
CS 275 Automata and Formal Language Theory
Course Notes

Part II: The Recognition Problem (II)
Chapter II.4.: Properties of Regular Languages (13)

Anton Setzer
(Based on a book draft by J. V. Tucker and K. Stephenson)

Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/∼csetzer/lectures/
automataFormalLanguage/current/index.html

April 19, 2018

CS 275 Chapter II.4. 1/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Chapter II.4. 2/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Sect. II.4.1. 3/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Theorem II.4.1.1

We will show that regular expressions coincide with regular languages and
with languages recognised by a DFA or NFA.
Here we prove one part of this result:

Theorem (II.4.1.1)

For every right linear grammar G there exists an NFA A s.t.

L(G) = L(A)

A can be computed from G .

CS 275 Sect. II.4.1. 4/ 48

http://www.cs.swan.ac.uk/~csetzer/lectures/automataFormalLanguage/current/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/automataFormalLanguage/current/index.html

II.4.1. Right Linear Grammars vs NFAs (13.7)

Proof Idea

I A derivation of a word in G has the form

S = A0 ⇒ a1A1 ⇒ a1a2A2 ⇒ · · ·⇒ a1a2 · · · an−1An−1
⇒ a1a2 · · · an−1an

where we have productions

Ai −→ ai+1Ai+1 An−1 −→ an

or
S = A0 ⇒ a1A1 ⇒ a1a2A2 ⇒ · · ·⇒ a1a2 · · · an−1An−1

⇒ a1a2 · · · an−1
where we have productions

Ai −→ ai+1Ai+1 An−1 −→ ε

CS 275 Sect. II.4.1. 5/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Proof Idea

Define A with states N ∪ {qF} for a special new accepting state qF s.t.
the derivation

S = A0 ⇒ a1A1 ⇒ a1a2A2 ⇒ · · ·⇒ a1a2 · · · an−1An−1
⇒ a1a2 · · · an−1an

corresponds to a sequence of transitions

S = A0
a1−→ A1

a2−→ A2
a3−→ · · · an−1−→ An−1

an−→ qF

and a derivation

S = A0 ⇒ a1A1 ⇒ a1a2A2 ⇒ · · ·⇒ a1a2 · · · an−1An−1
⇒ a1a2 · · · an−1

corresponds to a sequence of transitions

S = A0
a1−→ A1

a2−→ A2
a3−→ · · · an−1−→ An−1 ∈ F

CS 275 Sect. II.4.1. 6/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Proof Idea

So we have:

I If B −→ aB ′, then B
a−→ B ′.

I If B −→ a then B
a−→ qF .

I qF ∈ F .

I If B −→ ε, then B ∈ F .

CS 275 Sect. II.4.1. 7/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Constructed NFA

We obtain from G = (N,T , S ,P) the following NFA:

automaton A

states N ∪ {qF}

terminals T

start S

final B ∈ N s.t. B −→ ε.
qF

transitions B
a−→ B ′ if B −→ aB ′.

B
a−→ qF if B −→ a.

CS 275 Sect. II.4.1. 8/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Proof of Theorem II.4.1.1

Can be found in the additional material.

CS 275 Sect. II.4.1. 9/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Example

Consider the Grammar:

grammar G

terminals 0, 1

nonterminals S , T

start symbol S

productions S −→ 0, S −→ 1T ,
T −→ 0T , T −→ 1T ,
T −→ ε, T −→ 0, T −→ 1

CS 275 Sect. II.4.1. 10/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Corresponding Automaton

(Note that it is non-deterministic).

S

T

qF

0,1

0,1
1

0

CS 275 Sect. II.4.1. 11/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Corresponding Automaton

With corresponding rules:

S

T

qF

0,1

0,1
1

0

S −→ 0

S −→ 1T

T −→ 1T

T −→ 0

T −→ 1

Accepting state because of
T −→ ε

T −→ 0T

CS 275 Sect. II.4.1. 12/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Computing from NFA a Right Linear Grammar

I One can as well easily compute from an NFA an equivalent right
linear grammar by inverting the above procedure:

I Non-terminals are the set of states of the NFA.
I Productions are

q −→ aq′ if q
a−→ q′

and
q −→ ε if q final state

I Start symbol = start state of the NFA.

