
CS 313 High Integrity Systems/
CS M13 Critical Systems

Course Notes
Additional Material

Chapter 2: SPARK Ada

Anton Setzer
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/∼csetzer/lectures/
critsys/14/index.html

November 23, 2014

CS 313/CS M13 Chapter 2 1/ 39

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html


Not Updated to Ada 2012/SPARK Ada 2014

I These slides have not been updated yet to Ada 2012 and SPARK Ada
2014.

CS 313/CS M13 Chapter 2 2/ 39



2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Chapter 2 3/ 39



2 (a) Introduction into Ada

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (a) 4/ 39



2 (a) Introduction into Ada

Variant Records

I Variant record means that we have a record, s.t. the type of one field
depends on the value of some other type.

I Example:
type Gender is (Male, Female);

type Person(Sex: Gender:= Female) is
record

Birth: Date;
case Sex is

when Male =>
Bearded: Boolean;

when Female =>
Children: Integer;

end case;
end record;

CS 313/CS M13 Sect. 2 (a) 5/ 39



2 (a) Introduction into Ada

Variant Records

I In the above example the type Gender is defined as a type having two
elements, namely Male and Female.

I Person is a type, which has a field Sex, Birth, and depending on the
field Sex either a field Bearded or a field Children.

I By default, Person.Gender = Female.
I We can have elements of type Person and of type Person(Male).

I If John: Person(Male), then John.Sex=Male.

CS 313/CS M13 Sect. 2 (a) 6/ 39



2 (a) Introduction into Ada

Variant Records

I Whether the field of a variant record accessed is in the variant used
cannot always be checked at compile time.

I For instance, if we have
a: Person ,

a code which accesses
a.Bearded

compiles, even if it is clear that
a.Sex=Female .

I But this will cause a run time error.
I In case of

a: Person(Female) ,
a warning is issued at compile time if

a.Bearded
is accessed.

CS 313/CS M13 Sect. 2 (a) 7/ 39



2 (a) Introduction into Ada

Example

(For simplicity Date = Integer)
John: Person(Male);
Tom : Person;

begin
John:= (Male,1963,False);
-- John.Gender:= Female; -- would cause compile error
Tom:= (Male, 1965,False);
Tom.Children := 5; -- Compiles okay but runtime error.
-- Tom.Sex := Female; -- would cause compile error

CS 313/CS M13 Sect. 2 (a) 8/ 39



2 (a) Introduction into Ada

Variant Records

I Variant records are a restricted form of dependent types (see
module on interactive theorem proving).

I In dependent type theory, as introduced there, such kind of
constructs can be used in a type safe way.

CS 313/CS M13 Sect. 2 (a) 9/ 39



2 (a) Introduction into Ada

Object Orientation in Ada

I Object orientation in Ada consists of
I Tagged types,
I Class-wide types with dynamic dispath.

CS 313/CS M13 Sect. 2 (a) 10/ 39



2 (a) Introduction into Ada

Tagged Types

I Record types can be extended.
I But only if they had been declared to be tagged.
I Tagged means that each variable is associated with a tag which

identifies which type it belongs to.
I This is necessary in case we have a class-wide type (see below) to

decide which instance of a function is used.
I We might define a function which takes an element of one type and a

function which takes as argument an element of an extended type.

CS 313/CS M13 Sect. 2 (a) 11/ 39



2 (a) Introduction into Ada

Example

type Student is tagged
record

StudentNumber : Integer;
Age : Integer;

end record;

type Swansea Student is new Student with null record;
-- We extend Student but without adding a new component
-- We could have extended it by a new field as well.

CS 313/CS M13 Sect. 2 (a) 12/ 39



2 (a) Introduction into Ada

Example

I Swansea Student is a subtype of Student.

I Any function having as argument Student can be applied to a
Swansea Student as well.

I We can override a function for Student by a function with argument
Swansea Student.

I Note that which function to be chosen can be decided at compile
time, since it only depends on the (fixed) type of the argument.

CS 313/CS M13 Sect. 2 (a) 13/ 39



2 (a) Introduction into Ada

Class-Wide Types

I Associated with a tagged type such as Student above is as well a
Class-wide type.

I Denoted by Student’Class.

