
CS 313 High Integrity Systems/
CS M13 Critical Systems

Course Notes
Chapter 1: Programming Languages for Writing Safety-Critical

Software

Anton Setzer
Dept. of Computer Science, Swansea University
http://www.cs.swan.ac.uk/∼csetzer/lectures/

critsys/14/index.html

October 10, 2014

CS 313/CS M13 Chapter 1 1/ 37

Remark

This section is based heavily on Neil Storey [St96], Safety-critical
computer systems, Addison-Wesley, 1996, pp. 218 - 227.

CS 313/CS M13 Chapter 1 2/ 37

Main Criteria for Choice of Programming Languages for
Critical Systems

I Logical soundness.
I Is there a sound, unambiguous definition of the language?

I Complexity of definition.
I Are there simple, formal definitions of the language features?
I Too high complexity results in high complexity and therefore in errors

in compilers and support tools.

I Expressive power.
I Can program features be expressed easily and efficiently?
I The easier the program one has written, the easier it is to verify it.

CS 313/CS M13 Chapter 1 3/ 37

Main Criteria for Choice of Programming Languages for
Critical Systems

Security.
I Can violations of the language definitions be detected before

execution?
I Some interpreted languages detect errors only when running it.
I Various languages like Eiffel and even Java allow to define programs,

which
I the compiler regards as type correct,
I although they aren’t,
I run time errors are caused by this.

CS 313/CS M13 Chapter 1 4/ 37

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html


Problem in Java

The problem in Java is:

I Assume a class Person with subtype Student.

I Assume a method which takes as element an array of elements of
Person

void init(person[] myarray){· · · }.
I Assume this method replaces one element of this array by a new

element of Person.
myarray[0] = new Person();

I Since Student is a subtype of Person, an array of Student is a subtype
of an array of Person.

I So this method can be called with an array of Student.
Student[] studentarray = ...
init(studentarray)

CS 313/CS M13 Chapter 1 5/ 37

Problem in Java

Student is subtype of Person

void init(person[] myarray){ myarray[0] = new Person(); }.

Student[] studentarray = ...

init(studentarray)

I This is accepted by javac.

I When this is executed, we get a run time error, because at run time
the call of init will make the assignment

studentarray[0] = new Person();
But studentarray is an array of Student, and new Person() is not a
Student.

CS 313/CS M13 Chapter 1 6/ 37

Example Code

public class arrayProblem{
Student[] studentArray = new Student[10];
void init(Person[] myarray){ myarray[0] = new Person(); };

arrayProblem(){ init(studentArray); };

public static void main(String[] args){
Student[] studentArray = new arrayProblem().studentArray;};

};

class Person{}
class Student extends Person {}

CS 313/CS M13 Chapter 1 7/ 37

Main Criteria for Choice of Programming Languages for
Critical Systems

I Verifiability.
I Is there support for verifying that program code meets the

specification?

I Bounded space and time requirements.
I Can it be shown that time and memory constraints are not exceeded?

CS 313/CS M13 Chapter 1 8/ 37



Common Reasons for Program Errors

I Subprogram side effects.
I Variables in the calling environment are unexpectedly changed.

CS 313/CS M13 Chapter 1 9/ 37

Example Problem with Side Effects

Consider a function (here using Java syntax):

int f(int x){ y = x; return x + 1;}

where y is an instance variable.
Consider the following code:

z = f(x)

f is used as a function, and one might overlook the fact that using f
changes y.
Then change of y in f is called a side effect.

CS 313/CS M13 Chapter 1 10/ 37

Side Effects

In general a
:::::
side

:::::::
effect is when evaluating an expression (such as f(x)

above) has the result of changes in the environment, e.g.

I carrying out some external procedure such as printing out some text,
like in

int f(int x){ System.out.println(x); return x + 1;}
I changes of some other variables.

CS 313/CS M13 Chapter 1 11/ 37

Order of Evaluation

I Side effects cause problems when an expressions makes calls to
functions.

I Example:
int y = 0;

int f(x){ y = y + 1; return x;};

System.out.println(f(0) + y);

I Consider expression f(0) + y:

I If f(0) is evaluated before y, then y is incremented first by 1, so the
result printed is 0 + 1 = 1

I If y is evaluated first, it has still value 0, the result printed is 0 + 0 =
0.

CS 313/CS M13 Chapter 1 12/ 37



Order of Evaluation in Java

I From the Java language specification, 15.7
http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-
15.7

“The Java programming language guarantees that the operands of
operators appear to be evaluated in a specific evaluation order,
namely, from left to right.”

“The left-hand operand of a binary operator appears to be fully
evaluated before any part of the right-hand operand is evaluated.”

CS 313/CS M13 Chapter 1 13/ 37

Common Reasons for Program Errors

I Failure to initialise.
I Variable is used before it is initialised.

I Aliasing.
I Two or more distinct names refer to the same storage location.

