7. The Recursion Theorem

Main result in this section: **Kleene’s Recursion Theorem.**

Recursive functions are closed under a very general form of recursion.

For the proof we will use the **S-m-n-theorem.**

Used in many proofs in computability theory.

However, both the S-m-n theorem and the proof of the Recursion theorem will be omitted this year.

Jump to Kleene’s Recursion Theorem.

The S-m-n Theorem

- Assume \(f : \mathbb{N}^{m+n} \rightarrow \mathbb{N} \) partial recursive.
- Fix the first \(m \) arguments (say \(\vec{l} := l_0, \ldots, l_{m-1} \)).
- Then we obtain a partial recursive function

\[
g : \mathbb{N}^n \rightarrow \mathbb{N}, \quad g(\vec{x}) \simeq f(\vec{l}, \vec{x})\]

The S-m-n theorem expresses that we can compute a Kleene index of \(g \)

i.e. an \(e' \) s.t. \(g = \{e'\}^n \)

from a Kleene index of \(f \) and \(\vec{l} \) primitive recursively.

Notation

\[
\{S_n^m(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}).
\]

Assume \(t \) is an expression depending on \(n \) variables \(\vec{x} \),

s.t. we can compute \(t \) from \(\vec{x} \) partial recursively.

Then \(\lambda \vec{x}.t \) is any natural number \(e \) s.t. \(\{e\}^n(\vec{x}) \simeq t \).

Then we will have

\[
S_n^m(e, \vec{l}) = \lambda \vec{x}.\{e\}^{m+n}(\vec{l}, \vec{x}).
\]
Theorem 7.1 (S-m-n Theorem)

- Assume \(m, n \in \mathbb{N} \).
- There exists a primitive recursive function
 \(S^m_n : \mathbb{N}^{m+1} \rightarrow \mathbb{N} \)
 s.t. for all \(\vec{l} \in \mathbb{N}^m, \vec{x} \in \mathbb{N}^n \)
 \(\{S^m_n(e, \vec{l})\}^n(\vec{x}) \simeq \{e\}^{m+n}(\vec{l}, \vec{x}) \).

Proof of S-m-n Theorem

Let \(T \) be a TM encoded as \(e \).
- A Turing machine \(T' \) corresponding to \(S^m_n(e, \vec{l}) \) should be
 s.t.
 \(T'^{(n)}(\vec{x}) \simeq T^{(n+m)}(\vec{l}, \vec{x}) \).

1. **Initial configuration:**
 - \(\vec{x} \) written on the tape,
 - head pointing to the leftmost bit:
 \[
 \cdots \| \| \| \text{bin}(x_0) \| \| \cdots \| \| \text{bin}(x_{n-1}) \| \| \cdots
 \]

2. **T' writes first binary representation of \(\vec{l} = l_0, \ldots, l_{n-1} \)**
 - terminates this step with the head pointing to the most significant bit of bin(\(l_0 \)).
 - So configuration after this step is:
 \[
 \| \| \| \text{bin}(l_0) \| \| \cdots \| \| \text{bin}(l_{m-1}) \| \| \text{bin}(x_0) \| \| \cdots \| \| \text{bin}(x_{n-1})
 \]

Proof of S-m-n Theorem

- \(T \) is TM for \(e \).
- Want to define \(T' \) s.t. \(T'^{(n)}(\vec{x}) \simeq T^{(n+m)}(\vec{l}, \vec{x}) \)
- \(T' \) can be defined as follows:

1. **The initial configuration is:**
 - \(\vec{x} \) written on the tape,
 - head pointing to the left most bit:
 \[
 \cdots \| \| \| \text{bin}(x_0) \| \| \cdots \| \| \text{bin}(x_{n-1}) \| \| \cdots
 \]
 \[
 \]

2. **\(T' \) writes first binary representation of \(\vec{l} = l_0, \ldots, l_{n-1} \)**
 - in front of this.
 - terminates this step with the head pointing to the most significant bit of bin(\(l_0 \)).
 - So configuration after this step is:
 \[
 \| \| \| \text{bin}(l_0) \| \| \cdots \| \| \text{bin}(l_{m-1}) \| \| \text{bin}(x_0) \| \| \cdots \| \| \text{bin}(x_{n-1})
 \]

Proof of the S-m-n Theorem

T is TM for e.
Want to define T' s.t. T'(n)(x) \simeq T(n+m)(\bar{l}, x).
Configuration after first step:
\[
\begin{array}{cccccccc}
\text{bin}(l_0) & \ddots & \ldots & \text{bin}(l_{m-1}) & \text{bin}(x_0) & \ddots & \ldots & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]

Then T' runs T, starting in this configuration.
It terminates, if T terminates.
The result is
\[
\simeq T(m+n)(\bar{l}, x),
\]
and we get therefore
\[
T'(n)(x) \simeq T(m+n)(\bar{l}, x)
\]
as desired.