CS 275 Sect. II.4.1. 13/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Right Linear Grammar obtained from NFA

Assume an NFA A with states Q, terminals T , start state q0, final states
F , transitions −→.
The following is an equivalent NFA:

grammar A′

terminals T

nonterminals Q

start symbol q0

productions q −→ aq′ if q
a−→ q′

q −→ ε if q ∈ F

CS 275 Sect. II.4.1. 14/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Example: Consider the following Automaton

0, 1 , . . ., 9

1, 2, . . ., 9

q0 q1

q2

0

CS 275 Sect. II.4.1. 15/ 48

II.4.1. Right Linear Grammars vs NFAs (13.7)

Right Linear Grammar obtained from the NFA

grammar GNumbersNoLeadingZeros

terminals 0, 1, . . . , 9

nonterminals q0, q1, q2

start symbol q0

productions q0 −→ xq1 for x ∈ {1, . . . , 9}
q1 −→ xq1 for x ∈ {0, . . . , 9}
q0 −→ 0q2
q1 −→ ε
q2 −→ ε

CS 275 Sect. II.4.1. 16/ 48

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Sect. II.4.1.2. 17/ 48

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

Theorem II.4.1.2

Theorem (II.4.1.2)

Let A = (Q, q0,F ,T ,−→) be an NFA.
Then there exist a regular expression E s.t. L(E) = L(A).
E can be computed from A.

CS 275 Sect. II.4.1.2. 18/ 48

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

Proof Idea of Theorem II.4.1.2

I Let for q, q′ ∈ Q and Q ′ ⊆ Q ′

LQ′

q,q′ := the words which allow you to get from q
to q′ while having as intermediate states
states in Q ′ only

I Now you define regular expressions for LQ′

q,q′ by starting with Q ′ = ∅
and than systematically adding states to Q ′ until you have obtained
Q ′ = Q.

I The case Q ′ = ∅ is as follows:

L∅q,q′ =

{
{t | t ∈ T , q

t−→ q′} if q 6= q′

{ε} ∪ {t | t ∈ T , q
t−→ q′} if q = q′

which is a finite set which can therefore be expressed as a regular
expression.
Note that you cannot use q, q′ as intermediate states in this case, we
have to go in at most one step from q to q′.

CS 275 Sect. II.4.1.2. 19/ 48

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

Proof Idea of Theorem II.4.1.2

I If you have define LQ′

q,q′ and Q ′′ is obtained by adding to Q ′ one more

state q′′, then LQ′′

q,q′ is the language obtained by

I either going from q to q′ by using states in Q ′′ only
I of by going from q to q′′, then arbitrary many times from q′′ to itself,

and then from q′′ to q′, always using states in Q ′′ only.

So
LQ′′

q,q′ = LQ′

q,q′ ∪ (LQ′

q,q′′ .(L
Q′

q′′,q′′)
∗.LQ′

q′′,q′)

So from regular expressions for LQ′

q,q′ for all q, q′ we obtain regular

expressions for LQ′′

q,q′ for all q, q′.

CS 275 Sect. II.4.1.2. 20/ 48

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

Proof Idea of Theorem II.4.1.2

I Now the language of the automaton with initial state q0 and final
state F is ⋃

q′∈F
LQ
q0,q′

which again can be expressed by a regular expression.

I More details can be found together with an example in the additional
material.

I A nice exposition can be found in Sect. 3.2.1. of
[HMU07] John Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman:
Introduction to automata theory, languages, and computation,
Addison Wesley, 3rd Ed, 2006.

CS 275 Sect. II.4.1.2. 21/ 48

II.4.1.3. Equivalence Theorem

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Sect. II.4.1.3. 22/ 48

II.4.1.3. Equivalence Theorem

Notations wR, LR

I If w is a word, wR is the result of reversing the word.
For instance, if w = abc, then wR = cba.

