_0} = \emptyset | ((0|1|\epsilon)(0|1|\epsilon)^*\emptyset$
$= \emptyset$

$E_{q_0,q_1}^{q_1,q_1} = (0|1|\epsilon) | ((0|1|\epsilon)(0|1|\epsilon)^*(0|1|\epsilon))$
$= (0|1)^*$
From $E_{q_0, q'}^{q_0}$ to $E_{q, q'}^{q_0, q_1}$

States with $E_{q_0, q'}^{q_0}$:

States with $E_{q, q'}^{q_0, q_1}$, the complete language between those states:
The Language of A: $L(A)$

States with $E_{q_0,q_1}^{q_0,q_1}$:

- $L(E_{q_0,q_1}^{q_0,q_1})$ is the set of strings which allows us to get from q_0 to q_1 using any intermediate states.
- The language $L(A)$ is the set of strings which allow us to get from q_0 to any accepting state.
- In the example there is only one accepting state (q_1), so the language accepted by A is the language given by

$$E_{q_0,q_1}^{q_0,q_1} = 1^*0(0 \mid 1)^*$$
The Language of A: $L(A)$

States with $E^{q_0,q_1}_{q,q'}$:

Let A' be as A, but with additional accepting state q_0, then we get that $L(A')$ is given by

$$E^{q_0,q_1}_{q_0,q_0} \mid E^{q_0,q_1}_{q_0,q_1} = 1^* \mid (1^*0(0 \mid 1)^*) = (0 \mid 1)^*$$
Proof of Theorem II.4.1.2

Let for states q, q' of A

$$L_{q,q'} := \{ w \in T^* \mid q \xrightarrow{w} q' \}$$

We construct for states q, q' of A a regular expression $E_{q,q'}$ s.t.

$$L(E_{q,q'}) = L_{q,q'}$$

If $F = \{q_1, \ldots, q_k\}$ then we obtain

$$L(A) = L_{q_0,q_1} \mid \cdots \mid L_{q_0,q_k} = L(E_{q_0,q_1} \mid E_{q_0,q_2} \mid \cdots \mid E_{q_0,q_k})$$

(If F is empty, then $L(A) = L(\emptyset)$).
Proof of Theorem II.4.1.2

We define regular expressions $E_{q,q'}$ in stages by referring to E_{q_1,\ldots,q_l}, s.t.

$$L(E_{q_1,\ldots,q_l}) = L_{q_1,\ldots,q_l} := \{a_1 \cdots a_k \in T^* \mid \exists p_i \in \{q_1,\ldots,q_l\}. q \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{q_3} \cdots \xrightarrow{a_{k-1}} p_{k-1} \xrightarrow{a_k} q' \}$$

So $L_{q,q'}$ is the set of words which allow us to get from q to q' by using as intermediate states q_1,\ldots,q_l only.

We define E_{q_1,\ldots,q_k} by induction on k.

Then we can define $E_{q,q'} := E_{q,q'}^Q$.
Proof of Theorem II.4.1.2

Base case $k = 0$:
Let a_1, \ldots, a_k be the a_i s.t. $q \xrightarrow{a_i} q'$. Then

$$E_{q, q'}^{\emptyset} := \begin{cases} a_1 | \cdots | a_k & \text{if } q \neq q' \\ a_1 | \cdots | a_k | \epsilon & \text{if } q = q' \end{cases}$$

(in case of $k = 0$ we have $E_{q, q'}^{\emptyset} = \emptyset$ or = ϵ).
Proof of Theorem II.4.1.2

Induction Step: Assume we have defined \(E_{q_1,\ldots,q_{k-1}}^{p,p'} \) for all \(p, p' \in Q \).

We define \(E_{q,q'}^{q_1,\ldots,q_{k-1}} \).

A transition \(q \xrightarrow{w} q' \) which uses only intermediate states \(q_1,\ldots,q_k \) can have two forms:

- Either we don’t use \(q_k \) as an intermediate state. So we have only intermediate states \(q_1,\ldots,q_{k-1} \) and have \(w \in L_{q,q'}^{q_1,\ldots,q_{k-1}} \).

