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Remark

This section is based heavily on Neil Storey [St96], Safety-critical
computer systems, Addison-Wesley, 1996, pp. 218 - 227.

CS 313/CS M13 Chapter 1 2/ 37

Main Criteria for Choice of Programming Languages for
Critical Systems

I Logical soundness.
I Is there a sound, unambiguous definition of the language?

I Complexity of definition.
I Are there simple, formal definitions of the language features?
I Too high complexity results in high complexity and therefore in errors

in compilers and support tools.

I Expressive power.
I Can program features be expressed easily and efficiently?
I The easier the program one has written, the easier it is to verify it.
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Main Criteria for Choice of Programming Languages for
Critical Systems

Security.
I Can violations of the language definitions be detected before

execution?
I Some interpreted languages detect errors only when running it.
I Various languages like Eiffel and even Java allow to define programs,

which
I the compiler regards as type correct,
I although they aren’t,
I run time errors are caused by this.
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Problem in Java

The problem in Java is:

I Assume a class Person with subtype Student.

I Assume a method which takes as element an array of elements of
Person

void init(person[] myarray){· · · }.
I Assume this method replaces one element of this array by a new

element of Person.
myarray[0] = new Person();

I Since Student is a subtype of Person, an array of Student is a subtype
of an array of Person.

I So this method can be called with an array of Student.
Student[] studentarray = ...
init(studentarray)
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Problem in Java

Student is subtype of Person

void init(person[] myarray){ myarray[0] = new Person(); }.

Student[] studentarray = ...

init(studentarray)

I This is accepted by javac.

I When this is executed, we get a run time error, because at run time
the call of init will make the assignment

studentarray[0] = new Person();
But studentarray is an array of Student, and new Person() is not a
Student.
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Example Code

public class arrayProblem{
Student[] studentArray = new Student[10];
void init(Person[] myarray){ myarray[0] = new Person(); };

arrayProblem(){ init(studentArray); };

public static void main(String[] args){
Student[] studentArray = new arrayProblem().studentArray;};

};

class Person{}
class Student extends Person {}
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Main Criteria for Choice of Programming Languages for
Critical Systems

I Verifiability.
I Is there support for verifying that program code meets the

specification?

I Bounded space and time requirements.
I Can it be shown that time and memory constraints are not exceeded?
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Common Reasons for Program Errors

I Subprogram side effects.
I Variables in the calling environment are unexpectedly changed.
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Example Problem with Side Effects

Consider a function (here using Java syntax):

int f(int x){ y = x; return x + 1;}

where y is an instance variable.
Consider the following code:

z = f(x)

f is used as a function, and one might overlook the fact that using f
changes y.
Then change of y in f is called a side effect.
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Side Effects

In general a
:::::
side

:::::::
effect is when evaluating an expression (such as f(x)

above) has the result of changes in the environment, e.g.

I carrying out some external procedure such as printing out some text,
like in

int f(int x){ System.out.println(x); return x + 1;}
I changes of some other variables.
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Order of Evaluation

I Side effects cause problems when an expressions makes calls to
functions.

I Example:
int y = 0;

int f(x){ y = y + 1; return x;};

System.out.println(f(0) + y);

I Consider expression f(0) + y:

I If f(0) is evaluated before y, then y is incremented first by 1, so the
result printed is 0 + 1 = 1

I If y is evaluated first, it has still value 0, the result printed is 0 + 0 =
0.
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Order of Evaluation in Java

I From the Java language specification, 15.7
http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-
15.7

“The Java programming language guarantees that the operands of
operators appear to be evaluated in a specific evaluation order,
namely, from left to right.”

“The left-hand operand of a binary operator appears to be fully
evaluated before any part of the right-hand operand is evaluated.”
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Common Reasons for Program Errors

I Failure to initialise.
I Variable is used before it is initialised.

I Aliasing.
I Two or more distinct names refer to the same storage location.

Changing one variable changes a seemingly different one.
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Example Aliasing Problem

I We write ff and tt for the Boolean values false and true.