I An element of Swansea Student is not an element of Student, but
can be converted into an element of Student as follows
A : Swansea Student := ...
B : Student = Student(A);

I However an element of Swansea Student is an element of
Student’Class:
C : Student’Class = A;

CS 313/CS M13 Sect. 2 (a) 14/ 39



2 (a) Introduction into Ada

Dynamic Dispatch

I Assume an element A : Student’Class

I Assume a function
function f (X : Student) return ..

I Assume this function is overridden for Swansea Student:
function f (X : Swansea Student) return ..

I Without this function the function
function f (X : Student) return ..
would be applicable to X : Swansea Student as well.
Since it is overriden, the new function is the one to be applied.

CS 313/CS M13 Sect. 2 (a) 15/ 39



2 (a) Introduction into Ada

Dynamic Dispatch

I We can apply f to A : Student’Class.
I If A was originally an element of Student, the first version of the

function is applied.
I If A was originally an element of Swansea Student, the second version

of the function is applied.
I At compile time it is usually not known, which of the two cases applies,

therefore the decision which function to choose depends on the tag of
A.

I The tag tells which type it originally belongs to.

I This is called
::::::::
dynamic

:::::::::
dispatch or

:::
late

::::::::
binding.

CS 313/CS M13 Sect. 2 (a) 16/ 39



2 (a) Introduction into Ada

Class-Wide Types and Java/C++

I In Java we could say we have only class-wide types.
I In C++ we have as well only class-wide types, but one can control

subtyping by using the keyword virtual:
I Only virtual methods have late binding.
I Only virtual methods can be overridden.

CS 313/CS M13 Sect. 2 (a) 17/ 39



2 (a) Introduction into Ada

Class-Wide Types

I Problem of inheritance: properties are inherited remotely, which
makes it difficult to verify programs.

I If one has a class-wide type A with subtype B, and two different
functions f(x:A) and f(x:B), then one

I might expect that a call of f(a) for a:A refers to the first definition,
I but in fact, if a:B it will refer to the second definition.
I That redefinition could have been done by a different programmer in a

different area of the code.

I However elements of a subtype in the sense of the restriction of the
range of a type (e.g. Integer restricted to 0 . . . 20) can be assigned to
elements of the full type.

CS 313/CS M13 Sect. 2 (a) 18/ 39



2 (a) Introduction into Ada

Object-Orientation in Ada

I Ada’s concept of object-orientation is restricted.
I Ada allows only to form record types, and class-wide types.
I So instead of

I having a method f of a class C with parameters x1:A1 ,. . ., xn:An, and
then writing O.f(x1 ,. . ., xn) for a method call for object O: C,

I one has to introduce a polymorphic function f with arguments X:
C’Class,x1:A1 ,. . ., xn:An, and then to write f(O,x1 ,. . ., xn) for the call
of this function.

CS 313/CS M13 Sect. 2 (a) 19/ 39



2 (a) Introduction into Ada

Object-Orientation in Ada

I Disadvantage: The definition of the functions can be defined
completely separted from the definition of the class.

I Advantage: More flexibility since one doesn’t have to decide for a
function, to which object it belongs to.

CS 313/CS M13 Sect. 2 (a) 20/ 39



2 (b) Architecture of SPARK Ada

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (b) 21/ 39



2 (b) Architecture of SPARK Ada

No Additional Material

For this subsection no additional material has been added yet.

CS 313/CS M13 Sect. 2 (b) 22/ 39



2 (c) Language Restrictions in SPARK Ada

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (c) 23/ 39



2 (c) Language Restrictions in SPARK Ada

SPARK Ada Concepts

Details about restrictions on subtyping in SPARK Ada.
I No derived types (essentially a new name for an existing type or a

subrange for an existing type).

I No type extension (extension of a record by adding further
components).

I No class-wide types (see slides on object-orientation in Subsection a).
Therefore no late binding (dynamic dispatch, called dynamic
dispatching in Ada).

CS 313/CS M13 Sect. 2 (c) 24/ 39



2 (d) Data Flow Analysis

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (d) 25/ 39



2 (d) Data Flow Analysis

No Additional Material

For this subsection no additional material has been added yet.

CS 313/CS M13 Sect. 2 (d) 26/ 39



2 (e) Information Flow Analysis

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (e) 27/ 39



2 (e) Information Flow Analysis

No Additional Material

For this subsection no additional material has been added yet.

CS 313/CS M13 Sect. 2 (e) 28/ 39



2 (f) Verification Conditions

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (f) 29/ 39



2 (f) Verification Conditions

Arrays

Many practical examples involve arrays.

