Main result in this section: **Kleene’s Recursion Theorem**.

Recursive functions are closed under a very general form of recursion.

For the proof we will use the **S-m-n-theorem**.

Used in many proofs in computability theory.

However, both the S-m-n theorem and the proof of the Recursion theorem will be omitted this year. **Jump to Kleene’s Recursion Theorem.**
The S-m-n Theorem

- Assume \(f : \mathbb{N}^{m+n} \sim \to \mathbb{N} \) partial recursive.
- Fix the first \(m \) arguments (say \(\vec{l} := l_0, \ldots, l_{m-1} \)).
- Then we obtain a partial recursive function

\[
g : \mathbb{N}^n \sim \to \mathbb{N}, \quad g(\vec{x}) \sim f(\vec{l}, \vec{x})
\]

The S-m-n theorem expresses that we can compute a Kleene index of \(g \)
- i.e. an \(e' \) s.t. \(g = \{e'\}^n \)

from a Kleene index of \(f \) and \(\vec{l} \) primitive recursively.
The S-m-n Theorem

\[f : \mathbb{N}^{m+n} \sim \mathbb{N} \text{ partial rec.} \]
\[\vec{l} : \mathbb{N}^m \]
\[g : \mathbb{N}^n \sim \mathbb{N} \text{ partial rec.} \]
\[g(\vec{x}) \simeq f(\vec{l}, \vec{x}). \]

So there exists a primitive recursive function \(S_{m}^{n} \) s.t.,

if \(f = \{e\}^{m+n}, \)

then \(g = \{S_{n}^{m}(e, \vec{l})\}^{n}. \)

So \(\{S_{n}^{m}(e, \vec{l})\}^{n}(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}). \)
Notation

\[\{S^m_n(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}). \]

Assume \(t \) is an expression depending on \(n \) variables \(\vec{x} \), s.t. we can compute \(t \) from \(\vec{x} \) partial recursively. Then \(\lambda \vec{x}. t \) is any natural number \(e \) s.t. \(\{e\}^n(\vec{x}) \simeq t. \)

Then we will have

\[S^m_n(e, \vec{l}) = \lambda \vec{x}. \{e\}^{m+n}(\vec{l}, \vec{x}) . \]
Theorem 7.1 (S-m-n Theorem)

Assume $m, n \in \mathbb{N}$.

There exists a primitive recursive function

$$S^m_n : \mathbb{N}^{m+1} \rightarrow \mathbb{N}$$

s.t. for all $\vec{l} \in \mathbb{N}^m$, $\vec{x} \in \mathbb{N}^n$

$$\{S^m_n(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x})$$.
Proof of S-m-n Theorem

Let T be a TM encoded as e.

A Turing machine T' corresponding to $S_{m,n}(e, \vec{l})$ should be s.t.

$$T'(n)(\vec{x}) \simeq T^{(n+m)}(\vec{l}, \vec{x}).$$
Proof of S-m-n Theorem

T is TM for e.
Want to define T' s.t. $T'^{(n)}(\vec{x}) \cong T^{(n+m)}(\vec{l}, \vec{x})$

T' can be defined as follows:

1. The initial configuration is:
 - \vec{x} written on the tape,
 - head pointing to the left most bit:

 $$
 \begin{array}{cccccccc}
 \cdots & \text{∥} & \text{∥} & \text{∥} & \text{∥} & \text{∥} & \cdots & \text{∥} & \text{∥} & \text{∥} & \text{∥} & \cdots \\
 & & & \text{bin}(x_0) & & & & \text{bin}(x_{n-1}) & & & &
 \end{array}
 $$

 \[\uparrow\]
Proof of S-m-n Theorem

T is TM for e.
Want to define T' s.t. $T'(n)(\vec{x}) \simeq T(n+m)(\vec{l}, \vec{x})$

Initial configuration:

\[
\begin{array}{cccccccc}
\cdots & \downarrow & \downarrow & \downarrow & \text{bin}(x_0) & \downarrow & \cdots & \downarrow & \text{bin}(x_{n-1}) & \downarrow & \downarrow & \cdots \\
\uparrow
\end{array}
\]

2. T' writes first binary representation of $\vec{l} = l_0, \ldots, l_{n-1}$ in front of this.

terminates this step with the head pointing to the most significant bit of $\text{bin}(l_0)$.

So configuration after this step is:

\[
\begin{array}{cccccccc}
\text{bin}(l_0) & \downarrow & \cdots & \downarrow & \text{bin}(l_{m-1}) & \downarrow & \text{bin}(x_0) & \downarrow & \cdots & \downarrow & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]
Proof of S-m-n Theorem

\(T \) is TM for \(e \).

Want to define \(T' \) s.t. \(T'^{(n)}(\vec{x}) \sim T^{(n+m)}(\vec{l}, \vec{x}) \).

