
CS 313 High Integrity Systems/
CS M13 Critical Systems

Course Notes
Chapter 6: Fault Tolerance

Anton Setzer
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/∼csetzer/lectures/
critsys/11/index.html

December 8, 2011

CS 313/CS M13 Chapter 6 1/ 62

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Chapter 6 2/ 62

6 (a) Introduction

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (a) 3/ 62

6 (a) Introduction

(a) Introduction

I Faults are essentially unavoidable.

I Fault tolerance aims at designing a system in such a way that faults
do not result in system failure.

I All techniques are based on some degree of redundancy.
I Many reasons for introducing fault tolerance – it can be reliability,

availability, dependability, safety, security.
I E.g. main memory in computers has always some error checking

mechanism in order to tolerate errors due to radioactive particles.
Goal is in this case high degree of availability (or reliability).

CS 313/CS M13 Sect. 6 (a) 4/ 62

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/11/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/11/index.html


6 (a) Introduction

Historic Remark

I Fault tolerance already present in early computers.
I The EDVAC (designed 1949) had duplicated ALUs in order to detect

errors in calculations.

I Von Neumann (1956) developed the theoretical basis for fault
tolerance.

CS 313/CS M13 Sect. 6 (a) 5/ 62

6 (b) Types of Faults

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (b) 6/ 62

6 (b) Types of Faults

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CS 313/CS M13 Sect. 6 (b) 7/ 62

6 (c) Fault Models

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (c) 8/ 62



6 (c) Fault Models

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CS 313/CS M13 Sect. 6 (c) 9/ 62

6 (d) Fault Coverage

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (d) 10/ 62

6 (d) Fault Coverage

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CS 313/CS M13 Sect. 6 (d) 11/ 62

6 (e) Redundancy

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (e) 12/ 62



6 (e) Redundancy

(e) Redundancy

I
::::::::::::::
Redundancy is the use of additional elements within a system which
would not be required if the system was free of faults.

I Already the early approaches towards fault-tolerant system used
duplicated hardware modules.

I For instance by using the triple modular redundancy (TMR) system.

CS 313/CS M13 Sect. 6 (e) 13/ 62

6 (e) Redundancy

Triple Modular Redundancy (TMR)

I In the TMR system, we have 3 identical hardware modules, and one
voting module.

I The voting element will have as output the output of the majority of
the modules.

I If one module fails, the majority of the three will be correct.

I If two modules fail, TMR might make a wrong decision.

I Problem: faults in the voting element are not tolerated.
However, the voting element will usually be much simpler than the
modules, and can therefore be designed with a higher degree of
reliability.

CS 313/CS M13 Sect. 6 (e) 14/ 62

6 (e) Redundancy

Triple Modular Redundancy (TMR)

Input Voting Element

Module 1

Module 2

Module 3

CS 313/CS M13 Sect. 6 (e) 15/ 62

6 (e) Redundancy

Forms of Redundancy

I
:::::::::::
Hardware

::::::::::::::
redundancy.

Use of redundant hardware. E.g. the TMR above.

I
::::::::::
Software

::::::::::::::
redundancy.

Use of redundant software.

I
:::::::::::::
Information

::::::::::::::
redundancy.

Use of redundant information.
I E.g. parity bits and other error detecting/correcting codes.
I E.g. extra data about persons (not only student number but as well

name).

CS 313/CS M13 Sect. 6 (e) 16/ 62



6 (e) Redundancy

Forms of Redundancy

I
:::::::::::
Temporal

::::::::::::::
redundancy.

I Used in order to tolerate or detect transient faults.
I E.g. repeating calculations and comparison of the results obtained.

CS 313/CS M13 Sect. 6 (e) 17/ 62

6 (e) Redundancy

Design Diversity

I Problem with TMR above is that
I it doesn’t cover design faults in the modules,
I that if one module fails, it is likely that identical modules fail at the

same time.

I For software faults, doubling the program doesn’t help at all.
I Therefore, one aims at combining redundancy with some degree of

diversity.
I E.g. Use of hardware modules from different vendors.
I E.g. Use of different architectures for different modules.
I E.g. Writing of software by different groups or even companies, using

different programming languages.