Proof of the S-m-n Theorem

A code for T' can be obtained from a code for T and from \bar{l} as follows:

- One takes a Turing machine T'', which writes the binary representations of
 \[
 \bar{l} = l_0, \ldots, l_{m-1}
 \]
in front of its initial position (separated by a blank and with a blank at the end), and terminates at the left most bit.
- It's a straightforward exercise to write a code for the instructions of such a Turing machine, depending on \bar{l}, and show that the function defining it is primitive recursive.

Proof of S-m-n Theorem

T is TM for e.

Want to define T' s.t. T'(n)(x) \simeq T(n+m)(\bar{l}, x).

Configuration after first step:
\[
\begin{array}{cccccccc}
\text{bin}(l_0) & \ddots & \ldots & \text{bin}(l_{m-1}) & \text{bin}(x_0) & \ddots & \ldots & \text{bin}(x_{n-1}) \\
\uparrow
\end{array}
\]

Then T' runs T, starting in this configuration.
It terminates, if T terminates.
The result is
\[
\simeq T(m+n)(\bar{l}, x),
\]
and we get therefore
\[
T'(n)(x) \simeq T(m+n)(\bar{l}, x)
\]
as desired.

Assume, the terminating state of T'' has Gödel number (i.e. code) s, and that all other states have Gödel numbers < s.

Then one appends to the instructions of T'' the instructions of T, but with the states shifted, so that the new initial state of T is the final state s of T'' (i.e. we add s to all the Gödel numbers of states occurring in T).
This can be done as well primitive recursively.
Proof of the S-m-n Theorem

So a code for \(T'' \) can be defined primitive recursively depending on a code \(e \) for \(T \) and \(\vec{l} \), and \(S^m_n \) is the primitive recursive function computing this. With this function it follows now that, if \(e \) is a code for a TM, then

\[
\{S^m_n(e, \vec{l})\}^n(x) \simeq \{e\}^{n+m}(\vec{l}, \vec{x}) .
\]

This equation holds, even if \(e \) is not a code for a TM: In this case \(\{e\}^{m+n} \) interprets \(e \) as if it were the code for a valid TM \(T \).

\[e' := S^m_n(e, \vec{l}) \] will have the same deficiencies as \(e \), but when applying the Kleene-brackets, it will be interpreted as a TM \(T' \) obtained from \(e' \) in the same way as we obtained \(T \) from \(e \), and therefore

\[
\{e'\}^n(x) \simeq T'^{(n)}(x) \simeq T^{(n+m)}(\vec{l}, \vec{x}) \simeq \{e\}^{n+m}(\vec{l}, \vec{x}) .
\]

So we obtain the desired result in this case as well.

Proof of the S-m-n Theorem

(A code for such a valid TM is obtained by deleting any instructions \(\text{encode}(q, a, q', a', D) \) in \(e \) s.t. there exists an instruction \(\text{encode}(q, a, q'', a'', D') \) occurring before it in the sequence \(e \), and by replacing all directions \(> 1 \) by \([R] = 1 \).)

Kleene’s Recursion Theorem

Assume \(f : \mathbb{N}^{n+1} \simeq \mathbb{N} \) partial recursive.

Then there exists an \(e \in \mathbb{N} \) s.t.

\[
\{e\}^n(x) \simeq f(e, \vec{x}) .
\]

(Here \(\vec{x} = x_0, \ldots, x_{n-1} \).)
Example 1

Kleene’s Rec. Theorem: \(\exists e. \forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}). \)

There exists an \(e \) s.t.

\[\{e\}(x) \simeq e + 1 . \]

For showing this take in the Recursion Theorem

\[f(e, n) := e + 1. \]

Then

\[\{e\}(x) \simeq f(e, x) \simeq e + 1 . \]

Remark

Kleene’s Rec. Theorem: \(\exists e. \forall \vec{x}. \{e\}^n(\vec{x}) \simeq f(e, \vec{x}). \)

Applications as Example 1 are usually not very useful.

Usually, when using the Rec. Theorem, one

- doesn’t use the index \(e \) directly,
- but only the application of \(\{e\} \) to arguments.

Example 2

- The function computing the **Fibonacci-numbers** \(\text{fib} \) is recursive.
 - (This is a weaker result than what we obtained above –
 - above we showed that it is even prim. rec.)

