
CS 313 High Integrity Systems/
CS M13 Critical Systems

Course Notes
Additional Material

Chapter 7: Verification, Validation, Testing

Anton Setzer
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/∼csetzer/lectures/
critsys/14/index.html

November 23, 2014

CS 313/CS M13 Chapter 7 1/ 36

7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

7 (d) Modelling

CS 313/CS M13 Chapter 7 2/ 36

7 (a) Basic Notions

7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

7 (d) Modelling

CS 313/CS M13 Sect. 7 (a) 3/ 36

7 (a) Basic Notions

No Additional Material

For this subsection no additional material has been added yet.

CS 313/CS M13 Sect. 7 (a) 4/ 36

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html


7 (b) Dynamic testing

7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

7 (d) Modelling

CS 313/CS M13 Sect. 7 (b) 5/ 36

7 (b) Dynamic testing

(b) Dynamic Testing

I Dynamic testing means that one operates the system under test.

I Done by the execution of test cases, which investigates certain
aspects of the system.

I Each test set consists of
I a set of input test data

I often called
:::
test

::::::
vector.

I a specification of the expected output,
I output is often called

::::::
output

::::::
vector.

I a statement of the function being tested.

I In case of interactive programs, the test data will usually a sequence
of inputs.

CS 313/CS M13 Sect. 7 (b) 6/ 36

7 (b) Dynamic testing

Basic Notions

I With each test cases one associates
I pre-conditions

I specify the state of the system before the test is executed,

I post-condition
I define the state the system must be in after the test.

I So tests will check whether if the test input vector fulfills the
pre-condition, the test output vector fulfills the post-condition.

I The goal is to show that for any input fulfilling the pre-condition the
output will fulfil the post-condition.

CS 313/CS M13 Sect. 7 (b) 7/ 36

7 (b) Dynamic testing

Basic Notions

I Some tests investigate the operation of the system under the
condition that the pre-conditions are not met.

I Used in order to check what happens if the system deviates from its
operation.

CS 313/CS M13 Sect. 7 (b) 8/ 36



7 (b) Dynamic testing

Basic Notions

I The
:::::
input

:::::::
space of a system is the set of possible inputs.

I If a system has n inputs of a simple type like integer, floating point
numbers, it has an

::::::::::::::
n-dimensional

:::::
input

::::::
space.

CS 313/CS M13 Sect. 7 (b) 9/ 36

7 (b) Dynamic testing

Categories of Dynamic Testing

I There are 3 main categories of dynamic testing:
I Functional testing,
I structural testing,
I random testing.

CS 313/CS M13 Sect. 7 (b) 10/ 36

7 (b) Dynamic testing

Functional Testing

I
:::::::::::
Functional

::::::::
testing is the testing of functions of the system as

defined by its specification.
I For each aspect of the operation tests are carried out.
I However, tests might cover more than one function.
I One has to make sure that all functions are covered by the tests.

I It is black-box testing, no details about the implementation are
needed.

I Often a test-matrix is written, which associates each function with
tests. See next slide.

I Used in order to make sure that one has complete coverage of all
functions.

CS 313/CS M13 Sect. 7 (b) 11/ 36

7 (b) Dynamic testing

Example Test Matrix

Function investigated

Test 1 2 3 4 5 6

1 x

2 x

3 x x

4 x x

5 x x

6 x x

7 x x

8 x x

9 x x

CS 313/CS M13 Sect. 7 (b) 12/ 36



7 (b) Dynamic testing

Structural Testing

I
::::::::::
Structural

::::::::
testing looks at the internal structure of a system, and

uses it into order to check the operation of individual components and
their interactions.

I In case of hardware testing uses test signals to investigate particular
modules in the system.

I In case of software testing, this involves tests in order to check
certain routines or certain execution paths.
Allows to investigate critical conditions.

I
:::::::::::::::::
Coverage-based

::::::::
testing is structural testing with the goal of

testing a large proportion of the system, by having tests for every
branch or loop in the system.

I Structural testing is necessarily white-box testing.

CS 313/CS M13 Sect. 7 (b) 13/ 36

7 (b) Dynamic testing

Random Testing

I
:::::::::
Random

::::::::
testing uses a test data which are randomly chosen from

the input space.
I Could be randomly sampled from the entire input space.
I Could be sampled following some probability distribution.

I The distribution might match the one expected for the operation.

I Aims at detecting fault conditions which are missed by more
systematic techniques.

CS 313/CS M13 Sect. 7 (b) 14/ 36

7 (b) Dynamic testing

Dynamic Testing Techniques

I We list some of the techniques used.
I

::::
Test

:::::::
cases

:::::::
based

:::
on

:::::::::::::
equivalence

:::::::::::::
partitioning.

I The input and outputs of the system/component to be tested is
partitioned into sets of ranges which are equivalent, i.e. expected to
be treated the same way.

