II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Main Theorem

Theorem II.4.1.1

For every right linear grammar G there exists an NFA A s.t.

$$L(G) = L(A)$$

A can be computed from G.
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.1. Regular Grammars and NFAs (13.5)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Main Theorem

Proof of Theorem II.4.1.1

We show that $L(A) = L(G)$:

- Assume $w = a_1 \cdots a_n \in L(A)$.

Then there exists a sequence of transitions in A

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F$$

or

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F$$

But from this we obtain derivations

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} w$$

or

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \xrightarrow{a_1} A_{n-1} \xrightarrow{a_n} q_F$$

Then there exists a sequence of transitions in A

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F$$

or

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F$$

So $w \in L(G)$.

Proof of Theorem II.4.1.2

Theorem II.4.1.2

Theorem (II.4.1.2)

Let $A = (Q, q_0, F, T, \rightarrow)$ be an NFA.

Then there exist a regular expression E s.t. $L(E) = L(A)$.

E can be computed from A.

CS_275 Sect. II.4.1.2. 7/ 42

II.4.1.1. Regular Grammars and NFAs (13.5)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Main Theorem
Before proving Theorem II.4.1.2 we give an example:
Consider the following automaton for the language \(L = \? \)

We define regular expressions and simplify them at each intermediate step in order to keep them simple.

Let \(L_{q,q'}^\emptyset \) be the set of strings which allows us to get from \(q \) to \(q' \) with intermediate states in \(\emptyset \), i.e. without any intermediate states.
We define a regular expression \(E_{q,q'}^\emptyset \), s.t. \(L(E_{q,q'}^\emptyset) = L_{q,q'}^\emptyset \). We can define

- \(E_{q,q'}^\emptyset := a_1 \mid \cdots \mid a_n \),
 if \(q \neq q' \) and we have transitions \(q \xrightarrow{a_i} q' \),
- \(E_{q,q'}^\emptyset = a_1 \mid \cdots \mid a_n \mid \epsilon \),
 if \(q = q' \) and we have transitions \(q \xrightarrow{a_i} q' \).

Calculation of \(L_{q,q'}^\emptyset \)

Original automaton:

States with \(E_{q,q'}^\emptyset \):

\[
\begin{align*}
E_{q_0,q_0}^\emptyset &= 1 \mid \epsilon \\
E_{q_0,q_1}^\emptyset &= 0 \\
E_{q_1,q_0}^\emptyset &= \emptyset \\
E_{q_1,q_1}^\emptyset &= 0 \mid 1 \mid \epsilon
\end{align*}
\]
From $E_{q,q'}^0$ to $E_{q,q'}^{q_0}$

States with $E_{q,q'}^0$:

Let $L_{q,q'}^{q_0}$ be the set of strings which allows us to get from q to q' with intermediate states in $\{q_0\}$.

We define $E_{q,q'}^{q_0}$ s.t. $L(E_{q,q'}^{q_0}) = L_{q,q'}^{q_0}$:

$$E_{q,q'}^{q_0} = E_{q,q'}^0 \cup (E_{q,q}^0 (E_{q_0,q_0}^0)^* E_{q_0,q'}^0)$$

Calculation of $E_{q,q'}^{q_0}$:

$$E_{q,q'}^{q_0} = E_{q,q'}^0 \cup (E_{q,q}^0 (E_{q_0,q_0}^0)^* E_{q_0,q'}^{q_0})$$

From $E_{q,q'}^{q_0}$ to $E_{q,q'}^{q_0, q_1}$

States with $E_{q,q'}^{q_0}$:

Let $L_{q,q'}^{q_0, q_1}$ be the set of strings which allows us to get from q to q' with intermediate states in $\{q_0, q_1\}$.

We define $E_{q,q'}^{q_0, q_1}$ s.t. $L(E_{q,q'}^{q_0, q_1}) = L_{q,q'}^{q_0, q_1}$:

$$E_{q,q'}^{q_0, q_1} = E_{q,q'}^{q_0} \cup (E_{q,q}^{q_0} (E_{q_1,q_1}^{q_0})^* E_{q_1,q'}^{q_0})$$
II.4.2. Translating NFAs into Regular Expressions

The Language of A: $L(A)$

States with E_{q_0, q_1}:

- $L(E_{q_0, q_1})$ is the set of strings which allows us to get from q_0 to q_1 using any intermediate states.
- The language $L(A)$ is the set of strings which allow us to get from q_0 to any accepting state.
- In the example there is only one accepting state (q_1), so the language accepted by A is the language given by

$$E_{q_0, q_1}^{q_0, q_1} = 1^*0(0 \mid 1)^*$$

From E_{q_0, q_1} to E_{q_0, q_0}

States with E_{q_0, q_0}:

- Let A' be as A, but with additional accepting state q_0, then we get that $L(A')$ is given by

$$E_{q_0, q_1}^{q_0, q_1} \mid E_{q_0, q_0}^{q_0, q_0} = 1^*0(0 \mid 1)^* = (0 \mid 1)^*$$
Proof of Theorem II.4.1.2

Let for states \(q, q' \) of \(A \)

\[
L_{q,q'} := \{ w \in T^* \mid q \xrightarrow{w} q' \}
\]

We construct for states \(q, q' \) of \(A \) a regular expression \(E_{q,q'} \) s.t.

\[
L(E_{q,q'}) = L_{q,q'}
\]

If \(F = \{ q_1, \ldots, q_k \} \) then we obtain

\[
L(A) = L_{q_0,q_1} \mid \cdots \mid L_{q_{k-1},q_k} = L(E_{q_0,q_1} \mid E_{q_0,q_2} \mid \cdots \mid E_{q_0,q_k})
\]

(If \(F \) is empty, then \(L(A) = L(\emptyset) \)).

Base case \(k = 0 \):

Let \(a_1, \ldots, a_k \) be the \(a_i \) s.t. \(q \xrightarrow{a_i} q' \). Then

\[
E_{q,q'}^\emptyset := \begin{cases} a_1 \mid \cdots \mid a_k & \text{if } q \neq q' \\ a_1 \mid \cdots \mid a_k \mid \epsilon & \text{if } q = q' \end{cases}
\]

(in case of \(k = 0 \) we have \(E_{q,q'}^\emptyset = \emptyset \) or \(= \epsilon \)).

Proof of Theorem II.4.1.2

We define regular expressions \(E_{q,q'} \) in stages by referring to \(E_{q_1,\cdots,q_i} \), s.t.

\[
L(E_{q_1,\cdots,q_i}) = L_{q_1,\cdots,q_i} := \{ a_1 \cdots a_k \in T^* \mid \exists p_i \in \{ q_1, \ldots, q_i \}. q \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \cdots \xrightarrow{a_{k-1}} p_{k-1} \xrightarrow{a_k} q' \}
\]

So \(L_{q_1,\cdots,q_i} \) is the set of words which allow us to get from \(q \) to \(q' \) by using as intermediate states \(q_1, \ldots, q_i \) only.

We define \(E_{q,q'}^{q_1,\cdots,q_k} \) by induction on \(k \).

Then we can define \(E_{q,q'} := E_{q,q'}^Q \).
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

Proof of Theorem II.4.1.2

So we have

\[q \xrightarrow{v} q_k \xrightarrow{w_1} q_k \xrightarrow{w_2} q_k \xrightarrow{\cdots} q_k \xrightarrow{w_j} q' \]

where \(j = 0 \) is possible, all intermediate transitions avoid \(q_k \) and \(w = vw_1 w_2 \cdots w_k v' \).

II.4.1.3. Main Theorem

In the second part we have

\(v \in L_{q,q}^{q_1,\cdots,q_k-1} \)
\(w_i \in L_{q_i,q_i}^{q_1,\cdots,q_k-1} \)
\(v' \in L_{q_k,q_k}^{q_1,\cdots,q_k-1} \)

Therefore \(w = vw_1 \cdots w_k v' \in L_{q,q}^{q_1,\cdots,q_k-1}(L_{q_1,q_k}^{q_1,\cdots,q_k-1})^*L_{q_k,q_k}^{q_1,\cdots,q_k-1} \).

Therefore

\[L_{q,q'}^{q_1,\cdots,q_k-1} \supseteq L_{q,q'}^{q_1,\cdots,q_k-1} \]
Theorem II.4.1.3

Theorem (II.4.1.3)

Let L be a language over an alphabet T. The following are equivalent:

1. L is definable by a regular expression.
2. L is a regular.
3. L is definable by a right-linear grammar.
4. L is definable by a left-linear grammar.
5. L is definable by an NFA with empty moves.
6. L is definable by an NFA.
7. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars, left-linear grammars, NFAs with empty moves, NFAs, DFAs can be computed from each other.

Proof of Theorem II.4.1.3

We are going to show that

- languages definable by regular expressions,
- languages definable by regular grammars,
- languages definable by NFAs with empty moves,
- languages definable by NFAs,
- languages definable by DFAs

all define the same language.

We already have everything in order to show the above with regular grammars restricted to right-linear grammars.

Lemma II.4.1.4

Lemma (II.4.1.4)

Let L be a language over an alphabet T. The following is equivalent:

1. L is definable by a regular expression.
2. L is definable by a right-linear grammar.
3. L is definable by an NFA with empty moves.
4. L is definable by an NFA.
5. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars, left-linear grammars, NFAs with empty moves, NFAs, DFAs can be computed from each other.

