5. The Primitive Recursive Functions

- URM and TM based on universal programming languages.
- In this and the next section we introduce a third model of computation.
- It is given as a set of partial functions
 - basic functions
 - by using certain operations.
- First proposed by Gödel and Kleene 1936.
- Best model for showing that functions are computable.
- In this section we introduce the primitive-recursive functions, which form a subset of the partial-recursive functions.
Overview

(a) Introduction of **primitive recursive functions**.
 - Will be total.
 - Includes all functions which can be computed realistically, and many more.
 - But not all computable functions are primitive recursive.

(b) Closure Properties of the **primitive rec. functions**
 - We will show that the set of primitive recursive functions is a reach set of functions, closed under many operations.
Inductive definition of the **primitive recursive** functions \(f : \mathbb{N}^k \rightarrow \mathbb{N} \).

The following **basic Functions** are primitive recursive:

- zero : \(\mathbb{N} \rightarrow \mathbb{N} \),
- succ : \(\mathbb{N} \rightarrow \mathbb{N} \),
- \(\text{proj}^k_i : \mathbb{N}^k \rightarrow \mathbb{N} \) \((0 \leq i < k)\).

Remember that these functions have defining equations

- \(\text{zero}(n) = 0 \),
- \(\text{succ}(n) = n + 1 \),
- \(\text{proj}^k_i (a_0, \ldots, a_{k-1}) = a_i \).
If

\[f : \mathbb{N}^k \rightarrow \mathbb{N} \] is primitive recursive,

\[g_i : \mathbb{N}^n \rightarrow \mathbb{N} \] are primitive recursive, \((i = 0, \ldots, k - 1)\),

so is

\[f \circ (g_0, \ldots, g_{k-1}) : \mathbb{N}^n \rightarrow \mathbb{N} \, . \]

Remember that \(h := f \circ (g_0, \ldots, g_{k-1}) \) is defined as

\[h(\vec{x}) = f(g_0(\vec{x}), \ldots, g_{k-1}(\vec{x})) \, . \]

Especially, if \(f : \mathbb{N} \rightarrow \mathbb{N} \) and \(g : \mathbb{N} \rightarrow \mathbb{N} \) are primitive recursive, so is

\[f \circ g : \mathbb{N} \rightarrow \mathbb{N} \, . \]
If
\[g : \mathbb{N}^n \rightarrow \mathbb{N}, \]
\[h : \mathbb{N}^{n+2} \rightarrow \mathbb{N} \] are primitive recursive, so is the function \(f : \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) defined by primitive recursion from \(g, h \).

Remember that \(f \) is defined by
\[f(\vec{x}, 0) = g(\vec{x}), \]
\[f(\vec{x}, n + 1) = h(\vec{x}, n, f(\vec{x}, n)). \]

\(f \) is denoted by \(\text{primrec}(g, h) \).
If
- \(k \in \mathbb{N} \),
- \(h : \mathbb{N}^2 \rightarrow \mathbb{N} \) is primitive recursive,

so is the function \(f : \mathbb{N} \rightarrow \mathbb{N} \), defined by primitive recursion from \(k \) and \(h \).

Remember that \(f := \text{primrec}(k, h) \) is defined by
- \(f(0) = k \),
- \(f(n + 1) = h(n, f(n)) \).

\(f \) is denoted by \(\text{primrec}(k, h) \).
A relation $R \subseteq \mathbb{N}^n$ is **primitive recursive**, if

$$\chi_R : \mathbb{N}^n \to \mathbb{N}$$

is primitive recursive.

Note that we identified a set $A \subseteq \mathbb{N}^n$ with the relation $R \subseteq \mathbb{N}^n$ given by

$$R(\bar{x}) :\iff \bar{x} \in A$$

Therefore a set $A \subseteq \mathbb{N}^n$ is primitive recursive if the corresponding relation R is.
Inductively Defined Sets

That the set of primitive recursive functions is inductively defined means:

- It is the least set
 - containing basic functions
 - and closed under the operations.
- Or: It is the set generated by the above.
- Or: The primitive recursive functions are those we can write as terms formed
 - from zero, succ, proj\textsubscript{i}n,
 - using composition \(_ \circ (_, \ldots, _) \)
 - i.e. by forming from \(f, g_i \ f \circ (g_0, \ldots, g_{n-1}) \)
 - and primrec.
Inductively Defined Sets

E.g.

\[\text{primrec} \left(\begin{array}{l}
\text{proj}_0^1, \text{succ} \circ \text{proj}_2^3 \\
\end{array} \right) : \mathbb{N}^2 \rightarrow \mathbb{N} \text{ is prim. rec.} \]

\[\text{primrec} \left(\begin{array}{l}
0, \text{proj}_0^2 \\
\in \mathbb{N} \\
\end{array} \right) : \mathbb{N} \rightarrow \mathbb{N} \text{ is prim. rec.} \]

(= addition)

(= pred)
Remark

Unless demanded explicitly, for showing that f is defined by the principle of primitive recursion (i.e. by `primrec`), it suffices to express:

- $f(\vec{x}, 0)$ as an expression built from
 - previously defined prim. rec. functions,
 - \vec{x},
 - and constants.

Example:

$$f(x_0, x_1, 0) = (x_0 + x_1) \cdot 3$$

(Assuming that $+, \cdot$ have already been shown to be primitive recursive).
Remark

- $f(\vec{x}, y + 1)$ as an expression built from
 - previously defined prim. rec. functions,
 - \vec{x},
 - the **recursion argument** y,
 - the **recursion hypothesis** $f(\vec{x}, y)$,
 - and constants.

Example:

$$f(x_0, x_1, y + 1) = (x_0 + x_1 + y + f(x_0, x_1, y)) \cdot 3 .$$

(Assuming that $\ + , \cdot$ have already been shown to be primitive recursive).
Remark

Similarly, for showing \(f \) is prim. rec. by using previously defined functions using composition, it suffices to express \(f(\vec{x}) \) in terms of

- previously defined prim. rec. functions,
- parameters \(\vec{x} \)
- constants.

Example:

\[
f(x, y, z) = (x + y) \cdot 3 + z.
\]

(Assuming that \(+, \cdot\) have already been shown to be primitive recursive).