I If L is a language,
LR := {wR | w ∈ L}

For instance if
L = {abc, def , ghi}

then
LR = {cba, fed , ihg}

CS 275 Sect. II.4.1.3. 23/ 48

II.4.1.3. Equivalence Theorem

Theorem II.4.1.3

Theorem (II.4.1.3)

Let L be a language over an alphabet T . The following are equivalent:

1. L is definable by a regular expression.

2. L is definable by a right-linear grammar.

3. L is definable by a left-linear grammar.

4. L is definable by an NFA with empty moves

5. L is definable by an NFA.

6. L is definable by a DFA.

Furthermore, the corresponding regular expressions, right linear grammars,
left-linear grammars, NFAs with empty moves, NFAs, DFAs can be
computed from each other.

CS 275 Sect. II.4.1.3. 24/ 48

II.4.1.3. Equivalence Theorem

Proof of Theorem II.4.1.3

I The following directions have been introduced or at least sketched
above:

I Translations between DFA, NFA, NFA with empty moves.
I Translation between NFA and right linear grammars
I Translation of regular expressions into left/right linear grammars.
I Translation of NFA and therefore as well right linear grammars into

regular expressions.

I What is more complicated is
Translation between left linear and right linear grammars.

I A regular expression for L can easily be translated into a regular
expression for LR.

I If we reverse the right hand sides of productions we obtain from a right
linear grammar for L a left linear grammar for LR and from a left linear
grammar for L a right linear grammar for LR.

CS 275 Sect. II.4.1.3. 25/ 48

II.4.1.3. Equivalence Theorem

Proof of Theorem II.4.1.3

I Now
I from a left linear grammar for L we obtain
I a right linear grammar for LR;
I then a regular expression for LR;
I then a regular expression for L;
I then a right linear grammar for L.

I In the other direction
I from a right linear grammar for L we obtain
I a regular expression for L;
I then a regular expression for LR;
I then a right linear grammar for LR;
I then a left linear grammar for L.

I Together the above translations provide a proof of Theorem II.4.1.3.

I Full details can be found in the additional material.

CS 275 Sect. II.4.1.3. 26/ 48

II.4.1.3. Equivalence Theorem

Alternative of getting from L to LR

I Alternatively, one can easily obtain from an NFA for a language L an
NFA with empty moves for the language LR:

I Reverse all the transitions in the automaton.
I Add a new start state q New and ε transitions to each of the previous

accepting states.
I Replace the accepting states by making the old start state the only new

accepting state.

I This way we can now translate a
I a right linear grammar for L into an NFA for L
I into an NFA with empty moves for LR

I into an NFA for LR

I into a right linear grammar for LR

I into a left linear grammar for L.

I Similarly we get from a left linear grammar for L to a right linear
grammar for L.

CS 275 Sect. II.4.1.3. 27/ 48

II.4.1.3. Equivalence Theorem

Example Converting NFA for L into one for LR

Consider example we had before:

q0

q3

o

q4 q5

r t

p

s q1

t

q2

a

t

s
q6 q7 q8 q9

Language accepted was L = {start, stop}.

CS 275 Sect. II.4.1.3. 28/ 48

II.4.1.3. Equivalence Theorem

Example Converting NFA for L into one for LR

Result of reverting the arrows:

q0

q3

o

q4 q5

r t

p

q1

t

q2

a

t
q6 q7 q8 q9

s

s

ε

ε

qNew

Language accepted is LR = {trats,pots}.

CS 275 Sect. II.4.1.3. 29/ 48

II.4.1.3. Equivalence Theorem

Directions in Equivalence Theorem

DFA

trivial

trivial

II.2.2.2.

II.4.1.2.

NFA Regular Exp

II.3.5.1.

II.3.4.1.

empty moves
NFA with

II.4.1.1.

II.2.2.2.

side of transitions
Translate from to

under reversing.

Reg. Exp.
Reg Exp. closed

Reverse right
Right Linear

Left Linear

CS 275 Sect. II.4.1.3. 30/ 48

(II.4.2. Closure Properties/Decidability of Regular Languages

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Sect. II.4.2. 31/ 48

(II.4.2. Closure Properties/Decidability of Regular Languages

Closure Properties

Theorem (II.4.4.1.)

If L, L′ are regular languages over alphabet T , so are

1. the complement Lc of L,
I (here Lc := {w ∈ T ∗ | w 6∈ L}),

2. the intersection L ∩ L′ of L and L′

3. the union L ∪ L′ of L and L′

4. the relative complement L \ L′ of L and L′

I (here L \ L′ := {w ∈ L | w 6∈ L}),

5. the reverse LR of L
I (here LR := {wR | w ∈ L}, where wR is the result of reverting w).