CS 313/CS M13 Sect. 6 (e) 18/ 62

6 (e) Redundancy

Limitations of Design Diversity

I Problem: The same typical software errors, especially (but not only)
software specification errors, are made independently by different
teams.

I Has been demonstrated by studies.

CS 313/CS M13 Sect. 6 (e) 19/ 62

6 (f) Fault Detection Techniques

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (f) 20/ 62



6 (f) Fault Detection Techniques

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CS 313/CS M13 Sect. 6 (f) 21/ 62

6 (g) Hardware Fault Tolerance

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (g) 22/ 62

6 (g) Hardware Fault Tolerance

(g) Hardware Fault Tolerance

I There are 3 methods for obtaining hardware fault tolerance:
I (i)

::::::
Static

:::::::::::::
redundancy uses fault masking, which means it hides

faults, so that the system works still correctly even if a fault occurs.
I (ii)

:::::::::
Dynamic

:::::::::::::
redundancy uses fault detection. If a fault occurs,

the system reconfigures itself in order to nullify the effects of faults.
I (iii)

:::::::
Hybrid

:::::::::::::
approaches use fault masking in order to prevent errors

from propagating through the system, and fault detection in order to
reconfigure the systems so that faulty units are removed from the
system.

CS 313/CS M13 Sect. 6 (g) 23/ 62

6 (g) Hardware Fault Tolerance

(i) Static Redundancy

I Use of voting mechanisms in order to compare the output of
modules and mask the effects of faults.

I We have seen already TMR (triple modular redundancy) systems
(repeated on next slide)

I TMR prevents single-point failures in the modules.

CS 313/CS M13 Sect. 6 (g) 24/ 62



6 (g) Hardware Fault Tolerance

Triple Modular Redundancy (TMR)

Input Voting Element

Module 1

Module 2

Module 3

CS 313/CS M13 Sect. 6 (g) 25/ 62

6 (g) Hardware Fault Tolerance

Modular Redundancy

I One problem is that sensors might fail.
I Therefore one usually adds static redundancy to the sensors using

doubled or tripled sensors and voting on them.
I Problem is that sensor data are digitised analogue data,

I which are therefore usually floating point values, which never coincide
completely,

I which are usually taken at slightly different times and physical locations,
and are therefore never identical and usually not synchronised.

I Voting therefore more complicated,
I and it might be impractical to perform it directly by hardware.

CS 313/CS M13 Sect. 6 (g) 26/ 62

6 (g) Hardware Fault Tolerance

Triplicated Voting

I One problem is the danger of a failure of the voting mechanism itself.
I In order to prevent single point failures in the voting elements, one

can
::::::::::
triplicate

::::
the

::::::::
voting, and pass the 3 outputs of the voting

elements on to the next modules.
I See next slide.

CS 313/CS M13 Sect. 6 (g) 27/ 62

6 (g) Hardware Fault Tolerance

Module 1.1

Module 1.2

Module 1.3Input 3

Input 2

Input 1 Voter 1.1

Voter 1.2

Voter 1.3

Module 2.1

Module 2.2

Module 2.3

Voter 2.1

Voter 2.2

Voter 2.3

Output 1

Output 2

Output 3

CS 313/CS M13 Sect. 6 (g) 28/ 62



6 (g) Hardware Fault Tolerance

Limitations of TMR

I Helps only against random faults, not against systematic faults, which
usually affect all modules simultaneously.

I Doesn’t help against simultaneous failures of two or more modules.

I Necessary to add monitoring of discrepancies in the voting, in order to
detect failures and be able to remove them during maintenance.

CS 313/CS M13 Sect. 6 (g) 29/ 62

6 (g) Hardware Fault Tolerance

N-Modular Redundancy

I
::::::::::::
N-Modular

:::::::::::::::
Redundancy (

:::::
NMR) uses N instead of 3 modules and

voting among those.
I The system will be able to tolerate the failure of N−1

2 modules without
producing a system failure.