I E.g. a lift controller might have as one data structure an array

Door Status: array (Floor Index) of (Open,Closed);

where
I Floor Index is an index set of floor numbers (e.g. 1 .. 10)
I and Door Status(I) determines whether the door in the building on

floor I is open or closed,
I In Ada one writes A(I) for the ith element of array A.

CS 313/CS M13 Sect. 2 (f) 30/ 39



2 (f) Verification Conditions

Arrays

Door Status: array (Floor Index) of Door Status Type;
type Door Status Type is (Open,Closed);

I Problem: correctness conditions involve quantification:
I E.g. the condition that only the door at the current position (say

Lift Position) of the lift is open, is expressed by the formula:

∀I : Floor Index.(I 6= Lift Position
→ Door Status(I ) = Closed) .

I This makes it almost impossible to reason automatically about such
conditions.

CS 313/CS M13 Sect. 2 (f) 31/ 39



2 (f) Verification Conditions

Arrays

I In simple cases, we can solve such problems by using array formulae.
I Notation: If A is an array, then

I C:= A[I => B] stands for the array, in which the value I is updated to
B. Therefore

I C(I) = B,
I and for J 6= I, C(J) = A(J).

I Similarly D:= A[I => B, J => C] is the array, in which I is updated to
B, J is updated to C:

I D(I)= B,
I D(J) = C,
I D(K) = A(K) otherwise.

CS 313/CS M13 Sect. 2 (f) 32/ 39



2 (f) Verification Conditions

Example

I The correctness for a procedure which swaps elements A(I) and A(J)
is expressed as follows:

type Index is range 1 .. 10;
type Atype is array(Index) of Integer;

procedure Swap Elements(I,J: in Index;
A: in out Atype)

-- # derives A from A,I,J;
-- # post A = A∼[I => A∼(J); J => A∼(I)];
is

Temp: Integer;
begin

Temp: = A(I); A(I) := A(J); A(J) := Temp;
end Swap Elements;

CS 313/CS M13 Sect. 2 (f) 33/ 39



2 (f) Verification Conditions

Example

I A = A∼[I => A∼(J); J => A∼(I)];
Expresses that

I A(I) is the previous value of A(J),
I A(J) is the previous value of A(I),
I A(K) is unchanged otherwise.

I In the above example, as for many simple examples, the correctness
can be shown automatically by the simplifier.

CS 313/CS M13 Sect. 2 (f) 34/ 39



2 (f) Verification Conditions

More Complicated Example

I In the lift controller example, one can express the fact that, w.r.t. to
array Floor, exactly the door at Lift Position is open, as follows:

-- # post Closed Lift = Door Type’(Index=> Closed)
-- # and
-- # Floor = Closed Lift[Lift Position => Open];

I Here
Floor Type’(Index=> Closed)
is the Ada notation for the array A of type Floor Type, in which for
all I:Index we have A(I) = Closed.

CS 313/CS M13 Sect. 2 (f) 35/ 39



2 (f) Verification Conditions

More Complicated Example

I Unfortunately, with this version, the current version of SPARK Ada
doesn’t succeed in automatically proving the correctness even of a
simple function which moves the lift from one floor to the other (and
opens and closes the doors appropriately).

CS 313/CS M13 Sect. 2 (f) 36/ 39



2 (f) Verification Conditions

Quantification

I It is usually too complicated to express properties by using array
formulae, and one has to use quantifiers instead.

CS 313/CS M13 Sect. 2 (f) 37/ 39



2 (g) Example: A railway interlocking system

2 (a) Introduction into Ada

2 (b) Architecture of SPARK Ada

2 (c) Language Restrictions in SPARK Ada

2 (d) Data Flow Analysis

2 (e) Information Flow Analysis

2 (f) Verification Conditions

2 (g) Example: A railway interlocking system

CS 313/CS M13 Sect. 2 (g) 38/ 39



2 (g) Example: A railway interlocking system

No Additional Material

For this subsection no additional material has been added yet.

CS 313/CS M13 Sect. 2 (g) 39/ 39


	2 (a) Introduction into Ada
	2 (b) Architecture of SPARK Ada
	2 (c) Language Restrictions in SPARK Ada
	2 (d) Data Flow Analysis
	2 (e) Information Flow Analysis
	2 (f) Verification Conditions
	2 (g) Example: A railway interlocking system