When looking at the first examples, we will express primitive recursive functions directly by using the basic functions, \(\text{primrec} \) and \(\circ \).
Identity Function

\[\text{id} : \mathbb{N} \rightarrow \mathbb{N}, \text{id}(n) = n \text{ is primitive recursive:} \]

\[\text{id} = \text{proj}^1_0: \]

\[\text{proj}^1_0 : \mathbb{N}^1 \rightarrow \mathbb{N}, \]

\[\text{proj}^1_0(n) = n = \text{id}(n). \]
Constant Function

\[\text{const}_n : \mathbb{N} \to \mathbb{N}, \text{const}_n(k) = n \] is primitive recursive:

\[\text{const}_n = \text{succ} \circ \cdots \circ \text{succ} \circ \text{zero}: \]

\[n \text{ times} \]

\[\text{succ} \circ \cdots \circ \text{succ} \circ \text{zero}(k) = \text{succ}(\text{succ}(\cdots \text{succ}(\text{zero}(k)))) \]

\[n \text{ times} \]

\[= \text{succ}(\text{succ}(\cdots \text{succ}(0))) \]

\[n \text{ times} \]

\[= 0 + 1 + 1 \cdots + 1 \]

\[n \text{ times} \]

\[= n \]

\[= \text{const}_n(k). \]
Addition

add : \mathbb{N}^2 \rightarrow \mathbb{N}, \text{add}(x, y) = x + y
is primitive recursive.
We have the laws:

\[
\begin{align*}
\text{add}(x, 0) &= x + 0 \\
&= x \\
\text{add}(x, y + 1) &= x + (y + 1) \\
&= (x + y) + 1 \\
&= \text{add}(x, y) + 1
\end{align*}
\]
Addition

\[
\begin{align*}
\text{add}(x, 0) & = x + 0, \\
\text{add}(x, y + 1) & = \text{add}(x, y) + 1.
\end{align*}
\]

\[\text{add}(x, 0) = g(x),\]

where

\(g : \mathbb{N} \to \mathbb{N}, \, g(x) = x,\)

i.e. \(g = \text{id} = \text{proj}_0^1.\)
Addition

\[\text{add}(x, 0) = x + 0 = g(x), \]
\[\text{add}(x, y + 1) = \text{add}(x, y) + 1. \]

\[\text{add}(x, y + 1) = h(x, y, \text{add}(x, y)), \]
where
\[h : \mathbb{N}^3 \to \mathbb{N}, h(x, y, z) := z + 1. \]
\[h = \text{succ} \circ \text{proj}_0^3: \]
\[(\text{succ} \circ \text{proj}_2^3)(x, y, z) = \text{succ}(\text{proj}_2^3(x, y, z)) \]
\[= \text{succ}(z) \]
\[= z + 1 \]
\[= h(x, y, z). \]
Addition

\[
\begin{align*}
\text{add}(x, 0) &= x + 0 = g(x), \\
\text{add}(x, y + 1) &= \text{add}(x, y) + 1 = h(x, y, \text{add}(x, y)), \\
g &= \text{proj}^1_0, \\
h &= \text{succ} \circ \text{proj}^3_2.
\end{align*}
\]

Therefore

\[
\text{add} = \text{primrec}(\text{proj}^1_0, \text{succ} \circ \text{proj}^3_2).
\]
Multiplication

\[\text{mult} : \mathbb{N}^2 \rightarrow \mathbb{N}, \text{mult}(x, y) = x \cdot y \]
is primitive recursive.
We have the laws:

\[
\begin{align*}
\text{mult}(x, 0) &= x \cdot 0 = 0 \\
\text{mult}(x, y + 1) &= x \cdot (y + 1) \\
&= x \cdot y + x \\
&= \text{mult}(x, y) + x \\
&= \text{add}(\text{mult}(x, y), x)
\end{align*}
\]

Jump over rest
Multiplication

\[
\begin{align*}
\text{mult}(x, 0) &= 0 , \\
\text{mult}(x, y + 1) &= \text{add}(\text{mult}(x, y), x) .
\end{align*}
\]

\[
\text{mult}(x, 0) = g(x), \text{ where } g : \mathbb{N} \rightarrow \mathbb{N}, g(x) = 0, \quad \text{i.e. } g = \text{zero},
\]
Multiplication

\[\text{mult}(x, 0) = 0 = g(x) , \]
\[\text{mult}(x, y + 1) = \text{add}(\text{mult}(x, y), x) . \]

\[\text{mult}(x, y + 1) = h(x, y, \text{mult}(x, y)), \]
where
\[h : \mathbb{N}^3 \rightarrow \mathbb{N}, h(x, y, z) := \text{add}(z, x). \]
\[h = \text{add} \circ (\text{proj}_2^3, \text{proj}_0^3): \]
\[(\text{add} \circ (\text{proj}_2^3, \text{proj}_0^3))(x, y, z) = \text{add}(\text{proj}_2^3(x, y, z), \text{proj}_0^3(x, y, z)) \]
\[= \text{add}(z, x) \]
\[= h(x, y, z) . \]
Multiplication

\[\text{mult}(x, 0) = 0 = g(x), \]
\[\text{mult}(x, y + 1) = \text{add}(\text{mult}(x, y), x) = h(x, y, \text{mult}(x, y)), \]
\[g = \text{zero}, \]
\[h = \text{add} \circ (\text{proj}_2^3, \text{proj}_0^3). \]

Therefore

\[\text{mult} = \text{primrec}(\text{zero}, \text{add} \circ (\text{proj}_2^3, \text{proj}_0^3)). \]
Predecessor Function

\[\text{pred is prim. rec.:} \]

\[
\begin{align*}
\text{pred}(0) & = 0, \\
\text{pred}(x + 1) & = x,
\end{align*}
\]
Subtraction

\[\text{sub}(x, y) = x - y \text{ is prim. rec.:} \]

\[\text{sub}(x, 0) = x, \]
\[\text{sub}(x, y + 1) = \text{pred}(\text{sub}(x, y)). \]
Signum Function

\[\text{sig} : \mathbb{N} \rightarrow \mathbb{N}, \]

\[\text{sig}(x) := \begin{cases}
1, & \text{if } x > 0, \\
0, & \text{if } x = 0
\end{cases} \]

is prim. rec.:

\[\text{sig}(x) = x \cdot (x - 1): \]

For \(x = 0 \) we have

\[x \cdot (x - 1) = 0 \cdot (0 - 1) = 0 \cdot 0 \]
\[= 0 = \text{sig}(x). \]

For \(x > 0 \) we have

\[x \cdot (x - 1) = x - (x - 1) = x - x + 1 \]
\[= 1 = \text{sig}(x). \]
Signum Function

Note that

\[\text{sig} = \chi_{x > 0} \]

where \(x > 0 \) stands for the unary predicate, which is true for \(x \) iff \(x > 0 \):

\[
\chi_{x > 0}(y) = \begin{cases}
1, & \text{if } y > 0, \\
0, & \text{if } y = 0.
\end{cases} = \text{sig}(y)
\]
\(x < y \) is Prim. Rec.

\[A(x, y) :\iff x < y \text{ is primitive recursive, since} \]
\[\chi_A(x, y) = \text{sig}(y \div x) : \]

- If \(x < y \), then
 \[y \div x = y - x > 0 , \]
 therefore
 \[\text{sig}(y \div x) = 1 = \chi_A(x, y) \]

- If \(\neg (x < y) \), i.e. \(x \geq y \),
 then
 \[y \div x = 0 , \]
 \[\text{sig}(y \div x) = 0 = \chi_A(x, y) . \]
Consider the sequence of definitions of addition, multiplication, exponentiation:

Addition:

\[n + 0 = n , \]
\[n + (m + 1) = (n + m) + 1 , \]

Therefore, if we write \(((+) \ 1)\) for the function \(\mathbb{N} \rightarrow \mathbb{N}, \)
\(((+) \ 1)(n) = n + 1, \) then

\[n + m = ((+) \ 1)^m(n) . \]
Remark on Notation

The notation \(((+\ 1)^m(n)\) is to be understood as follows:

Let \(f\) be a function (e.g. \(((+\ 1))\). Then we define

\[
f^n(m) := f(f(\cdots f(m) \cdots)) \quad n \text{ times}
\]

This is not to be confused with exponentiation

\[n^m = \underbrace{n \cdots n}_{n \text{ times}}.
\]

So

\[
((+\ 1)^m(n) = \underbrace{((+\ 1)(((+\ 1)(\cdots((+\ 1)(n)\cdots))))}_{m \text{ times}}
\]

\[= (\cdots((m + 1) + 1)\cdots + 1) = m + n\quad m \text{ times}
\]
Multiplication:

\[n \cdot 0 = 0 \, , \]

\[n \cdot (m + 1) = (n \cdot m) + n \, , \]

Therefore, if we write \(((+ \ n)\) for the function \(\mathbb{N} \rightarrow \mathbb{N}\),

\(((+ \ n))(k) = k + n\), then

\[n \cdot m = ((+ \ n)^m)(0) \, . \]
Add., Mult., Exp.