I Let xor be the binary operation on Booleans with the following truth
table:

x y x xor y

ff ff ff
ff tt tt
tt ff tt
tt tt ff

I One can see easily the following
(try out all choices for the variables and check that both sides of the
equation give the same result):

I xor is commutative, i.e. x xor y = y xor x.
I xor is associative, i.e. x xor (y xor z) = (x xor y) xor z.
I x xor x = ff.
I x xor ff = x.
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Example Aliasing Problem

I The following is a way of exchanging two Boolean values without the
use of a temporary variable:

x := x xor y;
y := x xor y;
x := x xor y;
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Exchange Procedure

I The exchange program exchanges the arguments because if we give
different names to the instances of variables

x1 = x xor y;
y1 = x1 xor y;
x2 = x1 xor y1;

we get (using the laws above)

y1 = x1 xor y = (x xor y) xor y = x xor (y xor y)
= x xor ff = x

x2 = x1 xor y1 = (x xor y) xor x = y xor (x xor x)
= y xor ff = y
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Exchange Procedure

I Doing the above bitwise we can exchange as well integers.
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Example Aliasing Problem in Java

I In order to write a procedure for exchanging Booleans in Java we
need to use a small wrapper class:
class MyBool {

public boolean theBool;

MyBool (boolean x) { theBool = x;};
}

I Now write the exchange function as follows (ˆ = xor)
void exchange(MyBool x,MyBool y){

x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

};
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Example Aliasing Problem

void exchange(MyBool x,MyBool y){
x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

};
I If x and y are the same object the above sets x.theBool to false:

The last line then reads
x.theBool = x.theBool ^ x.theBool;

which sets (using x xor x = ff) x.theBool = false

I So if x.theBool was true, and x and y happen to be the same
object, the above method is not an exchange function.
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Repaired Exchange Procedure

void exchange(MyBool x,MyBool y){
if (x != y) {

x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

}
};
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Exchange Program in SPARK Ada

SPARK Ada (introduced in the next Section) will not allow to instantiate
exchange function (both the “wrong” and “correct” version) by the same
parameter.
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Reasons for Program Errors

I Expression evaluation errors.
I E.g. out-of-range array subscript, division by zero, arithmetic overflow.
I Different behaviour of compilers of the same language in case of

arithmetic errors.
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Comparison of Languages

Cullyer, Goodenough, Wichman have compared suitability of programming
languages for high integrity software by using the following criteria:

Wild jumps.
I Can it be guaranteed that a program cannot jump to an arbitrary

memory location?
I By use of gotos.

Overwrites.
I Can a language overwrite an arbitrary memory location?

I C, C++ can do so.

Semantics.
I Is semantics defined sufficiently so that the correctness of the code

can be analysed?
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Comparison of Languages

Model of mathematics.
I Is there a rigorous definition of integer and floating point arithmetic

(overflow, errors)?
I E.g. in Java, floating point arithmetic is defined as following the IEEE

floating point arithmetic.
I States precisely when we get an overflow etc. and what to do if we

have an overflow.

I If this is not precisely defined, a program might
I run perfectly on the machine used for testing it (which ignores an error)
I and might crash on the machine, it is actually running.
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Comparison of Languages

Operational arithmetic.
I Are there procedures for checking that the operational program obeys

the model of arithmetic when running on the target processor?
I E.g. programs which determine, whether the processor follows the

IEEE floating point standard.

Data typing.
I Are there means of data typing that prevent misuse of variables?

Exception handling.
I Is there an exception handling mechanism in order to facilitate

recovery if malfunction occurs?
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Comparison of Languages

Exhaustion of memory.
I Are there facilities to guard against running out of memory?

I Object-oriented and functional programming languages have a
problem here, since memory is allocated on the fly.

I Potential problem of garbage collection, if it is executed in a
time-critical situation (e.g. the autopilot might carry out garbage
collection, while landing).

I Recursion is as well problematic, since the depth of recursion cannot
be controlled, and each recursion step requires usually the allocation of
new memory.

