7. The Recursion Theorem

- Main result in this section: **Kleene's Recursion Theorem**.
 - Recursive functions are closed under a very general form of recursion.

- For the proof we will use the **S-m-n-theorem**.
 - Used in many proofs in computability theory.

 However, both the S-m-n theorem and the proof of the Recursion theorem will be omitted this year.

 Jump to Kleene's Recursion Theorem.

The S-m-n Theorem

Assume \(f : \mathbb{N}^{m+n} \rightarrow \mathbb{N} \) partial recursive.

Fix the first \(m \) arguments (say \(\vec{l} := l_0, \ldots, l_{m-1} \)).

Then we obtain a partial recursive function

\[
g : \mathbb{N}^n \rightarrow \mathbb{N}, \quad g(\vec{x}) \simeq f(\vec{l}, \vec{x}).
\]

The S-m-n theorem expresses that we can compute a Kleene index of \(g \)

i.e. an \(e' \) s.t. \(g = \{e'\}^n \)

from a Kleene index of \(f \) and \(\vec{l} \) **primitive recursively**.

The S-m-n Theorem

Assume \(f : \mathbb{N}^{m+n} \rightarrow \mathbb{N} \) partial rec.

\(\vec{l} : \mathbb{N}^m \)

Assume \(g : \mathbb{N}^n \rightarrow \mathbb{N} \) partial rec.

\(g(\vec{x}) \simeq f(\vec{l}, \vec{x}) \).

So there exists a primitive recursive function \(S_n^m \) s.t.,

- if \(f = \{e\}^{m+n} \),
 - then \(g = \{S_n^m(e, \vec{l})\}^n \).

So \(\{S_n^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}) \).

Notation

\[
\{S_n^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}).
\]

Assume \(t \) is an expression depending on \(n \) variables \(\vec{x} \),

s.t. we can compute \(t \) from \(\vec{x} \) partial recursively.

Then \(\lambda \vec{x}.t \) is any natural number \(e \) s.t. \(\{e\}^n(\vec{x}) \simeq t \).

Then we will have

\[
S_n^m(e, \vec{l}) = \lambda \vec{x}.\{e\}^{m+n}(\vec{l}, \vec{x}).
\]

Theorem 7.1 (S-m-n Theorem)

- Assume \(m, n \in \mathbb{N} \).
- There exists a primitive recursive function
 \[S^m_n : \mathbb{N}^{m+1} \to \mathbb{N} \]
 s.t. for all \(\vec{l} \in \mathbb{N}^m, \vec{x} \in \mathbb{N}^n \)
 \[\{ S^m_n(e, \vec{l}) \}_n(\vec{x}) \simeq \{ e \}^{m+n} (\vec{l}, \vec{x}) . \]

Proof of S-m-n Theorem

- Let \(T \) be a TM encoded as \(e \).
- A Turing machine \(T' \) corresponding to \(S^m_n(e, \vec{l}) \) should be
 s.t.
 \[T'^n(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) . \]

Proof of S-m-n Theorem

\(T \) is TM for \(e \).
Want to define \(T' \) s.t. \(T'^n(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \)
\(T' \) can be defined as follows:

1. The initial configuration is:
 - \(\vec{x} \) written on the tape,
 - head pointing to the left most bit:
 \[
 \begin{array}{cccccccc}
 \cdots & \underline{} & \underline{} & \underline{} & \text{bin}(x_0) & \underline{} & \cdots & \underline{} & \text{bin}(x_{n-1}) & \underline{} & \underline{} & \cdots \\
 \end{array}
 \]

2. \(T' \) writes first binary representation of \(\vec{l} = l_0, \ldots, l_{n-1} \)
in front of this.
 - terminates this step with the head pointing to the
 most significant bit of \(\text{bin}(l_0) \).
 So configuration after this step is:
 \[
 \begin{array}{cccccccc}
 \text{bin}(l_0) & \underline{} & \cdots & \underline{} & \text{bin}(l_{m-1}) & \underline{} & \text{bin}(x_0) & \underline{} & \cdots & \underline{} & \text{bin}(x_{n-1}) \\
 \end{array}
 \]
Proof of the S-m-n Theorem

A code for \(T' \) can be obtained from a code for \(T \) and from \(\vec{l} \) as follows:

- One takes a Turing machine \(T'' \), which writes the binary representations of
 \[\vec{l} = l_0, \ldots, l_{m-1} \]
 in front of its initial position (separated by a blank and with a blank at the end), and terminates at the left most bit.
- It's a straightforward exercise to write a code for the instructions of such a Turing machine, depending on \(\vec{l} \), and show that the function defining it is primitive recursive.

