7. The Recursion Theorem

Main result in this section: **Kleene’s Recursion Theorem.**

Recursive functions are closed under a very general form of recursion.

For proof we will use the **S-m-n-theorem.**

Used in many proofs in computability theory.
The S-m-n Theorem

- Assume \(f : \mathbb{N}^{m+n} \sim \mathbb{N} \) partial recursive.
- Fix the first \(m \) arguments (say \(\vec{l} := l_0, \ldots, l_{m-1} \)).
- Then we obtain a partial recursive function
 \[
 g : \mathbb{N}^n \sim \mathbb{N} , \quad g(\vec{x}) \sim f(\vec{l}, \vec{x}) .
 \]
- The S-m-n theorem expresses that we can compute a Kleene index of \(g \)
 i.e. an \(e' \) s.t. \(g = \{e'\}^n \)
 from a Kleene index of \(f \) and \(\vec{l} \) primitive recursively.
The S-m-n Theorem

\[f : \mathbb{N}^{m+n} \sim \mathbb{N} \text{ partial rec.} \]

\[g(\vec{x}) \simeq f(\vec{l}, \vec{x}). \]

So there exists a primitive recursive function \(S_{mn} \) s.t.,

- if \(f = \{e\}^{m+n} \),
 - then \(g = \{S_{n}^{m}(e, \vec{l})\}^{n} \).

So \(\{S_{n}^{m}(e, \vec{l})\}^{n}(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}) \).
Notation

\[\{S_n^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}). \]

Assume \(t \) is an expression depending on variables \(\vec{x} \), s.t. we can compute \(t \) from \(\vec{x} \) partial recursively. Then \(\lambda \vec{x}. t \) is any natural number \(e \) s.t. \(\{e\}(\vec{x}) \simeq t \).

Then we will have

\[S_n^m(e, \vec{l}) = \lambda \vec{x}. \{e\}^{m+n}(\vec{l}, \vec{x}). \]
Theorem 7.1 (S-m-n Theorem)

Assume \(m, n \in \mathbb{N} \).

There exists a primitive recursive function

\[
S^m_n : \mathbb{N}^{m+1} \to \mathbb{N}
\]

s.t. for all \(\vec{l} \in \mathbb{N}^m, \vec{x} \in \mathbb{N}^n \)

\[
\{S^m_n(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}).
\]
Proof of S-m-n Theorem

Let T be a TM encoded as e.

A Turing machine T' corresponding to $S^n_m(e, \vec{l})$ should be s.t.

\[T'^n(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \]
Proof of S-m-n Theorem

\(T \) is TM for \(e \).

Want to define \(T' \) s.t. \(T'^m(\vec{x}) \sim T^{n+m}(\vec{l}, \vec{x}) \)

\(T' \) can be defined as follows:

1. The initial configuration is:
 - \(\vec{x} \) written on the tape,
 - head pointing to the left most bit:

 \[
 \begin{array}{cccccccc}
 \cdots & _ & _ & \text{bin}(x_0) & _ & _ & \cdots & _ & \text{bin}(x_{n-1}) & _ & _ & _ & _ & _ & \cdots
 \end{array}
 \]
Proof of S-m-n Theorem

\(T \) is TM for \(e \).
Want to define \(T' \) s.t. \(T'^m(\vec{x'}) \simeq T^{n+m}(\vec{l}, \vec{x'}) \)

Initial configuration:

\[
\begin{array}{cccccccccc}
\cdots & _ & _ & \text{bin}(x_0) & _ & _ & \cdots & _ & _ & _ & _ & \text{bin}(x_{n-1}) & _ & _ & _ & _ & \cdots \\
\uparrow
\end{array}
\]

2. \(T' \) writes first binary representation of \(\vec{l} = l_0, \ldots, l_{n-1} \) in front of this.
 terminates this step with the head pointing to the most significant bit of \(\text{bin}(l_0) \).

So configuration after this step is:

\[
\begin{array}{cccccccccccccccccc}
\text{bin}(l_0) & _ & _ & \cdots & _ & _ & \text{bin}(l_{m-1}) & _ & _ & \text{bin}(x_0) & _ & _ & \cdots & _ & _ & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]
Proof of S-m-n Theorem

\[T \text{ is TM for } e. \]
Want to define \(T' \) s.t. \(T^m(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \).