Exponentiation:

\[n^0 = 1, \]
\[n^{m+1} = (n^m) \cdot n, \]

Therefore, if we write \(((\cdot) \ n)\) for the function \(\mathbb{N} \rightarrow \mathbb{N}\),
\[((\cdot) \ n)(m) = n \cdot m, \text{ then} \]
\[n^m = ((\cdot) \ n)^m(1). \]

Note that above, we have both occurrences of \(n^m\) for exponentation and of \(((\cdot) \ n)^m(1)\) for iterated function application.
Extend this sequence further, by defining

Superexponentiation:

\[
\text{superexp}(n, 0) = 1,
\]
\[
\text{superexp}(n, m + 1) = n^{\text{superexp}(n, m)},
\]

Therefore, if we write \((\uparrow n) \) for the function \(\mathbb{N} \to \mathbb{N} \),

\[
(\uparrow n)(k) = n^k,
\]

then

\[
\text{superexp}(n, m) = ((\uparrow n)^m(1).
\]
Supersuperexponentiation

Supersuperexponentiation:

\[
\text{supersuperexp}(n, 0) = 1,
\]

\[
\text{supersuperexp}(n, m + 1) = \text{superexp}(n, \text{supersuperexp}(n, m)),
\]

Etc.

One obtains sequence of extremely fast growing functions.

These functions will exhaust the primitive recursive functions.

We will reconsider this sequence at the beginning of Subsect. (c).
(b) Closure of the Prim. Rec. Func.

Closure under \cup, \cap, \setminus

- If $R, S \subseteq \mathbb{N}^n$ are prim. rec., so are
 - $R \cup S$,
 - $R \cap S$,
 - $\mathbb{N}^n \setminus R$.
Closure under Prop. Connectives

Note:

\((R \cup S)(\vec{x}) \iff R(\vec{x}) \lor S(\vec{x})\),
\((R \cap S)(\vec{x}) \iff R(\vec{x}) \land S(\vec{x})\),
\((\mathbb{N}^n \setminus R)(\vec{x}) \iff \neg R(\vec{x})\).

So the prim. rec. predicates are closed under the propositional connectives \(\land, \lor, \neg\).

Example:

Above we have seen that “\(x < y\)” is primitive recursive.

Therefore the predicates “\(x \leq y\)” and “\(x = y\)” are primitive recursive:

\(x \leq y \iff \neg(y < x)\).
\(x = y \iff x \leq y \land y \leq x\).
Closure under \cup, \cap, \setminus

Proof of $(R \cup S)(\vec{x}) \iff R(\vec{x}) \lor S(\vec{x})$:

$$(R \cup S)(\vec{x}) \iff \vec{x} \in R \cup S$$
$$\iff \vec{x} \in R \lor \vec{x} \in S$$
$$\iff R(\vec{x}) \lor S(\vec{x})$$

Jump over Rest

Proof of $(R \cap S)(\vec{x}) \iff R(\vec{x}) \land S(\vec{x})$:

$$(R \cap S)(\vec{x}) \iff \vec{x} \in R \cap S$$
$$\iff \vec{x} \in R \land \vec{x} \in S$$
$$\iff R(\vec{x}) \land S(\vec{x})$$
Closure under \cup, \cap, \setminus

Proof of $(\mathbb{N}^n \setminus R)(\vec{x}) \iff \neg R(\vec{x})$:

$(\mathbb{N}^n \setminus R)(\vec{x}) \iff \vec{x} \in (\mathbb{N}^n \setminus R) \iff \vec{x} \notin R \iff \neg R(\vec{x})$
Proof of Closure under \cup

$$\chi_{R \cup S}(\vec{x}) = \text{sig}(\chi_R(\vec{x}) + \chi_S(\vec{x})),$$
(therefore $R \cup S$ is primitive recursive):

If $R(\vec{x})$ holds, then

$$\text{sig}(\chi_R(\vec{x}) + \chi_S(\vec{x})) = 1 = \chi_{R \cup S}(\vec{x}).$$
Proof of Closure under \bigcup

Similarly, if $S(\vec{x})$ holds, then

\[
\text{sig}(\chi_R(\vec{x}) + \chi_S(\vec{x})) = 1 = \chi_{R \cup S}(\vec{x})
\]

\[
\geq 0 \quad = 1
\]

\[
\geq 1
\]

\[
= 1
\]
Proof of Closure under \bigcup

If neither $R(\vec{x})$ nor $S(\vec{x})$ holds, then we have

\[
\text{sig}(\chi_{R(\vec{x})} + \chi_{S(\vec{x})}) = 0 = \chi_{R \cup S(\vec{x})}.
\]
Proof of Closure under \cap

$\chi_{R \cap S}(\vec{x}) = \chi_R(\vec{x}) \cdot \chi_S(\vec{x})$

(and therefore $R \cap S$ is primitive recursive):

Jump over Rest of Proof

If $R(\vec{x})$ and $S(\vec{x})$ hold, then

$\chi_R(\vec{x}) \cdot \chi_S(\vec{x}) = 1 = \chi_{R \cap S}(\vec{x})$.

CS_226 Computability Theory, Lent Term 2007, Sec. 5 (b)
Proof of Closure under \cap

- If $\neg R(\vec{x})$ holds, then $\chi_R(\vec{x}) = 0$, therefore

 $\chi_R(\vec{x}) \cdot \chi_S(\vec{x}) = 0 = \chi_{R \cap S}(\vec{x})$.

- Similarly, if $\neg S(\vec{x})$, we have

 $\chi_R(\vec{x}) \cdot \chi_S(\vec{x}) = 0 = \chi_{R \cap S}(\vec{x})$.
Proof of Closure under χ

$\chi_{\mathbb{N}^n \setminus R}(\vec{x}) = 1 - \chi_R(\vec{x})$

(and therefore primitive recursive):

Jump over Rest of Proof

- If $R(\vec{x})$ holds, then $\chi_R(\vec{x}) = 1$, therefore

\[
1 - \chi_R(\vec{x}) = 1 = \chi_{\mathbb{N}^n \setminus R}(\vec{x}) .
\]

- If $R(\vec{x})$ does not hold, then $\chi_R(\vec{x}) = 0$, therefore

\[
1 - \chi_R(\vec{x}) = 0 = \chi_{\mathbb{N}^n \setminus R}(\vec{x}) .
\]
Definition by Cases

The primitive recursive functions are closed under **definition by cases:**

Assume

- $g_1, g_2 : \mathbb{N}^n \rightarrow \mathbb{N}$ are primitive recursive,
- $R \subseteq \mathbb{N}^n$ is primitive recursive.