Assume, the terminating state of \(T'' \) has Gödel number (i.e. code) \(s \), and that all other states have Gödel numbers \(< s \).

Then one appends to the instructions of \(T'' \) the instructions of \(T \), but with the states shifted, so that the new initial state of \(T \) is the final state \(s \) of \(T'' \) (i.e. we add \(s \) to all the Gödel numbers of states occurring in \(T \)).

This can be done as well primitive recursively.

Proof of S-m-n Theorem

\(T \) is TM for \(e \).

Want to define \(T' \) s.t. \(T'^m(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \).

Configuration after first step:

\[
\begin{array}{c}
\bin(l_0) \quad \underline{\ldots} \quad \bin(l_{m-1}) \quad \underline{\ldots} \quad \bin(x_0) \quad \underline{\ldots} \quad \bin(x_{n-1}) \\
\uparrow
\end{array}
\]

Then \(T' \) runs \(T \), starting in this configuration.

It terminates, if \(T \) terminates.

The result is

\[\simeq T^{m+n}(\vec{l}, \vec{x}) \]

and we get therefore

\[T'^m(\vec{x}) \simeq T^{m+n}(\vec{l}, \vec{x}) \]

as desired.

Proof of the S-m-n Theorem

\(T \) is TM for \(e \).

\(T' \) is a TM s.t. \(T'^m(\vec{x}) \simeq T^{n+m}(\vec{l}, \vec{x}) \)

- From a code for \(T \) one can now obtain a code for \(T' \) in a primitive recursive way.
- \(S^m_n \) is the corresponding function.
- The details will not be given in the lecture
 Jump to Kleene’s Recursion Theorem
Proof of the S-m-n Theorem

So a code for T'' can be defined primitive recursively depending on a code e for T and \vec{l}, and S^m_n is the primitive recursive function computing this. With this function it follows now that, if e is a code for a TM, then

$$\{S^m_n(e, \vec{l})\}^n(x) \simeq \{e\}^{n+m}(\vec{l}, x) .$$

This equation holds, even if e is not a code for a TM: In this case $\{e\}^{m+n}$ interprets e as if it were the code for a valid TM T.

Proof of the S-m-n Theorem

$(A$ code for such a valid TM is obtained by

- deleting any instructions $\text{encode}(q, a, q', a', D)$ in e
- s.t. there exists an instruction $\text{encode}(q, a, q'', a'', D')$
- occurring before it in the sequence e,
- and by replacing all directions > 1 by $|R| = 1$.)

Kleene’s Recursion Theorem

$e' := S^m_n(e, \vec{l})$ will have the same deficiencies as e, but when applying the Kleene-brackets, it will be interpreted as a TM T' obtained from e' in the same way as we obtained T from e, and therefore

$$\{e'\}^n(x) \simeq T'^n(x) \simeq T^{n+m}(\vec{l}, x) \simeq \{e\}^{n+m}(\vec{l}, x) .$$

So we obtain the desired result in this case as well.
Example 1

Kleene's Rec. Theorem: \(\exists e. \forall x. \{ e \}^n(x) \simeq f(e, x) \).

There exists an \(e \) s.t.

\(\{ e \}(x) \simeq e + 1 \).

For showing this take in the Recursion Theorem

\(f(e, n) := e + 1 \).

Then

\(\{ e \}(x) \simeq f(e, x) \simeq e + 1 \).

Remark

Kleene's Rec. Theorem: \(\exists e. \forall x. \{ e \}^n(x) \simeq f(e, x) \).

Applications as Example 1 are usually not very useful.

Usually, when using the Rec. Theorem, one

doesn't use the index \(e \) directly,

but only the application of \(\{ e \} \) to arguments.

Example 2

The function computing the Fibonacci-numbers \(\text{fib} \) is recursive.

(This is a weaker result than what we obtained above —
above we showed that it is even prim. rec.)