I Disadvantage: Additional cost, size, weight and power consumption.
I In practice the number of identical modules is rarely greater than 4

CS 313/CS M13 Sect. 6 (g) 30/ 62

6 (g) Hardware Fault Tolerance

Implementation of the Voter

I Implementation of the voting element by hardware:
I If one has 3 inputs i1, i2 i3, the best out of the three is obtained by the

Boolean formula

(i1 ∧ i2) ∨ (i1 ∧ i3) ∨ (i2 ∧ i2)

I This can be implemented by a very simple circuit.
I Therefore it can be designed in a highly reliable way.
I Problems

I This arrangement doesn’t provide the possibility for monitoring of
discrepancies.

I One often has a large amount of data to compare (not only one bit),
therefore the voting elements can become still complicated.

CS 313/CS M13 Sect. 6 (g) 31/ 62

6 (g) Hardware Fault Tolerance

Implementation of the Voter

I Implementation of the voting element by software.
I Advantages:

I More complex voting possible.
I Monitoring of discrepancies easy.

I Disadvantages:
I Much longer response times than hardware voting (which reacts with

almost no delay).
Particular problem since safety critical systems are often real time
systems (aerospace!!).

I Higher complexity of the underlying computers and the software results
in lower reliability.

CS 313/CS M13 Sect. 6 (g) 32/ 62



6 (g) Hardware Fault Tolerance

(ii) Dynamic Redundancy

I In dynamic redundancy one uses one unit, which is normally in use,
and one or more standby systems, which are available, if the main
unit fails.

I Requires less units than static redundancy (where all units have at least
to be tripled).

I Necessary to have good fault detection mechanisms, as discussed in
Subsect. (f).

CS 313/CS M13 Sect. 6 (g) 33/ 62

6 (g) Hardware Fault Tolerance

Standby Spare Arrangement

I In a
:::::::::
standby

:::::::
spare

:::::::::::::::
arrangement, one module is operated with

some fault detection mechanism (as discussed in Subsect. (f)).

I Another module is on standby.

I Unless a fault is detected, the output of the first module is taken as
output of the system.

I In case a fault is detected,
I the standby module is activated,
I the faulty module is deactivated,
I and the output is taken from the standby module.

CS 313/CS M13 Sect. 6 (g) 34/ 62

6 (g) Hardware Fault Tolerance

Standby Spare Arrangement

Operating Module

Standby Module

Fault Detector

Activation

Switch

Input
Output

CS 313/CS M13 Sect. 6 (g) 35/ 62

6 (g) Hardware Fault Tolerance

Standby Spare Arrangement

I The standby module can be
I on

::::
cold

:::::::::
standby, which means it is switched off.

I Disadvantage:
I In case of a fault the disruption is longer, since it takes a while before

the standby module is activated.
I Fault detection mechanism cannot make use of the data processed by

the standby module.

CS 313/CS M13 Sect. 6 (g) 36/ 62



6 (g) Hardware Fault Tolerance

Standby Spare Arrangement

I The standby module can be
I on

:::
hot

:::::::::
standby

I Means that the standby module is effectively processing the input, but
the output is dismissed.

I Disadvantage:
I More power consumption.
I The standby unit is subject to the same operating stress as main

module, therefore the likelihood of simultaneous failures of the main
and the standby module is higher.

CS 313/CS M13 Sect. 6 (g) 37/ 62

6 (g) Hardware Fault Tolerance

Multiple standby modules

I One can extend the above by having more than one standby module.

CS 313/CS M13 Sect. 6 (g) 38/ 62

6 (g) Hardware Fault Tolerance

Self-Checking Pairs

I A
:::::::::::::::
self-checking

:::::::
pairs arrangement consists of

I one main module,
I one checking module,

I both of which receive the same input,

I a comparator, which checks, whether the output of the main module
coincides with the output of the checking module.

I The output of the main module (not of the checking module) and
the result of the comparison are passed onwards.