Configuration after first step:

\[
\begin{array}{ccccccccc}
\text{bin}(l_0) & \downarrow & \cdots & \downarrow & \text{bin}(l_{m-1}) & \downarrow & \text{bin}(x_0) & \downarrow & \cdots & \downarrow & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]

Then \(T' \) runs \(T \), starting in this configuration.
It terminates, if \(T \) terminates.
The result is
\[
\simeq T^{m+n}(\vec{l}, \vec{x})
\]
and we get therefore
\[
T^m(\vec{x}) \simeq T^{m+n}(\vec{l}, \vec{x})
\]
as desired.
Proof of the S-m-n Theorem

T is TM for e.
T' is a TM s.t. $T^m(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x})$

- From a code for T one can now obtain a code for T' in a primitive recursive way.
- S^m_n is the corresponding function.
- The details will not be given in the lecture

Jump over details
Proof of the S-m-n Theorem

A code for T' can be obtained from a code for T and from \vec{l} as follows:

One takes a Turing machine T'', which writes the binary representations of

$$\vec{l} = l_0, \ldots, l_{m-1}$$

in front of its initial position (separated by a blank and with a blank at the end), and terminates at the left most bit.

It's a straightforward exercise to write a code for the instructions of such a Turing machine, depending on \vec{l}, and show that the function defining it is primitive recursive.
Proof of the S-m-n Theorem

- Assume, the terminating state of T'' has Gödel number (i.e. code) s, and that all other states have Gödel numbers $< s$.

- Then one appends to the instructions of T'' the instructions of T, but with the states shifted, so that the new initial state of T is the final state s of T'' (i.e. we add s to all the Gödel numbers of states occurring in T).

- This can be done as well primitive recursively.
Proof of the S-m-n Theorem

So a code for T'' can be defined primitive recursively depending on a code e for T and \vec{l}, and $S_{m/n}^n$ is the primitive recursive function computing this. With this function it follows now that, if e is a code for a TM, then

$$\{S_n^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{n+m}(\vec{l}, \vec{x}) .$$

This equation holds, even if e is not a code for a TM: In this case $\{e\}^{m+n}$ interprets e as if it were the code for a valid TM T.

CS_226 Computability Theory, Lent Term 2007, Sect. 7
Proof of the S-m-n Theorem

(A code for such a valid TM is obtained by deleting any instructions $\text{encode}(q, a, q', a', D)$ in e s.t. there exists an instruction $\text{encode}(q, a, q'', a'', D')$ occurring before it in the sequence e, and by replacing all directions > 1 by $\lceil R \rceil = 1$.)
Proof of the S-m-n Theorem

\(e' := S^m_n(e, \vec{l}) \) will have the same deficiencies as \(e \), but when applying the Kleene-brackets, it will be interpreted as a TM \(T' \) obtained from \(e' \) in the same way as we obtained \(T \) from \(e \), and therefore

\[
\{e'\}^n(\vec{x}) \simeq T'^n(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \simeq \{e\}^{n+m}(\vec{l}, \vec{x}).
\]

So we obtain the desired result in this case as well.
Notation

- We will in the following often omit the superscript n in $\{e\}^n(m_0, \ldots, m_{n-1})$.
 - I.e. we will write $\{e\}(m_0, \ldots, m_{n-1})$ instead of $\{e\}^n(m_0, \ldots, m_{n-1})$.

- Further $\{e\}$ not applied to arguments and without superscript means usually $\{e\}^1$.
Kleene’s Recursion Theorem

Assume $f : \mathbb{N}^{n+1} \sim \mathbb{N}$ partial recursive.

Then there exists an $e \in \mathbb{N}$ s.t.

$$\{e\}^n(\vec{x}) \simeq f(e, \vec{x}) .$$

(Here $\vec{x} = x_0, \ldots, x_{n-1}$).
Examples

Kleene’s Rec. Theorem: $\exists e. \forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x})$.

There exists an e s.t.

$$\{e\}(x) \simeq e + 1 .$$

For showing this take in the Recursion Theorem

$f(e, n) := e + 1$.

Then

$$\{e\}(x) \simeq f(e, x) \simeq e + 1 .$$
Examples

Kleene’s Rec. Theorem: $\exists e. \forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x})$.