- Or we reach \(q_k \) as an intermediate state. We single out
 - the first part of the transition which doesn’t use state \(q_k \) until one reaches for the first time as an intermediate state \(q_k \) (note that \(q = q_k \) or \(q' = q_k \) is possible)
 - the second part where we several times go from \(q_k \) to \(q_k \) with intermediate states \(\neq q_k \),
 - and the last part where we get from \(q_k \) to \(q' \) without using \(q_k \).
So we have

\[q \xrightarrow{v} q_k \xrightarrow{w_1} q_k \xrightarrow{w_2} q_k \xrightarrow{w_2} \cdots \xrightarrow{w_j} q_k \xrightarrow{v'} q' \]

where \(j = 0 \) is possible, all intermediate transitions avoid \(q_k \) and \(w = vw_1w_2\cdots w_kv' \).
Proof of Theorem II.4.1.2

In the second part we have

- \(v \in L_{q, q_k}^{q_1, \ldots, q_{k-1}} \),
- \(w_i \in L_{q_k, q_k}^{q_1, \ldots, q_{k-1}} \),
- \(v' \in L_{q_k, q_k}^{q_1, \ldots, q_{k-1}} \).

Therefore \(w = vw_1 \cdots w_k v' \in L_{q, q_k}^{q_1, \ldots, q_{k-1}} \cdot (L_{q_k, q_k}^{q_1, \ldots, q_{k-1}})^* \cdot L_{q_k, q_k}^{q_1, \ldots, q_{k-1}} \).

Therefore

\[
L_{q, q_k}^{q_1, \ldots, q_k} \subseteq L_{q, q_k}^{q_1, \ldots, q_{k-1}} \mid (L_{q_k, q_k}^{q_1, \ldots, q_{k-1}})^* \cdot L_{q_k, q_k}^{q_1, \ldots, q_{k-1}}
\]

One can see easily as well that for an element \(w \) in the right hand side we can derive that \(w \) is in the left hand side as well, i.e.

\[
L_{q, q_k}^{q_1, \ldots, q_k} \supseteq L_{q, q_k}^{q_1, \ldots, q_{k-1}} \mid (L_{q_k, q_k}^{q_1, \ldots, q_{k-1}})^* \cdot L_{q_k, q_k}^{q_1, \ldots, q_{k-1}}
\]
Proof of Theorem II.4.1.2

So

\[L_{q_1, \ldots, q_k} = L_{q_1, \ldots, q_{k-1}} \mid (L_{q, q_k} \cdot (L_{q_k, q_k})^* \cdot L_{q_k, q'}) \]

and we can define

\[E_{q_1, \ldots, q_k} = E_{q_1, \ldots, q_{k-1}} \mid (E_{q, q_k} \cdot (E_{q_k, q_k})^* \cdot E_{q_k, q'}) \]
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)
II.4.1.2. Translating NFAs into Regular Expressions (13.10)
II.4.1.3. Main Theorem
Theorem II.4.1.3

Let L be a language over an alphabet T. The following are equivalent:

1. L is definable by a regular expression.
2. L is a regular.
3. L is definable by a right-linear grammar.
4. L is definable by a left-linear grammar.
5. L is definable by an NFA with empty moves.
6. L is definable by an NFA.
7. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars, left-linear grammars, NFAs with empty moves, NFAs, DFAs can be computed from each other.
Proof of Theorem II.4.1.3

We are going to show that

- languages definable by regular expressions,
- languages definable by regular grammars,
- languages definable by NFAs with empty moves,
- languages definable by NFAs,
- languages definable by DFAs

all define the same language.

We already have everything in order to show the above with regular grammars restricted to right-linear grammars.
Lemma II.4.1.4

Let L be a language over an alphabet T. The following is equivalent:

1. L is definable by a regular expression.
2. L is definable by a right-linear grammar.
3. L is definable by an NFA with empty moves.
4. L is definable by an NFA.
5. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars, NFAs with empty moves, NFAs, DFAs can be computed from each other.
Proof of Lemma II.4.1.4

- (1) \rightarrow (2) was shown in II.2.2.2.
 - (Finite languages are definable regular grammars. Languages definable by regular grammars are closed under the operations for forming regular expressions).
- (2) \rightarrow (4) was shown in Theorem II.4.1.1
 - Right-linear grammars can be simulated by an NFA.
- (4) \rightarrow (1) was shown in Theorem II.4.1.2
 - We can determine the language between states of an NFA as a regular expression.
- So (1), (2), (4) are equivalent.
II.4.1.3. Main Theorem