I Tests are performed to investigate each partition.
I Both valid and invalid values are partitioned and tested.
I E.g. for a function dealing with student marks, one might expect that

I the ranges 40 − 49%, 50 − 59% etc. form valid partitions.
I the ranges < 0%, > 100% form invalid partitions.

CS 313/CS M13 Sect. 7 (b) 15/ 36

7 (b) Dynamic testing

Dynamic Testing Techniques

I
::::
Test

:::::::
cases

:::::::
based

:::
on

:::::::::::
boundary

::::::
value

:::::::::
analysis.

I Tests the performance of the system at the boundaries of equivalent
partitions of inputs and outputs.

I Again both valid and invalid values are partitioned and tested.
I For instance, in the above example one might check for

I valid boundary values like 50%, 49% etc.,
I for invalid boundary values like −1%, 101%,
I for valid values at the boundary to invalid values like 0%, 100%.

CS 313/CS M13 Sect. 7 (b) 16/ 36



7 (b) Dynamic testing

Dynamic Testing Techniques

I
:::::
State

:::::::::::
transition

::::::::
testing identifies the different states of the

component and system.
I Then tests are preformed in order to investigate

I transitions between states,
I events causing such transitions,
I actions resulting from such transitions.

I
:::::::::::::
Probabilistic

::::::::
testing determines the reliability of a system.

I Attempts to measure failure rates over a given period of time, or
failures on demand.

I This testing is difficult to perform for critical systems, since there a
very low failure rate is demanded, so probabilistic testing should return
a failure rate of 0.

CS 313/CS M13 Sect. 7 (b) 17/ 36

7 (b) Dynamic testing

Dynamic Testing Techniques

I
::::::::
Process

::::::::::::
simulation is the simulation of the process or equipment

to be controlled by the system.
I Allows to reproduce lots of situations quickly and safely.

I
:::::
Error

:::::::::::
guessing means that the test engineer predicts input

conditions which are likely to cause problems.
I

:::::
Error

:::::::::
seeding means the insertion of errors into a system to see if

they are detected by the testing procedures.
I Is a test for the testing process.
I May allow to predict the number of unfound errors.

CS 313/CS M13 Sect. 7 (b) 18/ 36

7 (b) Dynamic testing

Dynamic Testing Techniques

I
:::::::
Timing

:::::
and

:::::::::
memory

::::::
tests investigate response time and memory

consumption of a system.
I

:::::::::::::
Performance

::::::::
testing tests that necessary levels of performance are

reached.
I E.g. that a certain number of operations per time unit are achieved.

I
:::::::
Stress

:::::::
testing tests the performance of a system under a very high

workload.
I Important for instance for the test of (web-, data base- and other)

servers.

CS 313/CS M13 Sect. 7 (b) 19/ 36

7 (c) Static Analysis

7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

7 (d) Modelling

CS 313/CS M13 Sect. 7 (c) 20/ 36



7 (c) Static Analysis

(c) Static Analysis

I Static testing investigates a system without operating it.
I Techniques can be

I performed manually,
I e.g. walkthroughs, inspections, use of checklists,

I or using automated
:::::
static

:::::
code

:::::::::
analysis

:::::
tools

I e.g. conformance tests for hardware, formal methods, data/information
flow analysis, semantic analysis, complexity measurement, range
checking.

CS 313/CS M13 Sect. 7 (c) 21/ 36

7 (c) Static Analysis

Static Analysis

I Static analysis aims at establishing properties of the software or
software which are true under all circumstances.

I In contrast with dynamic testing, which can only test a small
subset of the input set.

CS 313/CS M13 Sect. 7 (c) 22/ 36

7 (c) Static Analysis

Static Analysis Techniques

I A
:::::
code

::::::::::::::
walkthrough means that an engineer leads colleagues

through the design or implementation of software and convinces them
of its correctness.

I
:::::::
Design

::::::::
review means peer review and systematic investigation of

documents by a number of engineers.

I
:::::::::::
Checklists consists of a set of (usually very general) questions used
in order to critically and systematically check certain aspects of a
system.

I
:::::::
Formal

::::::::
proofs are used to show the correctness of some aspects of

the design or implementation of a system.

CS 313/CS M13 Sect. 7 (c) 23/ 36

7 (c) Static Analysis

Static Analysis Techniques

I
::::::
Fagan

:::::::::::::
inspections form a systematic audit of quality assurance

documents in order to find errors and omissions.
I Consists of 5 stages:

I planning,
I preparation,
I inspection,
I rework,
I follow-up.

CS 313/CS M13 Sect. 7 (c) 24/ 36



7 (c) Static Analysis

Static Analysis Techniques

I
::::::::
Control

:::::
flow

:::::::::
analysis

I Analysis of software to detect poor and potentially incorrect program
structure.