Then $f : \mathbb{N}^n \rightarrow \mathbb{N},$

$$f(\vec{x}) := \begin{cases}
 g_1(\vec{x}), & \text{if } R(\vec{x}), \\
 g_2(\vec{x}), & \text{if } \neg R(\vec{x}),
\end{cases}$$

is primitive recursive.
Definition by Cases

\[f(\vec{x}) := \begin{cases}
 g_1(\vec{x}), & \text{if } R(\vec{x}), \\
 g_2(\vec{x}), & \text{if } \neg R(\vec{x}),
\end{cases} \]

\[f(\vec{x}) = g_1(\vec{x}) \cdot \chi_{R(\vec{x})} + g_2(\vec{x}) \cdot \chi_{\mathbb{N}^n \setminus R(\vec{x})} \quad \text{prim. rec. :} \]

Jump over rest of proof.

\[\text{If } R(\vec{x}) \text{ holds, then } \chi_{R(\vec{x})} = 1, \chi_{\mathbb{N}^n \setminus R(\vec{x})} = 0, \text{ therefore} \]

\[g_1(\vec{x}) \cdot \chi_{R(\vec{x})} + g_2(\vec{x}) \cdot \chi_{\mathbb{N}^n \setminus R(\vec{x})} = g_1(\vec{x}) = f(\vec{x}) . \]

\[= g_1(\vec{x}) \]

\[= 0 \]

\[= g_1(\vec{x}) \]

\[= 0 \]
Definition by Cases

\[f(\vec{x}) := \begin{cases}
 g_1(\vec{x}), & \text{if } R(\vec{x}), \\
 g_2(\vec{x}), & \text{if } \neg R(\vec{x}),
\end{cases} \]

Show

\[f(\vec{x}) = g_1(\vec{x}) \cdot \chi_R(\vec{x}) + g_2(\vec{x}) \cdot \chi_{\mathbb{N}^n \setminus R}(\vec{x}) : \]

If \(\neg R(\vec{x}) \) holds, then \(\chi_R(\vec{x}) = 0, \chi_{\mathbb{N}^n \setminus R}(\vec{x}) = 1, \)

\[
\underbrace{g_1(\vec{x}) \cdot \chi_R(\vec{x})}_{=0} + \underbrace{g_2(\vec{x}) \cdot \chi_{\mathbb{N}^n \setminus R}(\vec{x})}_{=1} = \underbrace{g_2(\vec{x})}_{=g_2(\vec{x})} = f(\vec{x}).
\]
Bounded Sums

If $g : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is prim. rec., so is

$$f : \mathbb{N}^{n+1} \rightarrow \mathbb{N}, \quad f(\vec{x}, y) := \sum_{z<y} g(\vec{x}, z),$$

where

$$\sum_{z<0} g(\vec{x}, z) := 0,$$

and for $y > 0$,

$$\sum_{z<y} g(\vec{x}, z) := g(\vec{x}, 0) + g(\vec{x}, 1) + \cdots + g(\vec{x}, y - 1).$$
Bounded Sums

\[f : \mathbb{N}^{n+1} \to \mathbb{N}, \quad f(\vec{x}, y) := \sum_{z<y} g(\vec{x}, z) , \]

Proof that \(f \) is prim. rec.:

\[
\begin{align*}
 f(\vec{x}, 0) & = 0 , \\
 f(\vec{x}, y + 1) & = f(\vec{x}, y) + g(\vec{x}, y) .
\end{align*}
\]

Jump over rest of proof. The last equations follows from

\[
\begin{align*}
 f(\vec{x}, y + 1) & = \sum_{z<y+1} g(\vec{x}, z) \\
 & = (\sum_{z<y} g(\vec{x}, z)) + g(\vec{x}, y) \\
 & = f(\vec{x}, y) + g(\vec{x}, y) .
\end{align*}
\]
Example

We have above

\[f(\vec{x}, 0) = g(\vec{x}, 0) \]
\[f(\vec{x}, 1) = g(\vec{x}, 0) + g(\vec{x}, 1) \]
\[= f(\vec{x}, 0) + g(\vec{x}, 0) \]
\[f(\vec{x}, 2) = g(\vec{x}, 0) + g(\vec{x}, 1) + g(\vec{x}, 2) \]
\[= f(\vec{x}, 1) + g(\vec{x}, 2) \]

etc.
Bounded Products

If $g : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is prim. rec., so is

$$f : \mathbb{N}^{n+1} \rightarrow \mathbb{N} \ , \quad f(\bar{x}, y) := \prod_{z<y} g(\bar{x}, z) \ ,$$

where

$$\prod_{z<0} g(\bar{x}, z) := 1 \ ,$$

and for $y > 0$,

$$\prod_{z<y} g(\bar{x}, z) := g(\bar{x}, 0) \cdot g(\bar{x}, 1) \cdots g(\bar{x}, y - 1) \ .$$

Omit Proof
Bounded Products

\[f : \mathbb{N}^{n+1} \to \mathbb{N} , \quad f(\vec{x}, y) := \prod_{z<y} g(\vec{x}, z) , \]

Proof that \(f \) is prim. rec.:

\[
\begin{align*}
 f(\vec{x}, 0) &= 1 , \\
 f(\vec{x}, y + 1) &= f(\vec{x}, y) \cdot g(\vec{x}, y).
\end{align*}
\]

Here, the last equations follows by

\[
\begin{align*}
 f(\vec{x}, y + 1) &= \prod_{z<y+1} g(\vec{x}, z) \\
 &= \left(\prod_{z<y} g(\vec{x}, z) \right) \cdot g(\vec{x}, y) \\
 &= f(\vec{x}, y) \cdot g(\vec{x}, y) .
\end{align*}
\]
Example

Example for closure under bounded products:

\(f : \mathbb{N} \rightarrow \mathbb{N}, \)

\[f(n) := n! = 1 \cdot 2 \cdots \cdot n \]

\((f(0) = 0! = 1),\)

is primitive recursive, since

\[f(n) = \prod_{i<n} (i+1) = \prod_{i<n} g(i) , \]

where \(g(i) := i + 1 \) is prim. rec..

(Note that in the special case \(n = 0 \) we have

\[f(0) = 0! = 1 = \prod_{i<0} (i + 1) . \)\]
Remark on Factorial Function

Alternatively, the factorial function can be defined directly by using primitive recursion as follows:

\[
\begin{align*}
0! &= 1 \\
(n + 1)! &= n! \cdot (n + 1)
\end{align*}
\]
Bounded Quantification

If $R \subseteq \mathbb{N}^{n+1}$ is primitive recursive, so are

$$R_1(\vec{x}, y) : \iff \forall z < y. R(\vec{x}, z),$$
$$R_2(\vec{x}, y) : \iff \exists z < y. R(\vec{x}, z).$$
Bounded Quantification

\[R_1(\vec{x}, y) :\Leftrightarrow \forall z < y. R(\vec{x}, z) \,, \]

Proof for \(R_1 \):

\[\chi_{R_1}(\vec{x}, y) = \prod_{z<y} \chi_R(\vec{x}, z) : \]

Jump over details.