Fibonacci Numbers

Remember the defining equations for \(\text{fib} \):

\[
\begin{align*}
\text{fib}(0) &= 1, \\
\text{fib}(n + 2) &= \text{fib}(n) + \text{fib}(n + 1).
\end{align*}
\]

From these equations we obtain

\[
\text{fib}(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\text{fib}(n - 2) + \text{fib}(n - 1), & \text{otherwise}.
\end{cases}
\]

We show that there exists a recursive function \(g : \mathbb{N} \to \mathbb{N} \), s.t.

\[
\begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n - 2) + g(n - 1), & \text{otherwise}.
\end{cases}
\]
Fibonacci Numbers

Show: Exists g rec.

s.t. $g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n-2) + g(n-1), & \text{otherwise.} \end{cases}$

Shown as follows: Define a recursive $f : \mathbb{N}^2 \rightarrow \mathbb{N}$ s.t.

$$f(e, n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n-2) + \{e\}(n-1), & \text{otherwise.} \end{cases}$$

Now let e be s.t.

$$\{e\}(n) \simeq f(e, n).$$

Then e fulfils the equations

$$\{e\}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n-2) + \{e\}(n-1), & \text{otherwise.} \end{cases}$$

Let $g = \{e\}$.

Then we get

$$g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n-2) + g(n-1), & \text{otherwise.} \end{cases}$$

These are the defining equations for fib.

One can show by induction on n that $g(n) = fib(n)$ for all $n \in \mathbb{N}$.

Therefore fib is recursive.

General Applic. of Rec. Theorem

Similarly, one can introduce arbitrary partial recursive functions g, where

- $g(\vec{n})$ refers to arbitrary other values $g(\vec{m})$.

So, instead of arguing as before that fib is partial recursive, it suffices to say the following

- By the recursion theorem, there exists a partial recursive function $fib : \mathbb{N} \rightarrow \mathbb{N}$, s.t.

$$fib(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ fib(n-2) + fib(n-1), & \text{otherwise.} \end{cases}$$

We can prove by induction on n that $\forall n : \mathbb{N}. fib(n) \downarrow$ holds.

Therefore fib is total and therefore recursive.

This use of the recursion theorem corresponds to the recursive definition of functions in programming.

E.g. in Java one defines

```java
public static int fib(int n){
    if (n == 0 || n == 1){
        return 1;
    } else{
        return fib(n-1) + fib(n-2);
    }
}
```
Example 3

As in general programming, recursively defined functions need not be total:

- There exists a partial recursive function \(g : \mathbb{N} \rightarrow \mathbb{N} \) s.t.
 \[
g(x) \simeq g(x) + 1 .
\]
- We get \(g(x) \uparrow \).
- The definition of \(g \) corresponds to the following Java definition:

  ```java
  public static int g(int n) {
    return g(n) + 1;
  }
  ``
- When executing \( g(x) \), Java loops.

Example 4

- There exists a partial recursive function \( g : \mathbb{N} \rightarrow \mathbb{N} \) s.t.
  \[
g(x) \simeq g(x + 1) + 1 .
\]
- Note that that’s a “black hole recursion”, which is not solvable by a total function.
- It is solved by \( g(x) \uparrow \).
- Note that a recursion equation for a function \( f \) cannot always be solved by setting \( f(x) \uparrow \).
- E.g. the recursion equation for \( \text{fib} \) can’t be solved by setting \( \text{fib}(n) \uparrow \).

Ackermann Function

The Ackermann function is recursive:

Remember the defining equations:

\[
\begin{align*}
\text{Ack}(0, y) & = y + 1 , \\
\text{Ack}(x + 1, 0) & = \text{Ack}(x, 1) , \\
\text{Ack}(x + 1, y + 1) & = \text{Ack}(x, \text{Ack}(x + 1, y + 1)) .
\end{align*}
\]

From this we obtain

\[
\text{Ack}(x, y) = \begin{cases} 
  y + 1, & \text{if } x = 0, \\
  \text{Ack}(x - 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
  \text{Ack}(x - 1, \text{Ack}(x, y - 1)), & \text{otherwise}.
\end{cases}
\]

Define \( g \) partial recursive s.t.

\[
g(x, y) \simeq \begin{cases} 
  y + 1, & \text{if } x = 0, \\
  g(x - 1, 1), & \text{if } x > 0 \wedge y = 0, \\
  g(x - 1, g(x, y - 1)), & \text{if } x > 0 \wedge y > 0.
\end{cases}
\]

\( g \) fulfills the defining equations of \( \text{Ack} \).

Proof that \( g(x, y) \simeq \text{Ack}(x, y) \) follows by main induction on \( x \), side-induction on \( y \). The details will not be given in the lecture. Jump over remaining slides.
Proof of Correctness of Ack

We show by induction on $x$ that $g(x, y)$ is defined and equal to $\text{Ack}(x, y)$ for all $x, y \in \mathbb{N}$:

- **Base case** $x = 0$:
  \[ g(0, y) = y + 1 = \text{Ack}(0, y) . \]

- **Induction Step** $x \to x + 1$. Assume
  \[ g(x, y) = \text{Ack}(x, y) . \]
  We show
  \[ g(x + 1, y) = \text{Ack}(x + 1, y) \]
  by side-induction on $y$:

Show $g(x + 1, y) = \text{Ack}(x + 1, y)$

- **Base case** $y = 0$:
  \[ g(x + 1, 0) \simeq g(x, 1) \overset{\text{Main-IH}}{=} \text{Ack}(x, 1) = \text{Ack}(x + 1, 0) . \]

- **Induction Step** $y \to y + 1$:
  \[ g(x + 1, y + 1) \overset{\text{Main-IH}}{=} g(x, g(x + 1, y)) \]
  \[ \overset{\text{Side-IH}}{=} \text{Ack}(x, \text{Ack}(x + 1, y)) \]
  \[ = \text{Ack}(x + 1, y + 1) . \]

Jump over remaining slides (Proof of the Recursion Theorem)

Idea Proof of Rec. Theorem

We need to satisfy $\forall \bar{x} \in \mathbb{N}. \{e\}^n(\bar{x}) \simeq f(e, \bar{x})$.

Let $e = \lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x})$.

\[ \{e\}^n(\bar{x}) \simeq \{e_1\}^{n+1}(e_1, \bar{x}), \]
\[ f(e, \bar{x}) \simeq f(\lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x}), \bar{x}) . \]

So $e_1$ needs to fulfill the following equation:

\[ \{e_1\}^{n+1}(e_1, \bar{x}) \simeq \{e\}^n(\bar{x}) \]
\[ \overset{1}{\simeq} f(e, \bar{x}) \]
\[ \simeq f(\lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x}), \bar{x}) . \]

This can be fulfilled if we define $e_1$ s.t.

\[ \{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(\lambda \bar{x}. \{e_2\}^{n+1}(e_2, \bar{x}), \bar{x}) \]
Idea of Proof of Rec. Theorem

\( \{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(\lambda \bar{x}.\{e_2\}^{n+1}(e_2, \bar{x}), \bar{x}) \).

- By the S-m-n Theorem we can obtain this if we have \( e_1 \) s.t.
  \( \{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2), \bar{x}) \)
- There exists a partial recursive function \( g : \mathbb{N}^n + 1 \simeq \mathbb{N} \), s.t.
  \( g(e_2, \bar{x}) \simeq f(S^1_n(e_2), \bar{x}) \)
- If \( e_1 \) is an index for \( g \) we obtain the desired equation.
  \( \{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2), \bar{x}) \)

Complete Proof of Rec. Theorem

Let \( e_1 \) be s.t.
\( \{e_1\}^{n+1}(y, \bar{x}) \simeq f(S^1_n(y, y), \bar{x}) \).

Let \( e := S^1_n(e_1, e_1) \).
Then we have
\[
\begin{align*}
\{e\}^n(\bar{x}) &= S^1_n(e_1, e_1) \\
\{e_1\}^{n+1}(e_1, \bar{x}) &\simeq \{S^1_n(e_1, e_1)\}^{n+1}(\bar{x}) \\
\text{S-m-n theorem} &\simeq \{e_1\}^{n+1}(e_1, \bar{x}) \\
\text{Def of } e_1 &\simeq f(S^1_n(e_1, e_1), \bar{x}) \\
e &= S^1_n(e_1, e_1) \\
&\simeq f(e, \bar{x}).
\end{align*}
\]