|
Anton Setzer
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk /~csetzer/lectures/
critsys/14 /index.html

This section is based heavily on Neil Storey [St96], Safety-critical
computer systems, Addison-Wesley, 1996, pp. 218 - 227.

October 10, 2014

» Logical soundness. Security.
> Is there a sound, unambiguous definition of the language? » Can violations of the language definitions be detected before
» Complexity of definition. execution?
» Are there simple, formal definitions of the language features? » Some interpreted languages detect errors only when running it.
» Too high complexity results in high complexity and therefore in errors » Various languages like Eiffel and even Java allow to define programs,
in compilers and support tools. which
> Expressive power. > the compiler regards as type correct,

> although they aren't,
> run time errors are caused by this.

» Can program features be expressed easily and efficiently?
» The easier the program one has written, the easier it is to verify it.

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/14/index.html

Problem in Java

The problem in Java is:

>

>

Assume a class Person with subtype Student.

Assume a method which takes as element an array of elements of
Person
void init(person[] myarray){--- }.

Assume this method replaces one element of this array by a new
element of Person.
myarray[0] = new Person();

Since Student is a subtype of Person, an array of Student is a subtype
of an array of Person.

So this method can be called with an array of Student.
Student][] studentarray = ...
init(studentarray)

CS_313/CS_M13 Chapter 1 5/ 37

Example Code

public class arrayProblem{
Student([] studentArray = new Student[10];
void init(Person[] myarray){ myarray[0] = new Person(); };

arrayProblem(){ init(studentArray); };

public static void main(String[] args){

¥

Student|] studentArray = new arrayProblem().studentArray;};

class Person{}
class Student extends Person {}

CS_313/CS_M13 Chapter 1 7/ 37

Problem in Java

Student is subtype of Person
void init(person[] myarray){ myarray[0] = new Person(); }.
Student[] studentarray = ...

init(studentarray)
» This is accepted by javac.

» When this is executed, we get a run time error, because at run time

the call of init will make the assignment

studentarray[0] = new Person();
But studentarray is an array of Student, and new Person() is not a
Student.

CS_313/CS_M13 Chapter 1 6/ 37

Main Criteria for Choice of Programming Languages for
Critical Systems

» Verifiability.

» Is there support for verifying that program code meets the
specification?

» Bounded space and time requirements.

» Can it be shown that time and memory constraints are not exceeded?

CS_313/CS_M13 Chapter 1 8/ 37

Common Reasons for Program Errors

» Subprogram side effects.
» Variables in the calling environment are unexpectedly changed.

CS_313/CS_M13 Chapter 1 9/ 37

Side Effects

In general a side effect is when evaluating an expression (such as f(x)
above) has the result of changes in the environment, e.g.

» carrying out some external procedure such as printing out some text,
like in

int f(int x){ System.out.printIn(x); return x + 1;}

» changes of some other variables.

CS_313/CS_M13 Chapter 1 11/ 37

Example Problem with Side Effects

Consider a function (here using Java syntax):
int f(int x){ y = x; return x + 1;}

where y is an instance variable.
Consider the following code:

z = f(x)

f is used as a function, and one might overlook the fact that using f
changes .
Then change of y in f is called a side effect.

CS_313/CS_M13 Chapter 1 10/ 37

Order of Evaluation

» Side effects cause problems when an expressions makes calls to
functions.

» Example:
inty =0;

int f(x){ y =y + 1; return x;};

System.out.printIn(f(0) + y);
» Consider expression f(0) + y:

» If f(0) is evaluated before y, then y is incremented first by 1, so the
result printedis0 + 1 =1

» If y is evaluated first, it has still value 0, the result printed is 0 + 0 =
0.

CS_313/CS_M13 Chapter 1 12/ 37

Order of Evaluation in Java

» From the Java language specification, 15.7

http://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-
15.7

“The Java programming language guarantees that the operands of
operators appear to be evaluated in a specific evaluation order,
namely, from left to right.”

“The left-hand operand of a binary operator appears to be fully
evaluated before any part of the right-hand operand is evaluated.”

CS_313/CS_M13 Chapter 1 13/ 37
Example Aliasing Problem

» We write T and tt for the Boolean values false and true.

» Let xor be the binary operation on Booleans with the following truth

table:
X |y | Xxxory
ff |ff|ff
T |tt]| tt
tt | fT | tt
tt | tt | I

» One can see easily the following
(try out all choices for the variables and check that both sides of the
equation give the same result):
» XOr is commutative, i.e. X Xor y = y xor X.
> XOr is associative, i.e. x xor (y xor z) = (x Xor y) Xor z.
» xxorx = ff.
» xxor ff = x.

CS_313/CS_M13 Chapter 1 15/ 37

Common Reasons for Program Errors

» Failure to initialise.
» Variable is used before it is initialised.
» Aliasing.
» Two or more distinct names refer to the same storage location.
Changing one variable changes a seemingly different one.

CS_313/CS_M13 Chapter 1 14/ 37

Example Aliasing Problem

» The following is a way of exchanging two Boolean values without the
use of a temporary variable:

X = XXOry;
y = XXOry;
X = XXOry;

CS_313/CS_M13 Chapter 1 16/ 37

Exchange Procedure

» The exchange program exchanges the arguments because if we give

different names to the instances of variables

xl = xxory;
yl = xlxory;
x2 = x1xoryl;

we get (using the laws above)

yl = xlxory = (xxory)xory = xxor (yxory)
= xxorff = X

x2 = xlxoryl = (xxory)xorx = yxor (XXorXx)
= yxorff =y

CS_313/CS_M13 Chapter 1

Example Aliasing Problem in Java

» In order to write a procedure for exchanging Booleans in Java we
need to use a small wrapper class:
class MyBool {
public boolean theBool;
MyBool (boolean x) { theBool = x;};

}

» Now write the exchange function as follows (" = xor)
void exchange (MyBool x,MyBool y){
x.theBool = x.theBool ~ y.theBool;
y.theBool = x.theBool ~ y.theBool;
x.theBool = x.theBool ~ y.theBool;

I¥

CS_313/CS_M13 Chapter 1

17/ 37

19/ 37

Exchange Procedure

» Doing the above bitwise we can exchange as well integers.