- If \(\forall z < y. R(\vec{x}, z) \) holds,
 then \(\forall z < y. \chi_R(\vec{x}, z) = 1 \),

therefore

\[\prod_{z<y} \chi_R(\vec{x}, y) = \prod_{z<y} 1 = 1 = \chi_{R_1}(\vec{x}, y) \,. \]
Bounded Quantification

\[R_1(\vec{x}, y) :\iff \forall z < y. R(\vec{x}, z) , \]

Show \(\chi_{R_1}(\vec{x}, y) = \prod_{z<y} \chi_{R}(\vec{x}, z) \).

If \(\neg R(\vec{x}, z) \) for one \(z < y \),
then \(\chi_{R}(\vec{x}, z) = 0 \), therefore

\[\prod_{z<y} \chi_{R}(\vec{x}, y) = 0 = \chi_{R_1}(\vec{x}, y) . \]
Bounded Quantification

\[R_2(\vec{x}, y) \iff \exists z < y. R(\vec{x}, z) \, . \]

Proof for \(R_2 \):

\[\chi_{R_2}(\vec{x}, y) = \text{sig}\left(\sum_{z < y} \chi_{R}(\vec{x}, z)\right) : \]

Jump over Rest of Proof

- If \(\forall z < y. \neg R(\vec{x}, z) \), then

\[\text{sig}\left(\sum_{z < y} \chi_{R}(\vec{x}, y)\right) = \text{sig}\left(\sum_{z < y} 0\right) \]

\[= \text{sig}(0) \]

\[= 0 \]

\[= \chi_{R_2}(\vec{x}, y) \, . \]
Bounded Quantification

\[R_2(\vec{x}, y) :\iff \exists z < y. R(\vec{x}, z) \] .

Show \(\chi_{R_2}(\vec{x}, y) = \text{sig}(\sum_{z<y} \chi_R(\vec{x}, z)) \)

- If \(R(\vec{x}, z) \), for some \(z < y \), then \(\chi_R(\vec{x}, z) = 1 \), therefore
 \[
 \sum_{z<y} \chi_R(\vec{x}, y) \geq \chi_R(\vec{x}, z) = 1 ,
 \]
 therefore
 \[
 \text{sig}\left(\sum_{z<y} \chi_R(\vec{x}, y)\right) = 1 = \chi_{R_2}(\vec{x}, y) .
 \]
Bounded Search

If $R \subseteq \mathbb{N}^{n+1}$ is a prim. rec. predicate, so is

$$f(\vec{x}, y) := \mu z < y.R(\vec{x}, z),$$

where

$$\mu z < y.R(\vec{x}, z) := \begin{cases}
\text{the least } z \text{ s.t. } R(\vec{x}, z) \text{ holds,} & \text{if such } z \text{ exists}, \\
y & \text{otherwise.}
\end{cases}$$
Bounded Search

\[f(\vec{x}, y) := \mu z < y. R(\vec{x}, z) \]

Proof:
Define

\[Q(\vec{x}, y) :\iff R(\vec{x}, y) \land \forall z < y. \neg R(\vec{x}, z) , \]
\[Q'(\vec{x}, y) :\iff \forall z < y. \neg R(\vec{x}, z) \]

\(Q \) and \(Q' \) are primitive recursive.
\(Q(\vec{x}, y) \) holds, if \(y \) is minimal s.t. \(R(\vec{x}, y) \).
We show

\[f(\vec{x}, y) = \left(\sum_{z < y} \chi Q(\vec{x}, z) \cdot z \right) + \chi Q'(\vec{x}, y) \cdot y . \]

Jump over details.
Bounded Search

\[Q(\vec{x}, y) :\iff R(\vec{x}, y) \land \forall z < y. \neg R(\vec{x}, z) , \]
\[Q'(\vec{x}, y) :\iff \forall z < y. \neg R(\vec{x}, z) , \]
Show \[f(\vec{x}, y) = (\sum_{z<y} \chi Q(\vec{x}, z) \cdot z) + \chi Q'(\vec{x}, y) \cdot y . \]

Assume \[\exists z < y. R(\vec{x}, z). \]
Let \(z \) be minimal s.t. \(R(\vec{x}, z). \)
\[\Rightarrow Q(\vec{x}, z), \]
\[\Rightarrow \chi Q(\vec{x}, z) \cdot z = z . \]
For \(z \neq z' \) we have \[\neg Q(\vec{x}, z'), \]
therefore \[\chi Q(\vec{x}, z') \cdot z' = 0 (z' \neq z). \]
Furthermore, \[\neg Q'(\vec{x}, y), \] therefore \[\chi Q'(\vec{x}, y) \cdot y = 0 . \]
Therefore

\[(\sum_{z<y} \chi Q(\vec{x}, z) \cdot z) + \chi Q'(\vec{x}, y) \cdot y = z = \mu z' < y. R(\vec{x}, z') . \]
Bounded Search

\[Q(\vec{x}, y) :\iff R(\vec{x}, y) \land \forall z < y. \neg R(\vec{x}, z) \ , \]
\[Q'(\vec{x}, y) :\iff \forall z < y. \neg R(\vec{x}, z) \ , \]

Show \[f(\vec{x}, y) = \left(\sum_{z < y} \chi_Q(\vec{x}, z) \cdot z \right) + \chi_{Q'}(\vec{x}, y) \cdot y \ . \]

Assume \[\forall z < y. \neg R(\vec{x}, z) . \]
\[\Rightarrow \neg Q(\vec{x}, z) \text{ for } z < y , \]
\[\Rightarrow \forall z < y. \chi_Q(\vec{x}, z) \cdot z = 0 . \]
Furthermore, \[Q'(\vec{x}, y) , \]
therefore \[\chi_{Q'}(\vec{x}, y) \cdot y = y . \]

Therefore

\[\left(\sum_{z < y} \chi_Q(\vec{x}, z) \cdot z \right) + \chi_{Q'}(\vec{x}, y) \cdot y = y = \mu z' < y. R(\vec{x}, z') . \]
Bounded Search

\[f(\vec{x}, y) := \mu z < y. R(\vec{x}, z) \]

Alternatively, \(f \) can be defined by primitive recursion directly using the equations:

\[
\begin{align*}
f(\vec{x}, 0) &= 0 \\
f(\vec{x}, y + 1) &= \begin{cases}
 f(\vec{x}, y) & \text{if } f(\vec{x}, y) < y, \\
 y & \text{if } f(\vec{x}, y) = y \land R(\vec{x}, y), \\
 y + 1 & \text{otherwise}.
\end{cases}
\end{align*}
\]

Exercise: Show

- \(f \) fulfills those equations
- From these equations it follows that \(f \) is primitive recursive, provided \(R \) is.
Example

Let $P \subseteq \mathbb{N}$ be a primitive recursive predicate, and define

$$f : \mathbb{N} \to \mathbb{N} ,$$

$$f(x) := |\{y < x \mid P(y)\}| .$$

$f(x)$ is the number of $y < x$ s.t. $P(y)$ holds. f is primitive recursive, since

$$f(x) = \sum_{y < x} \chi_P(y) .$$
Example 2

Let $Q \subseteq \mathbb{N}$ be a primitive recursive predicate.