CS 313/CS M13 Sect. 6 (g) 39/ 62

6 (g) Hardware Fault Tolerance

Self-Checking Pairs

I It is not part of the self-checking pairs arrangements to reconfigure
itself or mask errors in case the output of the two modules doesn’t
coincide.

I Therefore the arrangement itself does not provide fault tolerance, but
only error detection.

I However, the output of the comparison can be used for instance in
dynamic fault-tolerant systems in order to carry out reconfiguration in
a standby spare arrangement.

CS 313/CS M13 Sect. 6 (g) 40/ 62



6 (g) Hardware Fault Tolerance

Self-Checking Pairs

Main Module

Checking Module
Failure detected

Output

Input

Comparator

CS 313/CS M13 Sect. 6 (g) 41/ 62

6 (g) Hardware Fault Tolerance

Implementation of the Comparator

I The comparator can be implemented by hardware.
I One can take the disjunction of the XOR of all the one-bit signal lines

from both modules (see next slide).
I Note that the XOR of two signals is 1 iff the two signals don’t coincide.
I The disjunction of the XORs is therefore true, iff there was at least one

disagreement between the bits of the signal, i.e. if there was a fault.

CS 313/CS M13 Sect. 6 (g) 42/ 62

6 (g) Hardware Fault Tolerance

Comparator (Hardware Implementation)

Main Module

Checking 

Module

Output 1

Output 2

Output 3

Output 1

Output 2

Output 3

Fault Detected

CS 313/CS M13 Sect. 6 (g) 43/ 62

6 (g) Hardware Fault Tolerance

Comparator (Hardware Implementation)

I The advantages/disadvantages of the hardware implementation are
similar to those of the TMR.

I In order to cover against a single-point failure in the comparator, one
can duplicate the comparator and take the disjunction of the results of
all the comparators.

CS 313/CS M13 Sect. 6 (g) 44/ 62



6 (g) Hardware Fault Tolerance

Implementation of the Comparator

I The comparator can as well be implemented by software, in case the
modules include a processor.

I Then one can add a dual port memory, in which the output of both
modules is written.

I Then both processors compare after they have computed their results
these results with the result obtained by the other processor.

I Should be done by both processors in order to protect against a
single-point failures during the comparison phase.

I If there is a discrepancy, then a fail signal is output on a special line.
I The disjunction of the two fail signals indicates that a failure has been

detected.

CS 313/CS M13 Sect. 6 (g) 45/ 62

6 (g) Hardware Fault Tolerance

Comparator (Software Implementation)

Main Module

Checking Module

(With Processor and 

Memory)

Memory)

(With Processor and

Dual Port Memory

Output

Fail

Fail

Fail

CS 313/CS M13 Sect. 6 (g) 46/ 62

6 (g) Hardware Fault Tolerance

(iii) Hybrid Redundancy

I Use of a combination of voting, fault detection and module switching.

CS 313/CS M13 Sect. 6 (g) 47/ 62

6 (g) Hardware Fault Tolerance

N-Modular Redundancy with Spares

I Use of N modules plus M spares connected to a voter.
I Initially N modules take input in parallel, and their results are

compared.
I In case there is no disagreements, the result is passed on as output.
I In case of a disagreement,

I the output given by the majority of the active modules is passed on as
output,

I the faulty module is removed,
I one of the spare modules is activated,
I and afterwards the system continues using the N main modules (of

which one is the spare one) and M-1 spares.

CS 313/CS M13 Sect. 6 (g) 48/ 62



6 (g) Hardware Fault Tolerance

N-Modular Redundancy with Spares

Main Module 1

Main Module 2

Main Module N

Spare Module 1

Spare Module 2

Spare Module M

Switch Voter

Output

Disagreement

Detector

Input

CS 313/CS M13 Sect. 6 (g) 49/ 62

6 (g) Hardware Fault Tolerance

N-Modular Redundancy with Spares

I System tolerates up to N−1
2 simultaneous faults in the main modules,

and can compensate up to M faults by using the spare modules.

I Analysis:
I Problem:

Doesn’t tolerate single-point failures in the switch, the voter and the
disagreement detector.