Furthermore, regular expressions, regular grammars, NFAs and DFAs for
Lc , L ∩ L′, L ∪ L′, L \ L′, LR can be computed from those for L and L′.

CS 275 Sect. II.4.2. 32/ 48

(II.4.2. Closure Properties/Decidability of Regular Languages

Proof Idea for Theorem II.4.4.1.

I We will use that languages defined by regular expressions, DFAs,
NFAs, and regular grammars are equivalent, and that corresponding
automata, regular expressions and grammars can be computed from
each other.

I From a DFA for L one can easily define a DFA for Lc .

I One see that that from NFAs for L and L′ one can obtain a NFA for
L ∩ L′ which essentially executes both NFAs in parallel.

I One can see that from an NFA for L and L′ one can obtain an NFA
with empty moves for L ∪ L′.

I L \ L′ = L ∩ (L′)c .

I From a regular expression for L one can easily obtain a regular
expression for LR . (See additional material, Lemma II.4.3.4).

I Therefore the assertion follows.

I Full details can be found in the additional material.

CS 275 Sect. II.4.2. 33/ 48

(II.4.2. Closure Properties/Decidability of Regular Languages

Decision Problems

Theorem (II.4.4.3.)

I We can decide for regular languages whether L = ∅.
I We can decide for regular languages L and L′ whether L ⊆ L′.

I We can decide for regular languages L and L′ whether L = L′.

CS 275 Sect. II.4.2. 34/ 48

(II.4.2. Closure Properties/Decidability of Regular Languages

Proof of Theorem II.4.4.3.

I Again we use the equivalence of languages defined by regular
expressions, DFAs, NFAs, and regular grammars, and that
corresponding automata, regular expressions and grammars can be
computed from each other.

I L = ∅ can be decided easily for languages defined by regular
expressions.

I For NFA it can be decided as well directly by checking whether any
accepting state can be reached from the start state.

I L ⊆ L′ ⇔ L \ L′ = ∅.
I L = L′ ⇔ (L ⊆ L′ ∧ L′ ⊆ L).

CS 275 Sect. II.4.2. 35/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

II.4.1. Right Linear Grammars vs NFAs (13.7)

II.4.1.2. Translating NFAs into Regular Expressions (13.10)

II.4.1.3. Equivalence Theorem

II.4.2. Closure Properties and Decidability of Regular Languages

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

CS 275 Sect. II.4.3. 36/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Motivation

I We want to show that there are languages which are context-free but
not regular.

I In order to do this we prove the pumping lemma, which uses the fact
that an NFA has only finitely many states.
(We could use as well the fact that a regular grammar has only
finitely many nonterminals).

I Note The following slides contain some coloured parts. The colours
are indistinguishable in the black and white handouts. It is
recommended to look at them using the online version.

CS 275 Sect. II.4.3. 37/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Using the Finiteness of an NFA

Consider an NFA

q0 q1 q2 q3 q4

a b a

b

a

b

This NFA has 5 states.
Any accepting run of the NFA for a word of length ≥ 5 uses at least 6
states.
Therefore it must visit one state at least twice.
So there must be a loop within the first 5 letters of such a word.

CS 275 Sect. II.4.3. 38/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Using the Finiteness of an NFA

Here is the accepting run for the word z = ababa = uvw using colours
blue, red and green.

q0 q1 q2 q3 q4b

a b a

b

a

I The blue part is the part before we reached a state visited twice,
corresponding to the word u = a.

I The red part is the part from the state visited twice until we reach it
again, corresponding to the word v = bab.

I The green part is the remaining part, corresponding to the word
w = a.

I The loop must occur within the first 5 letters, so |uv | ≤ 5. Because v
is along a loop, v 6= ε.

CS 275 Sect. II.4.3. 39/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Using the Finiteness of an NFA

q0 q1 q2 q3 q4b

a b a

b

a

I If we repeat the loop several times, we obtain as well an accepting
run of the automaton.

I If we start with u = a, then repeat the loop following the word v = bab
i times, then the follow the word w = a, we obtain an accepting run.