We show how to determine primitive recursively the second least $y < x$ s.t. $Q(y)$ holds.

Step1: Express the property to be the second least $y < x$ s.t. $Q(y)$ holds as a prim. rec. predicate $P(y)$:

$$P(y) \iff
Q(y) \land (\exists z < y. Q(z)) \land
\neg(\exists z < y. \exists z' < y. (Q(z) \land Q(z') \land z \neq z'))$$

$P(y)$ is primitive recursive, since it is defined from Q using \land, \neg, bounded quantification and "$z = z'$".
Example 2

Step 2: Let $f(y)$ be the second least $y < x$ s.t. $Q(y)$ holds:

$$f(x) = \begin{cases}
 y, & \text{if } y < x \text{ and } P(y), \\
 x, & \text{if there is no } y < x \text{ s.t. } P(y).
\end{cases}$$

Then

$$f(x) = \mu y < x. P(y)$$

so f is primitive recursive.

(We could have defined instead

$$P'(y) :\equiv Q(y) \land \exists z < y. Q(z) .$$

Then $f(x) = \mu y < x. P'(y)$ holds.)
Lemma 5.1

The following functions are primitive recursive:

(a) $\pi : \mathbb{N}^2 \rightarrow \mathbb{N}$.
 (Remember, $\pi(n, m)$ encodes two natural numbers as one.)

(b) $\pi_0, \pi_1 : \mathbb{N} \rightarrow \mathbb{N}$.
 (Remember $\pi_0(\pi(n, m)) = n$, $\pi_1(\pi(n, m)) = m$).

(c) $\pi^k : \mathbb{N}^k \rightarrow \mathbb{N} (k \geq 1)$.
 (Remember $\pi^k(n_0, \ldots, n_{k-1})$ encodes the sequence (n_0, \ldots, n_k).

Lemma 5.1

(d) $f : \mathbb{N}^3 \to \mathbb{N}$,

$$f(x, k, i) = \begin{cases}
\pi^k_i(x), & \text{if } i < k, \\
x, & \text{otherwise.}
\end{cases}$$

(Remember that $\pi^k_i(\pi^k(n_0, \ldots, n_{k-1})) = n_i$ for $i < k$.)

We write $\pi^k_i(a)$ for $f(x, k, i)$, even if $i \geq k$.

(e) $f_k : \mathbb{N}^k \to \mathbb{N}$,

$$f_k(x_0, \ldots, x_{k-1}) = \langle x_0, \ldots, x_{k-1} \rangle.$$

(Remember that $\langle x_0, \ldots, x_{k-1} \rangle$ encodes the sequence x_0, \ldots, x_{k-1} as one natural number.

(f) $lh : \mathbb{N} \to \mathbb{N}$.

(Remember that $lh(\langle x_0, \ldots, x_{k-1} \rangle) = k$.)
Lemma 5.1

\(g : \mathbb{N}^2 \rightarrow \mathbb{N}, \ g(x, i) = (x)_i. \)

(Remember that \((\langle x_0, \ldots, x_{k-1} \rangle)_i = x_i \) for \(i < k \).)

The proof will be omitted in the lecture.

Jump over proof.
Proof of Lemma 5.1 (a), (b)

(a)

\[\pi(n, m) = \left(\sum_{i \leq n+m} i \right) + m \]

is primitive recursive.

(b) One can easily show that \(n, m \leq \pi(n, m) \).

Therefore we can define

\[\pi_0(n) := \mu k < n + 1. \exists l < n + 1. n = \pi(k, l) , \]

\[\pi_1(n) := \mu l < n + 1. \exists k < n + 1. n = \pi(k, l) . \]

Therefore \(\pi_0, \pi_1 \) are primitive recursive.
Proof of Lemma 5.1 (c)

(c) Proof by induction on \(k \):

- \(k = 1 \): \(\pi^1(x) = x \), so \(\pi^1 \) is primitive recursive.
- \(k \rightarrow k + 1 \): Assume that \(\pi^k \) is primitive recursive. Show that \(\pi^{k+1} \) is primitive recursive as well:

\[
\pi^{k+1}(x_0, \ldots, x_k) = \pi(\pi^k(x_0, \ldots, x_{k-1}), x_k).
\]

Therefore \(\pi^{k+1} \) is primitive recursive (using that \(\pi \), \(\pi^k \) are primitive recursive).
Proof of Lemma 5.1 (d)

(d) We have

\[\pi^1_{0}(x) = x , \]
\[\pi^{k+1}_{i}(x) = \pi^{k}_{i}(\pi_{0}(x)), \text{ if } i < k , \]
\[\pi^{k+1}_{i}(x) = \pi_{1}(x), \text{ if } i = k, \]

Therefore

\[\pi^{k}_{i}(x) = \begin{cases}
\pi_{1}((\pi_{0})^{k-i}(x)), & \text{if } i > 0, \\
(\pi_{0})^{k}(x), & \text{if } i = 0.
\end{cases} \]
Proof of Lemma 5.1 (d)

and

\[f(x, k, i) = \begin{cases}
 x, & \text{if } i \geq k, \\
 \pi_1((\pi_0)^{k-i}(x)), & \text{if } 0 < i < k, \\
 (\pi_0)^k(x), & \text{if } i = 0 < k.
\end{cases} \]

Define \(g : \mathbb{N}^2 \to \mathbb{N}, \)

\[
\begin{align*}
g(x, 0) & := x, \\
g(x, k + 1) & := \pi_0(g(x, k)) ,
\end{align*}
\]

which is primitive recursive.
Proof of Lemma 5.1 (d)

Then we get \(g(x, k) = (\pi_0)^k(x) \), therefore

\[
f(x, k, i) = \begin{cases}
x, & \text{if } i \geq k, \\
\pi_1(g(x, k-i)), & \text{if } 0 < i < k, \\
g(x, k), & \text{if } i = 0 < k.
\end{cases}
\]

So \(f \) is primitive recursive.
Proof of Lemma 5.1 (e), (f), (g)

(e)

\[f_k(x_0, \ldots, x_{k-1}) = 1 + \pi(k\cdot 1, \pi^k(x_0, \ldots, x_{k-1})) \]

is primitive recursive.

(f)

\[\text{lh}(x) = \begin{cases}
0, & \text{if } x = 0, \\
\pi_0(x\cdot 1) + 1, & \text{if } x \neq 0.
\end{cases} \]

(g)

\[(x)_i = \pi_i^{\text{lh}(x)}(\pi_1(x\cdot 1)) = f(\pi_1(x\cdot 1), \text{lh}(x), i) \]

is primitive recursive.
Lemma and Definition 5.2

Prim. rec. functions as follows do exist:

(a) $\text{snoc} : \mathbb{N}^2 \rightarrow \mathbb{N}$ s.t.

\[
\text{snoc}(\langle x_0, \ldots, x_{n-1} \rangle, x) = \langle x_0, \ldots, x_{n-1}, x \rangle.
\]

Remark: snoc is the word cons reversed. snoc is like cons, but adds an element to the end rather than to the beginning of a list.

(b) $\text{last} : \mathbb{N} \rightarrow \mathbb{N}$ and $\text{beginning} : \mathbb{N} \rightarrow \mathbb{N}$ s.t.

\[
\text{last}(\text{snoc}(x, y)) = y,
\]
\[
\text{beginning}(\text{snoc}(x, y)) = x.
\]

The proof will be omitted in the lecture.