Changing one variable changes a seemingly different one.

CS 313/CS M13 Chapter 1 14/ 37

Example Aliasing Problem

I We write ff and tt for the Boolean values false and true.

I Let xor be the binary operation on Booleans with the following truth
table:

x y x xor y

ff ff ff
ff tt tt
tt ff tt
tt tt ff

I One can see easily the following
(try out all choices for the variables and check that both sides of the
equation give the same result):

I xor is commutative, i.e. x xor y = y xor x.
I xor is associative, i.e. x xor (y xor z) = (x xor y) xor z.
I x xor x = ff.
I x xor ff = x.

CS 313/CS M13 Chapter 1 15/ 37

Example Aliasing Problem

I The following is a way of exchanging two Boolean values without the
use of a temporary variable:

x := x xor y;
y := x xor y;
x := x xor y;

CS 313/CS M13 Chapter 1 16/ 37



Exchange Procedure

I The exchange program exchanges the arguments because if we give
different names to the instances of variables

x1 = x xor y;
y1 = x1 xor y;
x2 = x1 xor y1;

we get (using the laws above)

y1 = x1 xor y = (x xor y) xor y = x xor (y xor y)
= x xor ff = x

x2 = x1 xor y1 = (x xor y) xor x = y xor (x xor x)
= y xor ff = y

CS 313/CS M13 Chapter 1 17/ 37

Exchange Procedure

I Doing the above bitwise we can exchange as well integers.

CS 313/CS M13 Chapter 1 18/ 37

Example Aliasing Problem in Java

I In order to write a procedure for exchanging Booleans in Java we
need to use a small wrapper class:
class MyBool {

public boolean theBool;

MyBool (boolean x) { theBool = x;};
}

I Now write the exchange function as follows (ˆ = xor)
void exchange(MyBool x,MyBool y){

x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

};

CS 313/CS M13 Chapter 1 19/ 37

Example Aliasing Problem

void exchange(MyBool x,MyBool y){
x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

};
I If x and y are the same object the above sets x.theBool to false:

The last line then reads
x.theBool = x.theBool ^ x.theBool;

which sets (using x xor x = ff) x.theBool = false

I So if x.theBool was true, and x and y happen to be the same
object, the above method is not an exchange function.

CS 313/CS M13 Chapter 1 20/ 37



Repaired Exchange Procedure

void exchange(MyBool x,MyBool y){
if (x != y) {

x.theBool = x.theBool ^ y.theBool;

y.theBool = x.theBool ^ y.theBool;

x.theBool = x.theBool ^ y.theBool;

}
};

CS 313/CS M13 Chapter 1 21/ 37

Exchange Program in SPARK Ada

SPARK Ada (introduced in the next Section) will not allow to instantiate
exchange function (both the “wrong” and “correct” version) by the same
parameter.

CS 313/CS M13 Chapter 1 22/ 37

Reasons for Program Errors

I Expression evaluation errors.
I E.g. out-of-range array subscript, division by zero, arithmetic overflow.
I Different behaviour of compilers of the same language in case of

arithmetic errors.

CS 313/CS M13 Chapter 1 23/ 37

Comparison of Languages

Cullyer, Goodenough, Wichman have compared suitability of programming
languages for high integrity software by using the following criteria:

Wild jumps.
I Can it be guaranteed that a program cannot jump to an arbitrary

memory location?
I By use of gotos.

Overwrites.
I Can a language overwrite an arbitrary memory location?

I C, C++ can do so.

Semantics.
I Is semantics defined sufficiently so that the correctness of the code

can be analysed?

CS 313/CS M13 Chapter 1 24/ 37



Comparison of Languages

Model of mathematics.
I Is there a rigorous definition of integer and floating point arithmetic

(overflow, errors)?
I E.g. in Java, floating point arithmetic is defined as following the IEEE

floating point arithmetic.
I States precisely when we get an overflow etc. and what to do if we

have an overflow.

I If this is not precisely defined, a program might
I run perfectly on the machine used for testing it (which ignores an error)
I and might crash on the machine, it is actually running.

CS 313/CS M13 Chapter 1 25/ 37

Comparison of Languages

Operational arithmetic.
I Are there procedures for checking that the operational program obeys

the model of arithmetic when running on the target processor?
I E.g. programs which determine, whether the processor follows the

IEEE floating point standard.

Data typing.
I Are there means of data typing that prevent misuse of variables?

Exception handling.
I Is there an exception handling mechanism in order to facilitate

recovery if malfunction occurs?

CS 313/CS M13 Chapter 1 26/ 37

Comparison of Languages

Exhaustion of memory.
I Are there facilities to guard against running out of memory?

I Object-oriented and functional programming languages have a
problem here, since memory is allocated on the fly.

I Potential problem of garbage collection, if it is executed in a
time-critical situation (e.g. the autopilot might carry out garbage
collection, while landing).