Remark:

- Such applications usually not very useful.
- Usually, when using the Rec. Theorem, one doesn’t use the index e directly,
- but only the application of $\{e\}$ to arguments.
Examples

2. The function computing the **Fibonacci-numbers** fib is recursive.

 (This is a weaker result than what we obtained above – above we showed that it is even prim. rec.)
Fibonacci Numbers

Remember the defining equations for \(\text{fib} \):
\[
\begin{align*}
\text{fib}(0) &= \text{fib}(1) = 1, \\
\text{fib}(n + 2) &= \text{fib}(n) + \text{fib}(n + 1).
\end{align*}
\]

From these equations we obtain
\[
\text{fib}(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\text{fib}(n - 2) + \text{fib}(n - 1), & \text{otherwise}.
\end{cases}
\]

We show that there exists a recursive function \(g : \mathbb{N} \to \mathbb{N} \), s.t.
\[
\begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n - 2) + g(n - 1), & \text{otherwise}.
\end{cases}
\]
Fibonacci Numbers

Show: Exists g rec.

s.t. $g(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n-2) + g(n-1), & \text{otherwise.}
\end{cases}$

Shown as follows: Define a recursive $f : \mathbb{N}^2 \rightarrow \mathbb{N}$ s.t.

$$f(e, n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\{e\}(n-2) + \{e\}(n-1), & \text{otherwise.}
\end{cases}$$

Now let e be s.t.

$$\{e\}(n) \simeq f(e, n) .$$

Then e fulfils the equations

$$\{e\}(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\{e\}(n-2) + \{e\}(n-1), & \text{otherwise.}
\end{cases}$$
Fibonacci Numbers

\[
\{e\}(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\{e\}(n \div 2) + \{e\}(n \div 1), & \text{otherwise}.
\end{cases}
\]

Let \(g = \{e\} \).

Then we get

\[
g(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n \div 2) + g(n \div 1), & \text{otherwise}.
\end{cases}
\]

These are the defining equations for \(\text{fib} \).

One can show by induction on \(n \) that \(g(n) = \text{fib}(n) \) for all \(n \in \mathbb{N} \).

Therefore \(\text{fib} \) is recursive.
Similarly, one can introduce arbitrary partial recursive functions g, where

$g(\vec{n})$ refers to arbitrary other values $g(\vec{m})$.

This corresponds to the recursive definition of functions in programming.
E.g. in Java one defines

```java
public static int fib(int n){
    if (n == 0 || n == 1){
        return 1;
    } else{
        return fib(n-1) + fib(n-2);
    }
}
```
Example 3

As in general programming, recursively defined functions need not be total:

- There exists a partial recursive function $g : \mathbb{N} \sim \rightarrow \mathbb{N}$ s.t.
 $$g(x) \sim g(x) + 1.$$

- We get $g(x) \uparrow$.

- The definition of g corresponds to the following Java definition:
  ```java
  public static int g(int n)
  {
    return g(n) + 1;
  }
  ```

- When executing $g(x)$, Java loops.
Example 4

- There exists a partial recursive function \(g : \mathbb{N} \leadsto \mathbb{N} \) s.t.

\[
g(x) \sim g(x + 1) + 1.
\]

Note that that’s a “black hole recursion”, which is not solvable by a total function.

- It is solved by \(g(x) \uparrow \).

- Note that a recursion equation for a function \(f \) cannot always be solved by setting \(f(x) \uparrow \).

 - E.g. the recursion equation for \(\text{fib} \) can’t be solved by setting \(\text{fib}(n) \uparrow \).
The Ackermann function is recursive:
Remember the defining equations:

\[
\begin{align*}
\text{Ack}(0, y) & = y + 1, \\
\text{Ack}(x + 1, 0) & = \text{Ack}(x, 1), \\
\text{Ack}(x + 1, y + 1) & = \text{Ack}(x, \text{Ack}(x + 1, y)).
\end{align*}
\]

From this we obtain

\[
\text{Ack}(x, y) = \begin{cases}
 y + 1, & \text{if } x = 0, \\
 \text{Ack}(x - 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
 \text{Ack}(x - 1, \text{Ack}(x, y - 1)), & \text{otherwise}.
\end{cases}
\]
Ackermann Function

\[\text{Ack}(x, y) = \begin{cases}
 y + 1, & \text{if } x = 0, \\
 \text{Ack}(x - 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
 \text{Ack}(x - 1, \text{Ack}(x, y - 1)), & \text{otherwise}.
\end{cases} \]

Define \(g \) partial recursive s.t.

\[g(x, y) \simeq \begin{cases}
 y + 1, & \text{if } x = 0, \\
 g(x - 1, 1), & \text{if } x > 0 \land y = 0, \\
 g(x - 1, g(x, y - 1)), & \text{if } x > 0 \land y > 0.
\end{cases} \]

\(g \) fulfils the defining equations of \(\text{Ack} \).