Jump over proof.
Proof of Lemma 5.2 (a)

Define

\[
\text{snoc}(x, y) = \begin{cases}
\langle y \rangle, & \text{if } x = 0, \\
1 + \pi(\text{lh}(x), \pi(\pi_1(x-1), y)), & \text{otherwise,}
\end{cases}
\]

so \text{snoc} is primitive recursive.
Proof of Lemma 5.2 (a)

We have

\[
\begin{align*}
\text{snoc}(\langle \rangle, y) &= \text{snoc}(0, y) \\
&= \langle y \rangle, \\
\text{snoc}(\langle x_0, \ldots, x_k \rangle, y) &= \text{snoc}(1 + \pi(k, \pi^{k+1}(x_0, \ldots, x_k)), y) \\
&= 1 + \pi(k + 1, \pi(\pi_1((1 + \pi(k, \pi^{k+1}(x_0, \ldots, x_k)))) - 1), y)) \\
&= 1 + \pi(k + 1, \pi(\pi^{k+1+k+2}(x_0, \ldots, x_k), y)) \\
&= \langle x_0, \ldots, x_k, y \rangle.
\end{align*}
\]
Proof of Lemma 5.2 (b)

Proof for beginning:
Define

\[
\text{beginning}(x) := \begin{cases}
\langle \rangle, & \text{if } \text{lh}(x) \leq 1, \\
\langle (x)_0 \rangle, & \text{if } \text{lh}(x) = 2, \\
1 + \pi((\text{lh}(x) - 1) - 1, \pi_0(\pi_1(y - 1))), & \text{otherwise}.
\end{cases}
\]
Proof of Lemma 5.2 (b)

Let $x = \text{snoc}(y, z)$. Show $\text{beginning}(x) = y$.

Case $\text{lh}(y) = 0$: Then

$$x = \text{snoc}(y, z) = \langle z \rangle$$

therefore $\text{lh}(x) = 1$, and

$$\text{beginning}(x) = \langle \rangle = y$$
Case $\text{lh}(y) = 1$: Then $y = \langle y' \rangle$ for some y', $\text{snoc}(y, z) = \langle y', z \rangle$,

$$
\text{beginning}(x) = \langle (x)_0 \rangle \\
= \langle (\langle y', z \rangle)_0 \rangle \\
= \langle y' \rangle \\
= y
$$
Proof of Lemma 5.2 (b)

Case $lh(y) > 1$: Let $lh(y) = n + 2$,

$$y = \langle y_0, \ldots, y_{n+1} \rangle = 1 + \pi(n + 1, \pi^{n+2}(y_0, \ldots, y_{n+1})) .$$

Then

$$\text{snoc}(y, z) = 1 + \pi(n + 2, \pi(\pi_1(y-1), z)) .$$
Proof of Lemma 5.2 (b)

Therefore

\[
\begin{align*}
\text{beginning}(\text{snoc}(y, z)) & = 1 + \pi(((\text{lh}(x) - 1) - 1), \pi_0(\pi_1(\text{snoc}(y, z) - 1))) \\
& = 1 + \pi(n, \pi_0(\pi_1((1 + \pi(n + 2, \pi(\pi_1(y - 1), z)) - 1)))) \\
& = 1 + \pi(n, \pi_0(\pi_1(\pi(n + 2, \pi(\pi_1(y - 1), z)))))) \\
& = 1 + \pi(n, \pi_0(\pi(\pi_1(y - 1), z))) \\
& = 1 + \pi(n, \pi_1(y - 1)) \\
& = 1 + \pi(n, \pi_1((1 + \pi(n + 1, \pi^{n+2}(y_0, \ldots, y_{n+1}))) - 1)) \\
& \quad + \pi(n, \pi_1(\pi(n + 1, \pi^{n+2}(y_0, \ldots, y_{n+1})))) \\
& = 1 + \pi(n, \pi^{n+2}(y_0, \ldots, y_{n+1})) \\
& = y .
\end{align*}
\]
Proof of Lemma 5.2 (b)

Proof for last:

Define

\[
\text{last}(x) := (x)_{\text{lh}(x) - 1}
\]

If \(y = \langle y_0, \ldots, y_{n-1} \rangle \), then

\[
\text{last}(\text{snoc}(y, z)) = \text{last}(\langle y_0, \ldots, y_{n-1}, z \rangle)
\]

\[
= (\langle y_0, \ldots, y_{n-1}, z \rangle)_{\text{lh}(\langle y_0, \ldots, y_{n-1}, z \rangle) - 1}
\]

\[
= (\langle y_0, \ldots, y_{n-1}, z \rangle)_{n}
\]

\[
= z
\]
Definition Course-Of-Value

Assume \(f : \mathbb{N}^{n+1} \rightarrow \mathbb{N} \). Then we define

\[
\overline{f} : \mathbb{N}^{n+1} \rightarrow \mathbb{N}
\]

\[
\overline{f}(\vec{x}, n) := \langle f(\vec{x}, 0), f(\vec{x}, 1), \ldots, f(\vec{x}, n-1) \rangle
\]

Especially \(\overline{f}(\vec{x}, 0) = \langle \rangle \).

\(\overline{f} \) is called the course-of-value function associated with \(f \).
Course-of-Value Prim. Recursion

The prim. rec. functions are closed under **course-of-value primitive recursion**: Assume

\[g : \mathbb{N}^{n+2} \rightarrow \mathbb{N} \]

is primitive recursive. Then

\[f : \mathbb{N}^{n+1} \rightarrow \mathbb{N} \]

\[f(\bar{x}, k) = g(\bar{x}, k, \bar{f}(\bar{x}, k)) \]

is prim. rec.
Informal meaning of course-of-value primitive recursion:
If we can express $f(\vec{x}, y)$ by an expression using
- constants,
- \vec{x}, y,
- previously defined prim. rec. functions,
- $f(\vec{x}, z)$ for $z < y$,
then f is prim. rec.
Example

Fibonacci numbers are prim. rec. $\text{fib} : \mathbb{N} \rightarrow \mathbb{N}$ given by:

\[
\begin{align*}
\text{fib}(0) & := 1, \\
\text{fib}(1) & := 1, \\
\text{fib}(n) & := \text{fib}(n - 1) + \text{fib}(n - 2), \text{ if } n > 1,
\end{align*}
\]

Definable by course-of-value primitive recursion:

We have

\[
\text{fib}(n) = \begin{cases}
1 & \text{if } n \leq 1, \\
\text{fib}(n)_{n-2} + \text{fib}(n)_{n-1} & \text{otherwise}.
\end{cases}
\]
Proof

Proof that prim. rec. functions are closed under course-of-value primitive recursion:
Let \(f \) be defined by

\[
f(\vec{x}, y) = g(\vec{x}, k, \overline{f}(\vec{x}, y))
\]

Show \(f \) is prim. rec.