Configuration after first step:

\[
\begin{array}{cccccccc}
\text{bin}(l_0) & \text{ } & \cdots & \text{ } & \text{bin}(l_{m-1}) & \text{ } & \text{bin}(x_0) & \cdots & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]

Then \(T' \) runs \(T \), starting in this configuration.
It terminates, if \(T \) terminates.
The result is
\[
\sim T^{(m+n)}(\vec{l}, \vec{x})
\]
and we get therefore
\[
T'^{(n)}(\vec{x}) \sim T^{(m+n)}(\vec{l}, \vec{x})
\]
as desired.
Proof of the S-m-n Theorem

T is TM for e.
T' is a TM s.t. T'(n)(x) ≃ T(n+m)(l, x)

- From a code for T one can now obtain a code for T' in a primitive recursive way.
- S_m^n is the corresponding function.
- The details will not be given in the lecture
Jump to Kleene’s Recursion Theorem
Proof of the S-m-n Theorem

A code for T' can be obtained from a code for T and from \vec{l} as follows:

One takes a Turing machine T'', which writes the binary representations of

$$\vec{l} = l_0, \ldots, l_{m-1}$$

in front of its initial position (separated by a blank and with a blank at the end), and terminates at the left most bit.

It’s a straightforward exercise to write a code for the instructions of such a Turing machine, depending on \vec{l}, and show that the function defining it is primitive recursive.
Proof of the S-m-n Theorem

Assume, the terminating state of T'' has Gödel number (i.e. code) s, and that all other states have Gödel numbers < s.

Then one appends to the instructions of T'' the instructions of T, but with the states shifted, so that the new initial state of T is the final state s of T'' (i.e. we add s to all the Gödel numbers of states occurring in T).

This can be done as well primitive recursively.
Proof of the S-m-n Theorem

So a code for T'' can be defined primitive recursively depending on a code e for T and \vec{l}, and S_{mn}^m is the primitive recursive function computing this. With this function it follows now that, if e is a code for a TM, then

$$\{S_{mn}^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{n+m}(\vec{l}, \vec{x}) .$$

This equation holds, even if e is not a code for a TM: In this case $\{e\}^{m+n}$ interprets e as if it were the code for a valid TM T.
Proof of the S-m-n Theorem

(A code for such a valid TM is obtained by deleting any instructions \(\text{encode}(q, a, q', a', D) \) in \(e \) s.t. there exists an instruction \(\text{encode}(q, a, q'', a'', D') \) occurring before it in the sequence \(e \), and by replacing all directions \(> 1 \) by \(\lceil R \rceil = 1 \).)
Proof of the S-m-n Theorem

\(e' := S^m_n(e, \vec{l}) \) will have the same deficiencies as \(e \), but when applying the Kleene-brackets, it will be interpreted as a TM \(T' \) obtained from \(e' \) in the same way as we obtained \(T \) from \(e \), and therefore

\[
\{ e' \}^n(\vec{x}) \simeq T'^{(n)}(\vec{x}) \simeq T^{(n+m)}(\vec{l}, \vec{x}) \simeq \{ e \}^{n+m}(\vec{l}, \vec{x})
\]

So we obtain the desired result in this case as well.
Kleene’s Recursion Theorem

Assume $f : \mathbb{N}^{n+1} \sim \mathbb{N}$ partial recursive.

Then there exists an $e \in \mathbb{N}$ s.t.

$$\{e\}^n(\vec{x}) \simeq f(e, \vec{x}).$$

(Here $\vec{x} = x_0, \ldots, x_{n-1}$).
Example 1

Kleene’s Rec. Theorem: \(\exists e. \forall \vec{x}. \{ e \}^n(\vec{x}) \simeq f(e, \vec{x}) \).

There exists an \(e \) s.t.

\[
\{ e \}(x) \simeq e + 1 .
\]

For showing this take in the Recursion Theorem

\(f(e, n) := e + 1 \).

Then

\[
\{ e \}(x) \simeq f(e, x) \simeq e + 1 .
\]
Remark

Kleene’s Rec. Theorem: $\exists e. \forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x})$.