I It accepts the word a(bab)ia.
I E.g. in case i = 2 the word is ababbaba.
I In case i = 0 the word is aa.

I In general we get that the word uv iw is an element of the language as
well.

CS 275 Sect. II.4.3. 40/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Generalisation

Assume an NFA A having k states.
Then for every word x ∈ L(A) s.t. |x | ≥ k there exist words u, v ,w s.t.

x = uvw , |uv | ≤ k , v 6= ε

and s.t.
uv iw ∈ L(A) for all i ∈ N

This follows by the above considerations.

So we have proved the following theorem:

CS 275 Sect. II.4.3. 41/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Pumping Lemma for Regular Languages

Theorem (Pumping Lemma for Regular Languages)

Let L be a regular language.
Then there exist a fixed number k depending on L only s.t. we have the
following:

I If x ∈ L is a word, |x | ≥ k, then there exist words u, v ,w s.t.

x = uvw , |uv | ≤ k , v 6= ε

and s.t.
uv iw ∈ L(A) for all i ∈ N

CS 275 Sect. II.4.3. 42/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Remark

I In most proofs one uses the pumping lemma for the following values
of i :

I i = 2, i.e. that uvvw ∈ L(A).
I i = 0, i.e. that uw ∈ L(A).

I Usually the pumping lemma is used in order to prove that a language
L is not regular:

I One assumes it were regular
I Then there exists some k as in the pumping lemma.
I One chooses a specific word x ∈ L s.t. |x | ≥ k.
I One knows that x = uvw for some u, v ,w with the conditions as in

the pumping lemma.
I One shows that for some value of i it is not the case that uv iw ∈ L.
I Therefore one gets a contradiction to the pumping lemma.

CS 275 Sect. II.4.3. 43/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Example 1

Lemma

The language L := {aibi | i ≥ 1} is context-free but not regular.

CS 275 Sect. II.4.3. 44/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Proof (Example 1)

I We have already seen that L is context-free.

I Start symbol S
I Productions S −→ aSb, S −→ ab.

I Assume L is regular.

I Let k be as in the pumping lemma.

I Consider x := akbk ∈ L.

I |x | ≥ k , so there exist u, v ,w s.t.
x = uvw , |uv | ≤ k, v 6= ε,
and s.t.
uv iw ∈ L for all i ∈ N.

I Since |uv | ≤ k , u and v are substrings of ak .

CS 275 Sect. II.4.3. 45/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Proof (Example 1, Cont.)

I akbk = uvw , so we have
akbk = a · · · a︸ ︷︷ ︸

i

a · · · a︸ ︷︷ ︸
l

a · · · a︸ ︷︷ ︸
k−(i+l)

b · · · b︸ ︷︷ ︸
k

.

I u = ai , w = al , w = ak−(i+l)bk , where l = |v | > 0.

I Therefore uv2w = aialalak−(i+l)bk = ak+lbk .

I But ak+lbk 6∈ L, a contradiction.

CS 275 Sect. II.4.3. 46/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Example 2

Lemma

The language L := {xxR | x ∈ {a, b}∗} is context-free but not regular.

CS 275 Sect. II.4.3. 47/ 48

II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

Proof (Example 2)

I We have already seen that L is context-free.
I Start symbol S
I Productions S −→ aSa, S −→ bSb, S −→ ε.

I Assume L is regular.

I Let k be as in the pumping lemma.

I Consider x := akbbak ∈ L.

I |x | ≥ k , so there exist u, v ,w s.t.
x = uvw , |uv | ≤ k, v 6= ε,
and s.t.
uv iw ∈ L for all i ∈ N.

I Since |uv | ≤ k , u and v are substrings of ak .

I Therefore uv2w = ak+lbbak where l = |v | ≥ 1.

I But ak+lbbak 6∈ L, a contradiction.

CS 275 Sect. II.4.3. 48/ 48

	II.4.1. Right Linear Grammars vs NFAs (13.7)
	II.4.1.2. Translating NFAs into Regular Expressions (13.10)
	II.4.1.3. Equivalence Theorem
	II.4.2. Closure Properties and Decidability of Regular Languages
	II.4.3. The Pumping Lemma for Regular Languages (12.4, 12.5)