I Advantage:
A good compromise between the advantages of

I static redundancy
I immediate fault masking

I and dynamic redundancy
I removal of faulty modules,
I monitoring of faults in the system.

CS 313/CS M13 Sect. 6 (g) 50/ 62

6 (g) Hardware Fault Tolerance

Module Synchronisation

I In all the above techniques one needs to compare the outputs of
different modules.

I Problem: If the modules don’t share the same clock their output will
not be synchronised.

I One solution is that all processors share the same clock.

I Then the modules are said to be in
::::
lock

::::
step.

I Problem: Single-point failures in the clock are not tolerated and not
detected.

I Otherwise one needs to construct the voting and fault detection
mechanisms in such a way that problems with synchronisation are
taken into account.

I Easier, if this is done by software.

CS 313/CS M13 Sect. 6 (g) 51/ 62

6 (h) Software Fault Tolerance

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (h) 52/ 62



6 (h) Software Fault Tolerance

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CS 313/CS M13 Sect. 6 (h) 53/ 62

6 (i) Fault Tolerant Architectures

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (i) 54/ 62

6 (i) Fault Tolerant Architectures

(i) Fault-Tolerant Architectures

I The use of
:::::::::::::::
Fault-tolerant

::::::::::::::::
architectures means that we use for the

critical parts non-computer-based mechanisms as additional safe
guards.

I Example on next slide:
I Use of a computerised control method in order to control the pump

which feeds toxic liquid into a tank.
I Danger is that the tank overflows and the toxic liquid is spilled.
I The computerised control system is safety critical, and needs to be

implemented with highest standards.
I Very expensive to implement this.

CS 313/CS M13 Sect. 6 (i) 55/ 62

6 (i) Fault Tolerant Architectures

Fully Computerised Solution

Pump

Further processing

Tank

Depth gauge

Control
system

CS 313/CS M13 Sect. 6 (i) 56/ 62



6 (i) Fault Tolerant Architectures

Better Solution

I A better solution is to
I keep the computerised control system,
I but add an additional non-computerised float switch, which directly

switches off the pump in case the tank is full.

CS 313/CS M13 Sect. 6 (i) 57/ 62

6 (i) Fault Tolerant Architectures

Better Solution

Pump

Further processing

Tank

Depth gauge

Control
system

Float Switch

Switch

CS 313/CS M13 Sect. 6 (i) 58/ 62

6 (i) Fault Tolerant Architectures

Better Solution

I Result is that
I there are two independent systems which control the tank,
I the non-computerised float-switch can much more easily be designed to

meet high reliability standards.

I Often one can, by using simple (usually non-computerised)
safeguards, obtain a much higher degree of safety than using complex
computerised solutions.

I This reduces as well the cost.

I The example demonstrates that one can combine a complex computer
system with a relatively simple safety control system.

CS 313/CS M13 Sect. 6 (i) 59/ 62

6 (i) Fault Tolerant Architectures

Better Solution

I One can even achieve with very little extra cost an even higher degree
of safety by adding two or more float switches, which independently
switch of the pump.

CS 313/CS M13 Sect. 6 (i) 60/ 62



6 (j) Example: The Space Shuttle

6 (a) Introduction

6 (b) Types of Faults

6 (c) Fault Models

6 (d) Fault Coverage

6 (e) Redundancy

6 (f) Fault Detection Techniques

6 (g) Hardware Fault Tolerance

6 (h) Software Fault Tolerance

6 (i) Fault Tolerant Architectures

6 (j) Example: The Space Shuttle

CS 313/CS M13 Sect. 6 (j) 61/ 62

6 (j) Example: The Space Shuttle

(j) Example: The Space Shuttle

I At certain stages of the flight many flight-critical functions of the
space shuttle are totally dependent on its on-board computers.

I On this rely
I the lives of the crew,
I the vehicle, which costs several billion dollars,
I the national prestige of U.S.

I Therefore the application has been developed up to highest standards
w.r.t. reliability, integrity, availability and fault tolerance.