- Applications as Example 1 are usually not very useful.
- Usually, when using the Rec. Theorem, one doesn’t use the index e directly,
- but only the application of $\{e\}$ to arguments.
Example 2

- The function computing the **Fibonacci-numbers** \(\text{fib} \) is recursive.
 - (This is a weaker result than what we obtained above –
 - above we showed that it is even prim. rec.)
Fibonacci Numbers

Remember the defining equations for \(\text{fib} \):

\[
\begin{align*}
\text{fib}(0) &= \text{fib}(1) = 1, \\
\text{fib}(n + 2) &= \text{fib}(n) + \text{fib}(n + 1).
\end{align*}
\]

From these equations we obtain

\[
\text{fib}(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\text{fib}(n - 2) + \text{fib}(n - 1), & \text{otherwise}.
\end{cases}
\]

We show that there exists a recursive function \(g : \mathbb{N} \to \mathbb{N} \), s.t.

\[
g(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n - 2) + g(n - 1), & \text{otherwise}.
\end{cases}
\]
Fibonacci Numbers

Show: Exists \(g \) rec.

s.t. \(g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n \div 2) + g(n \div 1), & \text{otherwise.} \end{cases} \)

Shown as follows: Define a recursive \(f : \mathbb{N}^2 \to \mathbb{N} \) s.t.

\[
f(e, n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n \div 2) + \{e\}(n \div 1), & \text{otherwise.} \end{cases}
\]

Now let \(e \) be s.t.

\[
\{e\}(n) \simeq f(e, n).
\]

Then \(e \) fulfils the equations

\[
\{e\}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n \div 2) + \{e\}(n \div 1), & \text{otherwise.} \end{cases}
\]
Fibonacci Numbers

\[
\{e\}(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\{e\}(n \div 2) + \{e\}(n \div 1), & \text{otherwise.}
\end{cases}
\]

Let \(g = \{e\} \).
Then we get

\[
g(n) \simeq \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n \div 2) + g(n \div 1), & \text{otherwise.}
\end{cases}
\]

These are the defining equations for \(\text{fib} \).
One can show by induction on \(n \) that \(g(n) = \text{fib}(n) \) for all \(n \in \mathbb{N} \).
Therefore \(\text{fib} \) is recursive.
Similarly, one can introduce arbitrary partial recursive functions \(g \), where
\[g(\vec{n}) \] refers to arbitrary other values \(g(\vec{m}) \).

So, instead of arguing as before that \(\text{fib} \) is partial recursive, it suffices to say the following

By the recursion theorem, there exists a partial recursive function \(\text{fib} : \mathbb{N} \rightsquigarrow \mathbb{N}, \) s.t.
\[
\text{fib}(n) \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\text{fib}(n \div 2) + \text{fib}(n \div 1), & \text{otherwise.}
\end{cases}
\]

We can prove by induction on \(n \) that \(\forall n : \mathbb{N}. \text{fib}(n) \downarrow \) holds.

Therefore \(\text{fib} \) is total and therefore recursive.
This use of the recursion theorem corresponds to the recursive definition of functions in programming.

E.g. in Java one defines

```java
public static int fib(int n) {
    if (n == 0 || n == 1) {
        return 1;
    } else {
        return fib(n-1) + fib(n-2);
    }
}
```
Example 3

As in general programming, recursively defined functions need not be total:

- There exists a partial recursive function \(g : \mathbb{N} \rightleftarrows \mathbb{N} \) s.t.

\[
g(x) \simeq g(x) + 1.
\]

We get \(g(x) \uparrow \).

- The definition of \(g \) corresponds to the following Java definition:

```java
public static int g(int n)
{
    return g(n) + 1;
}
```

- When executing \(g(x) \), Java loops.
There exists a partial recursive function $g: \mathbb{N} \sim \rightarrow \mathbb{N}$ s.t.

$$g(x) \sim g(x + 1) + 1.$$

Note that that’s a “black hole recursion”, which is not solvable by a total function.

It is solved by $g(x) \uparrow$.

Note that a recursion equation for a function f cannot always be solved by setting $f(x) \uparrow$.

E.g. the recursion equation for fib can’t be solved by setting $\text{fib}(n) \uparrow$.
Ackermann Function

The Ackermann function is recursive:
Remember the defining equations:

\[
\begin{align*}
\text{Ack}(0, y) & = y + 1, \\
\text{Ack}(x + 1, 0) & = \text{Ack}(x, 1), \\
\text{Ack}(x + 1, y + 1) & = \text{Ack}(x, \text{Ack}(x + 1, y)).
\end{align*}
\]

From this we obtain

\[
\text{Ack}(x, y) = \begin{cases}
 y + 1, & \text{if } x = 0, \\
 \text{Ack}(x - 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
 \text{Ack}(x - 1, \text{Ack}(x, y - 1)), & \text{otherwise}.
\end{cases}
\]
Ackermann Function

\[\text{Ack}(x, y) = \begin{cases}
 y + 1, & \text{if } x = 0, \\
 \text{Ack}(x \div 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
 \text{Ack}(x \div 1, \text{Ack}(x, y - 1)), & \text{otherwise}.
\end{cases} \]

Define \(g \) partial recursive s.t.

\[g(x, y) \equiv \begin{cases}
 y + 1, & \text{if } x = 0, \\
 g(x \div 1, 1), & \text{if } x > 0 \land y = 0, \\
 g(x \div 1, g(x, y - 1)), & \text{if } x > 0 \land y > 0.
\end{cases} \]

\(g \) fulfils the defining equations of \(\text{Ack} \).