I Looks for inaccessible code, infinite loops, poor or error-prone
structural program elements.

I Performed in SPARK Ada.

CS 313/CS M13 Sect. 7 (c) 25/ 36

7 (c) Static Analysis

Static Analysis Techniques

I
:::::
Data

:::::
flow

:::::::::
analysis

I Analysis of the flow of data through a program.
I Checks appropriateness of operations and comparison between actual

and required data flow.
I Checks

I whether variables are initialised,
I the input/output behaviour of variables,
I the dependencies between variables.

I Performed in SPARK Ada.

CS 313/CS M13 Sect. 7 (c) 26/ 36

7 (c) Static Analysis

Static Analysis Techniques

I
::::::::::
Symbolic

:::::::::::
execution uses algebraic variables instead of numeric

inputs and computes the result of the program in the form of
algebraic expressions.

I Results of a program can be compared with those predicted by the
specification.

I Usually results too complicated to be analysed, need some form of user
guidance.

I Some tools (
:::::::::
semantic

:::::::::
analysers) perform automatic simplification

of data.
I Check of verification conditions in SPARK Ada together with the

simplifier form an example of symbolic execution.

CS 313/CS M13 Sect. 7 (c) 27/ 36

7 (c) Static Analysis

Static Analysis Techniques

I
::::::::
Metrics are measures for certain properties of the software.

I Measure for instance reliability and complexity.
I Tools perform the analysis of such metrics.
I Such tools measure for instance:

I The graph theoretic complexity based on the complexity of the
program graph.

I Module accessibility, the number of ways a module can be accessed.
I Complexity measures.
I Number of entry and exit points per module

CS 313/CS M13 Sect. 7 (c) 28/ 36



7 (c) Static Analysis

Static Analysis Techniques

I Sneak circuit analysis.
I

::::::
Sneak

::::::::
currents are latent conditions in a system, which cause it to

malfunction under certain conditions.
I Might be

I physical paths,
I timing irregularities,
I ambiguous display messages,
I and others.

I
::::::
Sneak

::::::
circuit

:::::::::
analysis aims at locating such weaknesses by looking

at basic topological patterns within hardware and software.

CS 313/CS M13 Sect. 7 (c) 29/ 36

7 (d) Modelling

7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

7 (d) Modelling

CS 313/CS M13 Sect. 7 (d) 30/ 36

7 (d) Modelling

(d) Modelling

I Modelling used especially in the early phases of project development.

I Particularly important when producing the specification and the
top-level design.

I Plays as well an important role later, especially during system
validation.

CS 313/CS M13 Sect. 7 (d) 31/ 36

7 (d) Modelling

Modelling Techniques

I Formal methods can be used to model a system.
I Software prototyping/animation means that a software prototype

is created which represents certain features of the specification.
I Used for the validation of the specification.

CS 313/CS M13 Sect. 7 (d) 32/ 36



7 (d) Modelling

Modelling Techniques

I
:::::::::::::
Performance

:::::::::::
modelling consists of the following steps:

I A model of the system processes and their interactions is
constructed.

I Then the requirements of processor time and memory
requirements for each function of the system are determined.

I Finally the total system demand is determined under average and
worst-case conditions.

I This is used in order to guarantee that the system always
satisfies the demand, including margins for safety.

CS 313/CS M13 Sect. 7 (d) 33/ 36

7 (d) Modelling

Modelling Techniques

I
:::::
State

:::::::::::
transition

::::::::::
diagrams means that

I the system is represented by finitely many discrete states;
I with the transitions formed by the system, one obtains a finite state

machine.
I the system can now be analysed and checked for completeness,

consistency, reachability.
I Model checking is a technique based on state transition diagrams.

I Used especially in hardware verification.

CS 313/CS M13 Sect. 7 (d) 34/ 36

7 (d) Modelling

Modelling Techniques

I
::::::::
Process

::::::::::
algebras and

::::::::::
Petri-nets model a system in terms of

various processes.
I Conditions like correctness, termination, deadlock-freedom can

be examined using these techniques.
I Commonly used especially for concurrent systems, e.g.

I railway interlocking systems,
I networks,
I verification of the Netscape web-browser.

CS 313/CS M13 Sect. 7 (d) 35/ 36

7 (d) Modelling

Modelling Techniques

I Data flow analysis (see above) can be considered as well as a
modelling technique.

I
::::::::::
Structure

::::::::::
diagrams represent the program structure by a structure

chart, which is a tree representing the relationship between the
program units.

I
:::::::::::::::
Environmental

:::::::::::
modelling means that one simulates the operating

environment of a system in order to test it in an almost real
environment.

CS 313/CS M13 Sect. 7 (d) 36/ 36


	7 (a) Basic Notions
	7 (b) Dynamic testing
	7 (c) Static Analysis
	7 (d) Modelling