Proof that \(g(x, y) \simeq \text{Ack}(x, y) \) follows by main induction on \(x \), side-induction on \(y \). The details will not be given in the lecture Jump over details.
Proof of Correctness of Ack

We show by induction on x that $g(x, y)$ is defined and equal to $\text{Ack}(x, y)$ for all $x, y \in \mathbb{N}$:

- **Base case** $x = 0$.

 $$g(0, y) = y + 1 = \text{Ack}(0, y)$$

- **Induction Step** $x \to x + 1$. Assume

 $$g(x, y) = \text{Ack}(x, y)$$

 We show

 $$g(x + 1, y) = \text{Ack}(x + 1, y)$$

 by side-induction on y:
Proof of Correctness of \(\text{Ack} \)

Show \(g(x + 1, y) = \text{Ack}(x + 1, y) \)

- **Base case** \(y = 0 \):
 \[g(x + 1, 0) \simeq g(x, 1) \quad \text{Main-IH} \]
 \[= \text{Ack}(x, 1) = \text{Ack}(x + 1, 0) \]

- **Induction Step** \(y \to y + 1 \):
 \[g(x + 1, y + 1) \simeq g(x, g(x + 1, y)) \quad \text{Main-IH} \]
 \[\simeq g(x, \text{Ack}(x + 1, y)) \quad \text{Side-IH} \]
 \[= \text{Ack}(x, \text{Ack}(x + 1, y)) \]
 \[= \text{Ack}(x + 1, y + 1) \]
Idea of Proof of the Rec. Theorem

Assume

$$f : \mathbb{N}^{n+1} \sim \mathbb{N}.$$

We have to find an $$e$$ s.t.

$$\forall \vec{x} \in \mathbb{N}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}).$$

- We set $$e = \forall \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x})$$ for some $$e_1$$ to be determined

- Then the left and right hand side of the equation of the recursion theorem reads

$$\{e\}^n(\vec{x}) \simeq \{\forall \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x})\}^n(\vec{x})$$

$$\simeq \{e_1\}^{n+1}(e_1, \vec{x})$$

$$f(e, \vec{x}) \simeq f(\forall \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})$$
Idea Proof of Rec. Theorem

We need to satisfy $\forall \vec{x} \in \mathbb{N}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x})$.

Let $e = \lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x})$.

$\{e\}^n(\vec{x}) \simeq \{e_1\}^{n+1}(e_1, \vec{x})$,
$f(e, \vec{x}) \simeq f(\lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})$.

So e_1 needs to fulfill the following equation:

$\{e_1\}^{n+1}(e_1, \vec{x}) \simeq \{e\}^n(\vec{x})$

$\simeq f(\lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})$

This can be fulfilled if we define e_1 s.t.

$\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\lambda \vec{x}. \{e_2\}^{n+1}(e_2, \vec{x}), \vec{x})$
Idea of Proof of Rec. Theorem

\[\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\forall \vec{x}.\{e_2\}^{n+1}(e_2, \vec{x}'), \vec{x}'). \]

- By the S-m-n Theorem we can obtain this if we have \(e_1\) s.t.
 \[\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(S^1_n(e_2, e_2), \vec{x}') \]

- There exists a partial recursive function \(g : \mathbb{N}^n + 1 \rightarrow \mathbb{N}\), s.t.
 \[g(e_2, \vec{x}') \simeq f(S^1_n(e_2, e_2), \vec{x}') \]

- If \(e_1\) is an index for \(g\) we obtain the desired equation.
 \[\{e_1\}^{n+1}(e_2, \vec{x}') \simeq f(S^1_n(e_2, e_2), \vec{x}') \]
Let \(e_1 \) be s.t.

\[
\{e_1\}^{n+1}(y, \vec{x}) \simeq f(S^1_n(y, y), \vec{x}) .
\]

Let \(e := S^1_n(e_1, e_1) \).
Then we have

\[
\{e\}^n(\vec{x}) \simeq \{e_1\}^{n+1}(e_1, \vec{x}) \\
S\text{-m-n theorem} \simeq \{S^1_n(e_1, e_1)\}^n(\vec{x}) \\
\text{Def of } e_1 \simeq f(S^1_n(e_1, e_1), \vec{x}) \\
e = S^1_n(e_1, e_1) \simeq f(e, \vec{x}) .
\]