Proof of Lemma II.4.1.4

- $(1) \rightarrow (2)$ was shown in II.2.2.2.
 - (Finite languages are definable regular grammars. Languages definable by regular grammars are closed under the operations for forming regular expressions).
- $(2) \rightarrow (4)$ was shown in Theorem II.4.1.1
 - Right-linear grammars can be simulated by an NFA.
- $(4) \rightarrow (1)$ was shown in Theorem II.4.1.2
 - We can determine the language between states of an NFA as a regular expression.
- So $(1), (2), (4)$ are equivalent.
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.3. Main Theorem

Proof of Lemma II.4.1.4

- (3) → (4) was shown in Theorem II.3.4.1.
 - We can omit the empty moves in NFAs with empty moves.
- (4) → (5) was shown in Theorem II.3.5.1.
 - NFAs can be translated into DFAs using as states sets of states.
 - (5) → (4) → (3) are trivial.
 - DFAs are special cases of NFAs.
 - NFAs are special cases of NFAs with empty moves.
 - So (3), (4), (5) are equivalent.
 - So (1), (2), (3), (4), (5) are equivalent.

Equivalence of Left-Linear and Right-Linear Grammars

- It remains to show that left-linear and right-linear grammars are equivalent.
- This is shown as follows:
 - The languages derived by left-linear grammars are L^R for languages derived by right-linear grammars.
 - Regular Expressions are closed under the reverse operation, i.e. if L is definable by a regular expression, so is L^R.
 - Therefore as well right-linear grammars are closed under the reverse operation, therefore left-linear and right-linear grammars are equivalent.

Proof of Lemma II.4.1.5

We prove only (1), (2) is analogously.
Let G be a left-linear grammar with alphabet T, nonterminals N and start symbol S.
Let G' be identical to G but with rules

$$ B \rightarrow aC $$

$(B, C \in N, a \in T)$ replaced by

$$ B \rightarrow Ca $$

G' is right-linear. Further it follows immediately for any $w \in (N \cup T)^*$ that

$$ S \Rightarrow_G w \quad \text{iff} \quad S \Rightarrow_{G'} w^R $$

Right-Linear Languages are the Reverse of Left-Linear Ones

Lemma (II.4.1.5)

1. Let G be a left-linear grammar.
 Then there exist a right-linear grammar G' over the same alphabet
 s.t. $L(G) = L(G'^R)$.
 G' can be computed from G.

2. Let G be a right-linear grammar.
 Then there exist a left-linear grammar G' over the same alphabet
 s.t. $L(G) = L(G'^R)$.
 G' can be computed from G.
II.4.1. Equivalence Theorem for Regular Languages

II.4.1.3. Main Theorem

Proof of Lemma II.4.1.5

Therefore

\[L(G') = \{ w \in T^* \mid S \Rightarrow_G' w \} = \{ w^R \in T^* \mid S \Rightarrow_G w \} = \{ w \in T^* \mid S \Rightarrow_G w^R \} = L(G)^R \]

Lemma (II.4.1.6)

1. For every regular expression \(E \) there exists a regular expression \(E^R \) s.t. \(L(E^R) = L(E)^R \).
 \(E^R \) can be computed from \(E \).

2. Similarly for every language \(L \) definable by a right-linear grammar \(G \) there exists a right-linear grammar \(G^R \) defining \(L^R \).
 \(G^R \) can be computed from \(G \).

Proof of Lemma II.4.1.6

(1) We show the existence of \(E^R \) by induction on \(E \):
 - For \(E = \emptyset \), \(E = \epsilon \) or \(E = a \) \(L(E)^R = L(E) \), so define \(E^R := E \).
 - For \(E = E_1 \mid E_2 \) we have define \(E^R = E_1^R \mid E_2^R \).
 - For \(E = E_1 E_2 \) define \(E^R = E_2^R E_1^R \).
 - For \(E = E_1^* \) define \(E^R = (E_1^R)^* \).

(2) Follows since languages definable by right-linear grammars are exactly the languages definable by regular expressions.
Proof of Lemma II.4.1.7

- Assume $L = L(G)$ for a left-linear grammar G.
 - Then $L^R = L(G')$ for a right-linear grammar G'.
 - Right-linear grammars are closed under $L \mapsto L^R$.
 - Therefore there exists a right-linear grammar G'' s.t.
 $L(G'') = (L(G'))^R = (L^R)^R = L$.

- Assume $L = L(G)$ for a right-linear grammar G.
 - There exists a right-linear grammar G' s.t. $L(G') = L^R$.
 - There exists a left-linear grammar G'' s.t. $L(G'') = L(G')^R$.
 - Now $L(G'') = L(G')^R = (L(G)^R)^R = L(G)^R = L$.

By the above.