Fibonacci Numbers

Remember the defining equations for \(\text{fib} \):

\[
\begin{align*}
\text{fib}(0) &= 1, \\
\text{fib}(n + 2) &= \text{fib}(n) + \text{fib}(n + 1).
\end{align*}
\]

From these equations we obtain

\[
\text{fib}(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
\text{fib}(n - 2) + \text{fib}(n - 1), & \text{otherwise.}
\end{cases}
\]

We show that there exists a recursive function \(g : \mathbb{N} \to \mathbb{N}, \)

s.t.

\[
\text{fib}(n) = \begin{cases}
1, & \text{if } n = 0 \text{ or } n = 1, \\
g(n - 2) + g(n - 1), & \text{otherwise.}
\end{cases}
\]
Fibonacci Numbers

Show: Exists \(g \) rec.

s.t. \(g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n - 2) + g(n - 1), & \text{otherwise.} \end{cases} \)

Shown as follows: Define a recursive \(f : \mathbb{N}^2 \rightarrow \mathbb{N} \) s.t.

\[
f(e, n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n - 2) + \{e\}(n - 1), & \text{otherwise.} \end{cases}
\]

Now let \(e \) be s.t.

\[
\{e\}(n) \simeq f(e, n).
\]

Then \(e \) fulfills the equations

\[
\{e\}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \{e\}(n - 2) + \{e\}(n - 1), & \text{otherwise.} \end{cases}
\]

Let \(g = \{e\} \).

Then we get

\[
g(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ g(n - 2) + g(n - 1), & \text{otherwise.} \end{cases}
\]

These are the defining equations for \(\text{fib} \).

One can show by induction on \(n \) that \(g(n) = \text{fib}(n) \) for all \(n \in \mathbb{N} \).

Therefore \(\text{fib} \) is recursive.

General Applic. of Rec. Theorem

Similarly, one can introduce arbitrary partial recursive functions \(g \), where

\(g(\vec{m}) \) refers to arbitrary other values \(g(\vec{m}) \).

So, instead of arguing as before that \(\text{fib} \) is partial recursive, it suffices to say the following

By the recursion theorem, there exists a partial recursive function \(\text{fib} : \mathbb{N} \rightarrow \mathbb{N} \) s.t.

\[
\text{fib}(n) \simeq \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1, \\ \text{fib}(n - 2) + \text{fib}(n - 1), & \text{otherwise.} \end{cases}
\]

We can prove by induction on \(n \) that \(\forall n : \mathbb{N}. \text{fib}(n) \downarrow \) holds.

Therefore \(\text{fib} \) is total and therefore recursive.

This use of the the recursion theorem corresponds to the recursive definition of functions in programming.

E.g. in Java one defines

```java
public static int fib(int n){
    if (n == 0 || n == 1){
        return 1;
    } else{
        return fib(n-1) + fib(n-2);
    }
}
```

General Applic. of Rec. Theorem
Example 3

As in general programming, recursively defined functions need not be total:

- There exists a partial recursive function $g : \mathbb{N} \to \mathbb{N}$ s.t.

 \[g(x) \simeq g(x) + 1 \]

- We get $g(x) \uparrow$.

- The definition of g corresponds to the following Java definition:

  ```java
  public static int g(int n)
  {
    return g(n) + 1;
  }
  ```

- When executing $g(x)$, Java loops.

Example 4

- There exists a partial recursive function $g : \mathbb{N} \to \mathbb{N}$ s.t.

 \[g(x) \simeq g(x) + 1 \]

 Note that that’s a “black hole recursion”, which is not solvable by a total function.

- It is solved by $g(x) \uparrow$.

- Note that a recursion equation for a function f cannot always be solved by setting $f(x) \uparrow$.

 - E.g. the recursion equation for fib can’t be solved by setting $\text{fib}(n) \uparrow$.

Ackermann Function

- The Ackermann function is recursive:

 Remember the defining equations:

 \[
 \begin{align*}
 \text{Ack}(0, y) &= y + 1, \\
 \text{Ack}(x + 1, 0) &= \text{Ack}(x, 1), \\
 \text{Ack}(x + 1, y + 1) &= \text{Ack}(x, \text{Ack}(x + 1, y)).
 \end{align*}
 \]

- From this we obtain

 \[
 \text{Ack}(x, y) = \begin{cases}
 y + 1, & \text{if } x = 0, \\
 \text{Ack}(x \div 1, 1), & \text{if } x > 0 \text{ and } y = 0, \\
 \text{Ack}(x \div 1, \text{Ack}(x, y \div 1)), & \text{otherwise}.
 \end{cases}
 \]

- Define g partial recursive s.t.