Proof that \(g(x, y) \equiv \text{Ack}(x, y) \) follows by main induction on \(x \), side-induction on \(y \). The details will not be given in the lecture. Jump over remaining slides.
Proof of Correctness of Ack

- We show by induction on x that $g(x, y)$ is defined and equal to $\text{Ack}(x, y)$ for all $x, y \in \mathbb{N}$:

 - Base case $x = 0$.

 $$g(0, y) = y + 1 = \text{Ack}(0, y).$$

 - Induction Step $x \rightarrow x + 1$. Assume

 $$g(x, y) = \text{Ack}(x, y).$$

 We show

 $$g(x + 1, y) = \text{Ack}(x + 1, y)$$

 by side-induction on y:
Proof of Correctness of Ack

Show \(g(x + 1, y) = \text{Ack}(x + 1, y) \)

- **Base case** \(y = 0 \):
 \[
g(x + 1, 0) \simeq g(x, 1) \quad \text{Main-IH} \quad \text{Ack}(x, 1) = \text{Ack}(x + 1, 0) .
 \]

- **Induction Step** \(y \rightarrow y + 1 \):
 \[
g(x + 1, y + 1) \simeq g(x, g(x + 1, y)) \quad \text{Main-IH} \quad g(x, \text{Ack}(x + 1, y)) \quad \text{Side-IH} \quad \text{Ack}(x, \text{Ack}(x + 1, y)) \quad = \quad \text{Ack}(x + 1, y + 1) .
 \]

Jump over remaining slides

(Proof of the Recursion Theorem)
Idea of Proof of the Rec. Theorem

Assume

\[f : \mathbb{N}^{n+1} \sim \to \mathbb{N} \ . \]

We have to find an \(e \) s.t.

\[\forall \bar{x} \in \mathbb{N}. \{e\}_n^1(\bar{x}) \sim f(e, \bar{x}) \ . \]

We set \(e = \forall \bar{x}. \{e_1\}_n^1(e_1, \bar{x}) \) for some \(e_1 \) to be determined.

Then the left and right hand side of the equation of the recursion theorem reads

\[\{e\}_n^1(\bar{x}) \sim \{\forall \bar{x}. \{e_1\}_n^1(e_1, \bar{x})\}_n^1(\bar{x}) \sim \{e_1\}_n^1(e_1, \bar{x}) \sim f(e, \bar{x}) \sim f(\forall \bar{x}. \{e_1\}_n^1(e_1, \bar{x}), \bar{x}) \]
Idea Proof of Rec. Theorem

We need to satisfy $\forall \vec{x} \in \mathbb{N}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x})$.

Let $e = \lambda \vec{x}. \{e\}^{n+1}(e_1, \vec{x})$.

$$\{e\}^n(\vec{x}) \simeq \{e_1\}^{n+1}(e_1, \vec{x})$$
$$f(e, \vec{x}) \simeq f(\lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})$$

So e_1 needs to fulfill the following equation:

$$\{e_1\}^{n+1}(e_1, \vec{x}) \simeq \{e\}^n(\vec{x})$$
$$\simeq f(e, \vec{x})$$
$$\simeq f(\lambda \vec{x}. \{e_1\}^{n+1}(e_1, \vec{x}), \vec{x})$$

This can be fulfilled if we define e_1 s.t.

$$\{e_1\}^{n+1}(e_2, \vec{x}) \simeq f(\lambda \vec{x}. \{e_2\}^{n+1}(e_2, \vec{x}), \vec{x})$$
Idea of Proof of Rec. Theorem

\[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(\lambda \bar{x}.\{e_2\}^{n+1}(e_2, \bar{x}), \bar{x}). \]

- By the S-m-n Theorem we can obtain this if we have \(e_1 \) s.t.
 \[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]

- There exists a partial recursive function \(g : \mathbb{N}^n + 1 \xrightarrow{\simeq} \mathbb{N} \), s.t.
 \[g(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]

- If \(e_1 \) is an index for \(g \) we obtain the desired equation.
 \[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]
Complete Proof of Rec. Theorem

Let \(e_1 \) be s.t.

\[
\{ e_1 \}^{n+1}(y, \vec{x}) \simeq f(S_n^1(y, y), \vec{x}) .
\]

Let \(e \) := \(S_n^1(e_1, e_1) \).

Then we have

\[
\{ e \}^n(\vec{x}) \simeq S_n^1(e_1, e_1) \]

S-m-n theorem

\[
\{ S_n^1(e_1, e_1) \}^n(\vec{x}) \simeq \{ e_1 \}^{n+1}(e_1, \vec{x})
\]

Def of \(e_1 \)

\[
S_n^1(\vec{e}, \vec{x})
\]

\[
f(\vec{e}, \vec{x}) .
\]