I A combination of redundancy, hardware and software voting, fault
masking, fault tolerance and design diversity was used in order to
achieve this.

CS 313/CS M13 Sect. 6 (j) 62/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comp. System

I The computer system consists of 5 identical computers.

I Conventional processors are used.
I They are connected by using an array of serial buses.

I 5 buses provide communication between the computers.
I 23 buses link the computers to other subsystems.

CS 313/CS M13 Sect. 6 (j) 63/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comp. System

Memory Displays Sensors Telemetry
Control

Panels
BoostersPayloads

Telecomm−

unication

CPU 1 CPU 2 CPU 4CPU 3 CPU 5

23 Serial

Data Buses

5 Serial

Interprocessor

Buses

CS 313/CS M13 Sect. 6 (j) 64/ 62



6 (j) Example: The Space Shuttle

Explanation of Terminology

I
:::::::::
Payload seems to mean control of the load the space shuttle is
carrying.

I
::::::::::
Boosters = auxiliary rocket or engine for additional speed.

I
:::::::::::
Telemetry = Process of recording the reading of instruments and
transmitting them by radio.

CS 313/CS M13 Sect. 6 (j) 65/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comp. System

I Most fault detection is performed using software rather than hardware
techniques.

I The configuration of the computers is controlled by software.

I During critical phases, 4 of the 5 computers are configured in a
4-modular redundancy (NMR) arrangement.

CS 313/CS M13 Sect. 6 (j) 66/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comput. System

I The 4 computers get similar input data and compute the same
functions.

I Hardware voting is preformed by the actuators in order to provide
fault masking.

I Additionally, each processor
I has extensive self-test facilities.

I If an error is detected, it is reported to the crew, which then can switch
off the faulty unit.

I compares its results with those produced by its neighbours.
I If a processor detects a disagreement, it signals this, and voting is used

in order to remove the offending computer.

I has a watchdog timer, in order to detect crashes.

CS 313/CS M13 Sect. 6 (j) 67/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comput. System

I The 5th computer normally performs non-critical functions (e.g.
communications).

I It contains additionally a diverse implementation of the (critical)
flight control software, produced by a different contractor, which can
be used in an emergency (see below).

CS 313/CS M13 Sect. 6 (j) 68/ 62



6 (j) Example: The Space Shuttle

Architecture of the Comput. System

I If one processor is switched off, one obtains a triple modular
redundancy arrangement (TMR).

I If a second processor is switched off, the system is switched into
duplex mode, where the two computers compare their results in order
to detect any further failure.

I In case of a third failure, the system reports the inconsistencies to the
crew and uses fault detection techniques in order to identify the
offending unit.

I This provides therefore protection against failures of two units and fault
detection and limited fault tolerance against the failure of a third unit.

CS 313/CS M13 Sect. 6 (j) 69/ 62

6 (j) Example: The Space Shuttle

Architecture of the Comput. System

I In an emergency, the fifth computer can take over critical functions
I The 5th computer allows protection against systematic faults in the

software.

I If one or two computers fail, the crew or the controllers on earth
might decide to abort the mission.

CS 313/CS M13 Sect. 6 (j) 70/ 62

6 (j) Example: The Space Shuttle

Analysis

I The arrangement provides excellent fault tolerance, and
protection against systematic faults.

I Problems:
I Heavy dependency on software for voting, fault detection,

configuration control.
I Therefore heavy dependency on the correct design of this software.

I The 5 computers are identical, therefore no protection against
systematic hardware faults affecting all 5 computers
simultaneously.

I In total the design is still very good.
Due to the high costs this degree of redundancy can only be obtained
for very critical applications.

CS 313/CS M13 Sect. 6 (j) 71/ 62


	6 (a) Introduction
	6 (b) Types of Faults
	6 (c) Fault Models
	6 (d) Fault Coverage
	6 (e) Redundancy
	6 (f) Fault Detection Techniques
	6 (g) Hardware Fault Tolerance
	6 (h) Software Fault Tolerance
	6 (i) Fault Tolerant Architectures
	6 (j) Example: The Space Shuttle