 \[
 g(x, y) \simeq \begin{cases}
 y + 1, & \text{if } x = 0, \\
 g(x \div 1, 1), & \text{if } x > 0 \land y = 0, \\
 g(x \div 1, g(x, y \div 1)), & \text{if } x > 0 \land y > 0.
 \end{cases}
 \]

 \[g \text{ fulfils the defining equations of } \text{Ack}. \]

 - Proof that $g(x, y) \simeq \text{Ack}(x, y)$ follows by main induction on x, side-induction on y. The details will not be given in the lecture. **Jump over remaining slides.**
Proof of Correctness of **Ack**

- We show by induction on x that $g(x, y)$ is defined and equal to $\text{Ack}(x, y)$ for all $x, y \in \mathbb{N}$:
 - **Base case** $x = 0$.

 \[g(0, y) = y + 1 = \text{Ack}(0, y) \, . \]
 - **Induction Step** $x \rightarrow x + 1$. Assume

 \[g(x, y) = \text{Ack}(x, y) \, . \]

 We show

 \[g(x + 1, y) = \text{Ack}(x + 1, y) \]

 by side-induction on y:

Proof of Correctness of Ack

Show $g(x + 1, y) = \text{Ack}(x + 1, y)$

- **Base case** $y = 0$:

 \[g(x + 1, 0) \simeq g(x, 1) \, \text{Main-IH} \]

 \[\simeq \text{Ack}(x, 1) = \text{Ack}(x + 1, 0) \, . \]
- **Induction Step** $y \rightarrow y + 1$:

 \[g(x + 1, y + 1) \simeq g(x, g(x + 1, y)) \, \text{Main-IH} \]

 \[\simeq g(x, \text{Ack}(x + 1, y)) \, \text{Side-IH} \]

 \[\simeq \text{Ack}(x, \text{Ack}(x + 1, y)) \]

 \[= \text{Ack}(x + 1, y + 1) \, . \]

Jump over remaining slides

(Proof of the Recursion Theorem)

Idea of Proof of the Recursion Theorem

Assume

\[f : \mathbb{N}^{n+1} \simeq \mathbb{N} \, . \]

We have to find an e s.t.

\[\forall \bar{x} \in \mathbb{N}. \{e\}^n(\bar{x}) \simeq f(e, \bar{x}) \, . \]

- We set $e = \lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x})$ for some e_1 to be determined.
- Then the left and right hand side of the equation of the recursion theorem reads

\[
\{e\}^n(\bar{x}) \simeq \{\lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x})\}^n(\bar{x})
\]

\[
\simeq \{e_1\}^{n+1}(e_1, \bar{x})
\]

\[
f(e, \bar{x}) \simeq f(\lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x}), \bar{x})
\]

- **So e_1 needs to fulfill the following equation:**

\[
\{e_1\}^{n+1}(e_1, \bar{x}) \simeq \{e\}^n(\bar{x})
\]

\[
\simeq f(e, \bar{x})
\]

\[
\simeq f(\lambda \bar{x}. \{e_1\}^{n+1}(e_1, \bar{x}), \bar{x})
\]

- This can be fulfilled if we define e_1 s.t.

\[
\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(\lambda \bar{x}. \{e_2\}^{n+1}(e_2, \bar{x}), \bar{x})
\]
Idea of Proof of Rec. Theorem

\[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(\lambda \bar{x}. \{e_2\}^{n+1}(e_2, \bar{x})). \]

- By the S-m-n Theorem we can obtain this if we have \(e_1 \) s.t.
 \[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]
- There exists a partial recursive function \(g : \mathbb{N}^{n+1} \simeq \mathbb{N} \) s.t.
 \[g(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]
- If \(e_1 \) is an index for \(g \) we obtain the desired equation.
 \[\{e_1\}^{n+1}(e_2, \bar{x}) \simeq f(S^1_n(e_2, e_2), \bar{x}) \]

Complete Proof of Rec. Theorem

Let \(e_1 \) be s.t.

\[\{e_1\}^{n+1}(y, \bar{x}) \simeq f(S^1_n(y, y), \bar{x}) . \]

Let \(e := S^1_n(e_1, e_1) \).

Then we have

\[
\begin{align*}
\{e\}^n(\bar{x}) & \leq S^1_n(e_1, e_1) \simeq \{S^1_n(e_1, e_1)\}^n(\bar{x}) \\
\text{S-m-n theorem} & \simeq \{e_1\}^{n+1}(e_1, \bar{x}) \\
\text{Def of } e_1 & \simeq f(S^1_n(e_1, e_1), \bar{x}) \\
e & \leq S^1_n(e_1, e_1) \simeq f(\bar{x}).
\end{align*}
\]