Safe subsets.
I Is there a safe subset of the language that satisfies requirements more

adequately than the full language?
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Comparison of Languages

Separate compilation.
I Is it possible to compile modules separately, with type checking

against module boundaries?
I It should be possible to split the program into units (packages, classes),

which are located in different files, with separate interface definitions.
I This allows to verify the correctness of each unit individually, and

avoids the danger that exchanging one unit destroys the correctness of
already verified units.

Well-understood.
I Will designers and programmers understand the language sufficiently

to write safety critical software?
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Comparison of Languages

I The next slide contains a comparison of programming languages.
I The languages are a bit old.
I Unfortunately I couldn’t find any newer comparison of programming

languages, only individual comparison of pairs of programming
languages.

I The principles are state of the art – use of safe subsets instead of new
programming languages.

I Legend for next slide:
I + means protection available,
I ? means partial protection,
I - means no protection.
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Comparison of Languages

Structured C CORAL ISO Modu- Ada
assembler 66 PASCAL la 2

Wild jumps + ? ? ? ? +
Overwrites ? - - ? ? ?
Semantics ? - ? ? + ?
Model of mathematics ? - ? + + ?
Operational arithmetic ? - - ? ? ?
Data typing ? - ? ? ? +
Exception handling - ? - - ? +
Safe
subsets ? - + + ? +
Exhaustion
of mem. + ? ? ? ? -
Separate
compil. - - ? ? + +
Well understood + ? ? + + ?
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Remarks on CORAL 66

I CORAL 66 = compiled structured programming language related to
Algol.

I Developed at the Royal Radar Establishment RRE, Malvern, UK.

I Used for real-time systems.

I Allowed inline assembly code.

I No free CORAL 66 compilers seem to be available today.
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Analysis

I C most unsuitable language.
I Modula-2 most suitable.

I Problem of Modula-2: limited industrial use.
I Therefore lack of tools, compilers.
I Industrial use contributes to reliability of compilers.

I Case study revealed:
Compiler faults are equivalent to one undetected fault in 50 000 lines
of code.

I Especially problem of optimisation.
I By using compilers heavily compilers are tested and compiler errors are

detected and removed.
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Analysis (Cont.)

I One solution: development of new languages for high integrity
software.

I Same problem as for Modula-2: limited industrial use.

I Better solution: introduction of safe subsets.
I Rely on standard compilers and support tools.
I Only additional checker, which verifies that the program is in the

subset.
I Add annotations to the language.
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Safe Subsets

CORAL SPADE- Modula2 Ada
subset Pascal subset subset

Wild jumps + + + +
Overwrites + + + +
Semantics + + + ?
Model of mathematics ? + + +
Operational arithmetic ? + ? +
Data typing ? + + +
Exception handling - - ? +
Safe subsets ? + + ?
Exhaustion of mem. + + ? ?
Separate compil. ? ? + +
Well understood + + + +
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Programming Languages Used

I Aerospace.
I Trend towards Ada.
I Use of languages like FORTRAN, Jovial, C, C++.
I 140 languages used in the development of the Boeing 757/767.

75 languages used in development of the Boeing 747-400.
E.g. C++ for the seat entertainment system of Boeing 777.

I Northrup B2 bomber control system: C++
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Programming Languages Used

I Aerospace (Related).
I Air traffic control systems in US, Canada, France: Ada.
I Denver Airport baggage system written in C++, but initial problems

probably not directly related to the use of C++.

I Problems with the software for the Denver Airport baggage system
delayed the opening of this airport by one year.

I The economic damage caused by these problems -shows that this
software has some aspects of a business critical system.

I But that’s a degree of critically which applies to almost all business
software.
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Programming Languages Used

I Spacecraft.
I European Space Agency: use of Ada in mission-critical systems.
I NASA: Assembler, Ada.
I Space shuttle: Hal/s and Ada plus other languages.

I Automotive systems:
I Much assembler. Also C, C++, Modula-2

I Railway industry:
I Ada as de-facto standard.

I In general:
I Trend towards Ada for the high-integrity parts of the software.
I Use of assembler, where necessary.
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