Proof of Lemma II.4.1.4

- (3) \rightarrow (4) was shown in Theorem II.3.4.1.
 - We can omit the empty moves in NFAs with empty moves.
- (4) \rightarrow (5) was shown in Theorem II.3.5.1.
 - NFAs can be translated into DFAs using as states sets of states.
- (5) \rightarrow (4) \rightarrow (3) are trivial.
 - DFAs are special cases of NFAs,
 NFAs are special cases of NFAs with empty moves.
- So (3), (4), (5) are equivalent.
- So (1), (2), (3), (4), (5) are equivalent.
Equivalence of Left-Linear and Right-Linear Grammars

It remains to show that left-linear and right-linear grammars are equivalent.

This is shown as follows:

- The languages derived by left-linear grammars are L^R for languages derived by right-linear grammars.
- Regular Expressions are closed under the reverse operation, i.e. if L is definable by a regular expression, so is L^R.
- Therefore as well right-linear grammars are closed under the reverse operation, therefore left-linear and right-linear grammars are equivalent.
Right-Linear Languages are the Reverse of Left-Linear Ones

Lemma (II.4.1.5)

1. Let G be a left-linear grammar.
 Then there exist a right-linear grammar G' over the same alphabet s.t. $L(G) = L(G')^R$.
 G' can be computed from G.

2. Let G be a right-linear grammar.
 Then there exist a left-linear grammar G' over the same alphabet s.t. $L(G) = L(G')^R$.
 G' can be computed from G.
Proof of Lemma II.4.1.5

We prove only (1), (2) is analogously.
Let \(G \) be a left-linear grammar with alphabet \(T \), nonterminals \(N \) and start symbol \(S \).
Let \(G' \) be identical to \(G \) but with rules

\[
B \rightarrow aC
\]

\((B, C \in N, a \in T)\) replaced by

\[
B \rightarrow Ca
\]

\(G'\) is right-linear. Further it follows immediately for any \(w \in (N \cup T)^* \) that

\[
S \Rightarrow_G w \text{ iff } S \Rightarrow_{G'} w^R
\]
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.3. Main Theorem

Proof of Lemma II.4.1.5

Therefore

\[L(G') = \{ w \in T^* \mid S \Rightarrow_{G'} w \} \]
\[= \{ w^R \in T^* \mid S \Rightarrow_G w \} \]
\[= \{ w \in T^* \mid S \Rightarrow_G w \}^R \]
\[= L(G)^R \]
Lemma (II.4.1.6)

1. For every regular expression E there exists a regular expression E^R s.t. $L(E^R) = L(E)^R$. E^R can be computed from E.

2. Similarly for every language L definable by a right-linear grammar G there exists a right-linear grammar G^R defining L^R. G^R can be computed from G.
(1) We show the existence of E^R by induction on E:

- For $E = \emptyset$, $E = \epsilon$ or $E = a$, $L(E)^R = L(E)$, so define $E^R := E$.
- For $E = E_1 \mid E_2$ we have define $E^R = E_1^R \mid E_2^R$.
- For $E = E_1 E_2$ define $E^R = E_2^R E_1^R$.
- For $E = E_1^*$ define $E^R = (E_1^R)^*$.

(2) Follows since languages definable by right-linear grammars are exactly the languages definable by regular expressions.
Left-Linear and Right-Linear Grammars are Equivalent

Lemma (II.4.1.7)

Let L be a language over an alphabet T. The following are equivalent:

1. $L = L(G)$ for a left-linear grammar G.
2. $L = L(G)$ for a right-linear grammar G.

The left-linear and right-linear grammars can be computed from each other.
Proof of Lemma II.4.1.7

- Assume $L = L(G)$ for a left-linear grammar G.
 - Then $L^R = L(G')$ for a right-linear grammar G'.
 - Right-linear grammars are closed under $L \mapsto L^R$.
 - Therefore there exists a right-linear grammar G'' s.t.
 \[L(G'') = L(G')^R = (L^R)^R = L. \]

- Assume $L = L(G)$ for a right-linear grammar G.
 - There exists a right-linear grammar G' s.t. $L(G') = L^R$.
 - There exists a left-linear grammar G'' s.t. $L(G'') = L(G')^R$.
 - Now $L(G'') = L(G')^R = (L(G)^R)^R = L(G) = L.$
Proof of Theorem II.4.1.3

By the above.