We show first that \(\overline{f} \) is primitive recursive.
Proof

\[f(\vec{x}, y) = g(\vec{x}, k, \overline{f}(\vec{x}, y)) \]

\[\overline{f}(\vec{x}, 0) = \langle \rangle, \]
\[\overline{f}(\vec{x}, y + 1) = \langle f(\vec{x}, 0), f(\vec{x}, 1), \ldots, f(\vec{x}, y - 1), f(\vec{x}, y) \rangle \]
\[= \text{snoc}(\langle f(\vec{x}, 0), f(\vec{x}, 1), \ldots, f(\vec{x}, y - 1) \rangle, f(\vec{x}, y)) \]
\[= f(\vec{x}, y) \]
\[= \text{snoc}(\overline{f}(\vec{x}, y), g(\vec{x}, y, \langle f(\vec{x}, 0), f(\vec{x}, 1), \ldots, f(\vec{x}, y - 1) \rangle)) \]
\[= \overline{f}(\vec{x}, y) \]

Therefore \(\overline{f} \) is primitive recursive.
Proof

\[f(\vec{x}, y) = g(\vec{x}, k, \overline{f}(\vec{x}, y)) \]

Now we have that

\[f(\vec{x}, y) = (\langle f(\vec{x}, 0), \ldots, f(\vec{x}, y) \rangle)_{y} = (\overline{f}(\vec{x}, y + 1))_{y} \]

is primitive recursive.
Lemma and Definition 5.3

There exists prim. rec. functions as follows:

(a) \text{append} : \mathbb{N}^2 \to \mathbb{N} \text{ s.t.}

\begin{align*}
\text{append}(\langle n_0, \ldots, n_{k-1} \rangle, \langle m_0, \ldots, m_{l-1} \rangle) &= \langle n_0, \ldots, n_{k-1}, m_0, \ldots, m_{l-1} \rangle.
\end{align*}

We write \(n \ast m \) for \(\text{append}(n, m) \).

(b) \text{subst} : \mathbb{N}^3 \to \mathbb{N} \text{ s.t. if } i < n \text{ then}

\begin{align*}
\text{subst}(\langle x_0, \ldots, x_{n-1} \rangle, i, y) &= \langle x_0, \ldots, x_{i-1}, y, x_{i+1}, x_{i+2}, \ldots, x_{n-1} \rangle,
\end{align*}

and if \(i \geq n \), then

\begin{align*}
\text{subst}(\langle x_0, \ldots, x_{n-1} \rangle, i, y) &= \langle x_0, \ldots, x_{n-1} \rangle.
\end{align*}

We write \(x[i/y] \) for \(\text{subst}(x, i, y) \).
Lemma and Definition 5.3

(c) \(\text{subseq} : \mathbb{N}^3 \rightarrow \mathbb{N} \) s.t., if \(i < n \),

\[
\text{subseq}(\langle x_0, \ldots, x_{n-1} \rangle, i, j) = \langle x_i, x_{i+1}, \ldots, x_{\min(j-1,n-1)} \rangle,
\]

and if \(i \geq n \),

\[
\text{subseq}(\langle x_0, \ldots, x_{n-1} \rangle, i, j) = \langle \rangle.
\]
Lemma and Definition 5.3

(d) half : \(\mathbb{N} \rightarrow \mathbb{N} \),
 s.t. half \((n) = k \) if \(n = 2k \) or \(n = 2k + 1 \).

(e) The function \(\text{bin} : \mathbb{N} \rightarrow \mathbb{N} \), s.t.
 \[\text{bin}(n) = \langle b_0, \ldots, b_k \rangle, \]
 for \(b_i \) in normal form (no leading zeros, unless \(n = 0 \)),
 s.t. \(n = (b_0, \ldots, b_k)_2 \)

(f) A function \(\text{bin}^{-1} : \mathbb{N} \rightarrow \mathbb{N} \), s.t.
 \[\text{bin}^{-1}(\langle b_0, \ldots, b_k \rangle) = n, \text{ if } (b_0, \ldots, b_k)_2 = n. \]

The proof will be omitted in the lecture.

Jump over proof.
Proof of Lemma 5.3 (a)

We have

\[
\text{append}(\langle x_0, \ldots, x_n \rangle, 0) = \text{append}(\langle x_0, \ldots, x_n \rangle, \langle \rangle) = \langle x_0, \ldots, x_n \rangle ,
\]
and for \(m > 0 \)

\[
\text{append}(\langle x_0, \ldots, x_n \rangle, \langle y_0, \ldots, y_m \rangle) = \langle x_0, \ldots, x_n, y_0, \ldots, y_m \rangle = \text{snoc}(\langle x_0, \ldots, x_n, y_0, \ldots, y_{m-1} \rangle, y_m) = \text{snoc}(\text{append}(\langle x_0, \ldots, x_n \rangle, \langle y_0, \ldots, y_{m-1} \rangle), y_m) = \text{snoc}(\text{append}(\langle x_0, \ldots, x_n \rangle, \text{beginning}(\langle y_0, \ldots, y_m \rangle)), \text{last}(\langle y_0, \ldots, y_m \rangle)) .
\]
Proof of Lemma 5.3 (a)

Therefore we have

\[
\text{append}(x, 0) = x, \\
\text{append}(x, y) = \text{snoc}(\text{append}(x, \text{beginning}(y)), \text{last}(y)),
\]

One can see that \(\text{beginning}(x) < x \) for \(x > 0 \), therefore the last equations give a definition of \(\text{append} \) by course-of-value primitive recursion, therefore \(\text{append} \) is primitive recursive.
We have
\[
\text{subst}(x, i, y) := \begin{cases}
 x, & \text{if } \text{lh}(x) \leq i, \\
 \text{snoc}(\text{beginning}(x), y), & \text{if } i + 1 = \text{lh}(x), \\
 \text{snoc}(\text{subst}(\text{beginning}(x), i, y), \text{last}(x)) & \text{if } i + 1 < \text{lh}(x).
\end{cases}
\]

Therefore \text{subst} is definable by course-of-value primitive recursion.
Proof of Lemma 5.3 (c)

We can define

\[
\text{subseq}(x, i, j) = \begin{cases}
\langle \rangle, & \text{if } i \geq \text{lh}(x), \\
\text{subseq(beginning}(x), i, j), & \text{if } i < \text{lh}(x) \\
\text{snoc(subseq(beginning}(x), i, j), last}(x)) & \text{if } i < \text{lh}(x) \leq j,
\end{cases}
\]

which is a definition by course-of-value primitive recursion.
Proof of Lemma 5.3 (d), (e)

(d) \(\text{half}(x) = \mu y < x. (2 \cdot y = x \lor 2 \cdot y + 1 = x) \).

(e) \[
\text{bin}(x) = \begin{cases}
\langle 0 \rangle, & \text{if } x = 0, \\
\langle 1 \rangle & \text{if } x = 1, \\
\text{snoc(half}(x), x \div (2 \cdot \text{half}(x))), & \text{if } x > 1.
\end{cases}
\]

therefore definable by course-of-value primitive recursion.
Proof of Lemma 5.3 (f)

\[\text{bin}^{-1}(x) = \begin{cases}
0, & \text{if } \text{lh}(x) = 0, \\
(x)_0 & \text{if } \text{lh}(x) = 1, \\
\text{bin}^{-1}(\text{beginning}(x)) \cdot 2 + \text{last}(x) & \text{if } \text{lh}(x) > 1,
\end{cases} \]

therefore definable by course-of-value primitive recursion.