I Recursion is as well problematic, since the depth of recursion cannot
be controlled, and each recursion step requires usually the allocation of
new memory.

Safe subsets.
I Is there a safe subset of the language that satisfies requirements more

adequately than the full language?

CS 313/CS M13 Chapter 1 27/ 37

Comparison of Languages

Separate compilation.
I Is it possible to compile modules separately, with type checking

against module boundaries?
I It should be possible to split the program into units (packages, classes),

which are located in different files, with separate interface definitions.
I This allows to verify the correctness of each unit individually, and

avoids the danger that exchanging one unit destroys the correctness of
already verified units.

Well-understood.
I Will designers and programmers understand the language sufficiently

to write safety critical software?

CS 313/CS M13 Chapter 1 28/ 37



Comparison of Languages

I The next slide contains a comparison of programming languages.
I The languages are a bit old.
I Unfortunately I couldn’t find any newer comparison of programming

languages, only individual comparison of pairs of programming
languages.

I The principles are state of the art – use of safe subsets instead of new
programming languages.

I Legend for next slide:
I + means protection available,
I ? means partial protection,
I - means no protection.

CS 313/CS M13 Chapter 1 29/ 37

Comparison of Languages

Structured C CORAL ISO Modu- Ada
assembler 66 PASCAL la 2

Wild jumps + ? ? ? ? +
Overwrites ? - - ? ? ?
Semantics ? - ? ? + ?
Model of mathematics ? - ? + + ?
Operational arithmetic ? - - ? ? ?
Data typing ? - ? ? ? +
Exception handling - ? - - ? +
Safe
subsets ? - + + ? +
Exhaustion
of mem. + ? ? ? ? -
Separate
compil. - - ? ? + +
Well understood + ? ? + + ?

CS 313/CS M13 Chapter 1 30/ 37

Remarks on CORAL 66

I CORAL 66 = compiled structured programming language related to
Algol.

I Developed at the Royal Radar Establishment RRE, Malvern, UK.

I Used for real-time systems.

I Allowed inline assembly code.

I No free CORAL 66 compilers seem to be available today.

CS 313/CS M13 Chapter 1 31/ 37

Analysis

I C most unsuitable language.
I Modula-2 most suitable.

I Problem of Modula-2: limited industrial use.
I Therefore lack of tools, compilers.
I Industrial use contributes to reliability of compilers.

I Case study revealed:
Compiler faults are equivalent to one undetected fault in 50 000 lines
of code.

I Especially problem of optimisation.
I By using compilers heavily compilers are tested and compiler errors are

detected and removed.

CS 313/CS M13 Chapter 1 32/ 37



Analysis (Cont.)

I One solution: development of new languages for high integrity
software.

I Same problem as for Modula-2: limited industrial use.

I Better solution: introduction of safe subsets.
I Rely on standard compilers and support tools.
I Only additional checker, which verifies that the program is in the

subset.
I Add annotations to the language.

CS 313/CS M13 Chapter 1 33/ 37

Safe Subsets

CORAL SPADE- Modula2 Ada
subset Pascal subset subset

Wild jumps + + + +
Overwrites + + + +
Semantics + + + ?
Model of mathematics ? + + +
Operational arithmetic ? + ? +
Data typing ? + + +
Exception handling - - ? +
Safe subsets ? + + ?
Exhaustion of mem. + + ? ?
Separate compil. ? ? + +
Well understood + + + +

CS 313/CS M13 Chapter 1 34/ 37

Programming Languages Used

I Aerospace.
I Trend towards Ada.
I Use of languages like FORTRAN, Jovial, C, C++.
I 140 languages used in the development of the Boeing 757/767.

75 languages used in development of the Boeing 747-400.
E.g. C++ for the seat entertainment system of Boeing 777.

I Northrup B2 bomber control system: C++

CS 313/CS M13 Chapter 1 35/ 37

Programming Languages Used

I Aerospace (Related).
I Air traffic control systems in US, Canada, France: Ada.
I Denver Airport baggage system written in C++, but initial problems

probably not directly related to the use of C++.

I Problems with the software for the Denver Airport baggage system
delayed the opening of this airport by one year.

I The economic damage caused by these problems -shows that this
software has some aspects of a business critical system.

I But that’s a degree of critically which applies to almost all business
software.

CS 313/CS M13 Chapter 1 36/ 37



Programming Languages Used

I Spacecraft.
I European Space Agency: use of Ada in mission-critical systems.
I NASA: Assembler, Ada.
I Space shuttle: Hal/s and Ada plus other languages.

I Automotive systems:
I Much assembler. Also C, C++, Modula-2

I Railway industry:
I Ada as de-facto standard.

I In general:
I Trend towards Ada for the high-integrity parts of the software.
I Use of assembler, where necessary.

CS 313/CS M13 Chapter 1 37/ 37


