CS_411
CRITICAL SYSTEMS
Coursework 1 (5%)

Due: Friday, 1 March 2002, 12:00

Question 1

Solve the following two goals on the theorem prover Agda. You should check using agda-term-check-buffer, whether you haven’t made a circular definition.
The source for this question can be found in the Linux lab under ∼csetzer/examples/ex1.agda.

A :: Type
 = Set

B :: Type
 = data

C :: Type
 = data S

AB :: Type
 = sig{a:: A;
 b:: B}

D :: Type
 = sig{q:: (AB -> C) -> (A -> (B-> C));
 r:: (A -> (B->C))-> (AB -> C)}

{- Try to solve this goal -}

p:: D
 = {! !}

E :: Type
 = sig{q:: (A -> (B -> C)) -> ((A ->B)-> (A->C));
 r:: ((A ->B)-> (A->C)) -> (A -> (B->C))}

{- Try to solve this goal-}

q:: E
 = {! !}
Question 2

The source for this question can be found in the Linux lab under ∼csetzer/examples/ex2.agda.

(a) Assume the following definitions in Agda:

\[
N :: \text{Set} \\
= \text{data } Z \mid S (n :: N)
\]

{- That was the type of natural numbers -}

\[
\text{One :: Set} \\
= \text{data ast}
\]

\[
\text{Vec } (A :: \text{Set}) \\
(n :: N) \\
:: \text{Set} \\
= \text{case } n \text{ of } \{ \\
(Z) \rightarrow \text{One} ; \\
(S n') \rightarrow \text{sig\{a::A; B:: Vec A n\}} ; \}
\]

{- Vec A n is A^n if A is any Set -}

Here Vec A n is the type of vectors of elements of type A of length n.
Define, depending on \(n, m :: N\) the type of \(n \times m\)-matrices, using the above definitions.

(b) Assume additionally the following definiton of the type Bool of Booleans:

\[
\text{Bool :: Set} \\
= \text{data } false \mid true
\]

Use this definition in order to define the type of digital components, where a digital component consists of natural numbers \(n, m\) and a function from \(\text{Bool}^n\) to \(\text{Bool}^m\).

Question 3

Solve the following two goals on the theorem prover Agda. You should check using agda-term-check-buffer, whether you haven’t made a circular definition.
The source for this question can be found in the Linux lab under ∼csetzer/examples/ex3.agda.
package Ex (X,Y,Z:: Type) where

S :: Type
 = sig{ fst:: X; snd:: X-> Y}

T :: Type
 = S -> Y

P :: T
 = \(h::S) -> h.snd h.fst

Q :: (((X -> Y)-> Z)-> Z) -> X -> (Y -> Z)-> Z
 = {! !}

R :: ((X ->Z)-> Z) -> (((X->Y)->Z)->Z) -> (Y->Z)->Z
 = {! !}