CS_313/CS_M13 Chapter 1 18/ 37

Example Aliasing Problem

void exchange(MyBool x,MyBool y){

x.theBool = x.theBool " y.theBool;
.theBool
.theBool

x.theBool ~ y.theBool;
X.theBool ~ y.theBool;

If x and y are the same object the above sets x.theBool to false:
The last line then reads

x.theBool = x.theBool ~ x.theBool;

which sets (using x xor x = ff) x.theBool = false

So if x.theBool was true, and x and y happen to be the same
object, the above method is not an exchange function.

CS_313/CS_M13 Chapter 1 20/ 37

Repaired Exchange Procedure

void exchange(MyBool x,MyBool y){

if (x '=y) {
x.theBool = x.theBool ~ y.theBool;
y.theBool = x.theBool ~ y.theBool;
x.theBool = x.theBool ~ y.theBool;

CS_313/CS_M13 Chapter 1 21/ 37

Reasons for Program Errors

» Expression evaluation errors.

» E.g. out-of-range array subscript, division by zero, arithmetic overflow.
» Different behaviour of compilers of the same language in case of
arithmetic errors.

CS_313/CS_M13 Chapter 1 23/ 37

Exchange Program in SPARK Ada

SPARK Ada (introduced in the next Section) will not allow to instantiate
exchange function (both the “wrong” and “correct” version) by the same
parameter.

CS_313/CS_M13 Chapter 1 22/ 37

Comparison of Languages

Cullyer, Goodenough, Wichman have compared suitability of programming
languages for high integrity software by using the following criteria:
Wild jumps.

» Can it be guaranteed that a program cannot jump to an arbitrary
memory location?

» By use of gotos.
Overwrites.

» Can a language overwrite an arbitrary memory location?
» C, C4+ can do so.

Semantics.

» |s semantics defined sufficiently so that the correctness of the code
can be analysed?

CS_313/CS_M13 Chapter 1 24/ 37

Comparison of Languages

Model of mathematics.
» Is there a rigorous definition of integer and floating point arithmetic
(overflow, errors)?

» E.g. in Java, floating point arithmetic is defined as following the IEEE
floating point arithmetic.

> States precisely when we get an overflow etc. and what to do if we
have an overflow.

» If this is not precisely defined, a program might

> run perfectly on the machine used for testing it (which ignores an error)
» and might crash on the machine, it is actually running.

CS_313/CS_M13 Chapter 1 25/ 37

Comparison of Languages

Exhaustion of memory.
» Are there facilities to guard against running out of memory?

» Object-oriented and functional programming languages have a
problem here, since memory is allocated on the fly.

» Potential problem of garbage collection, if it is executed in a
time-critical situation (e.g. the autopilot might carry out garbage
collection, while landing).

» Recursion is as well problematic, since the depth of recursion cannot
be controlled, and each recursion step requires usually the allocation of
new memotry.

Safe subsets.

» s there a safe subset of the language that satisfies requirements more
adequately than the full language?

CS_313/CS_M13 Chapter 1 27/ 37

Comparison of Languages

Operational arithmetic.

» Are there procedures for checking that the operational program obeys
the model of arithmetic when running on the target processor?

» E.g. programs which determine, whether the processor follows the
IEEE floating point standard.

Data typing.
» Are there means of data typing that prevent misuse of variables?
Exception handling.

» Is there an exception handling mechanism in order to facilitate
recovery if malfunction occurs?

CS_313/CS_M13 Chapter 1 26/ 37

Comparison of Languages

Separate compilation.
» Is it possible to compile modules separately, with type checking
against module boundaries?

» It should be possible to split the program into units (packages, classes),
which are located in different files, with separate interface definitions.

» This allows to verify the correctness of each unit individually, and
avoids the danger that exchanging one unit destroys the correctness of
already verified units.

Well-understood.

» Will designers and programmers understand the language sufficiently
to write safety critical software?

CS_313/CS_M13 Chapter 1 28/ 37

Comparison of Languages

» The next slide contains a comparison of programming languages.

» The languages are a bit old.

» Unfortunately | couldn't find any newer comparison of programming
languages, only individual comparison of pairs of programming
languages.

» The principles are state of the art — use of safe subsets instead of new
programming languages.

» Legend for next slide:

» + means protection available,
» 7 means partial protection,
» - means no protection.

CS_313/CS_M13 Chapter 1 29/ 37

Remarks on CORAL 66

» CORAL 66 = compiled structured programming language related to
Algol.

» Developed at the Royal Radar Establishment RRE, Malvern, UK.
» Used for real-time systems.
» Allowed inline assembly code.

» No free CORAL 66 compilers seem to be available today.

CS_313/CS_M13 Chapter 1 31/ 37

Wild jumps
Overwrites

Semantics

Model of mathematics
Operational arithmetic
Data typing

Exception handling
Safe

subsets

Exhaustion

of mem.

Separate

compil.

Well understood

€S_313/CS_M13

Analysis

» C most unsuitable language.

Comparison of Languages

Structured
assembler

'

» Modula-2 most suitable.
» Problem of Modula-2: limited industrial use.

» Therefore lack of tools, compilers.

C

Chapter 1

CORAL
66
?

ISO
PASCAL

NN v v

» Industrial use contributes to reliability of compilers.

» Case study revealed:

Modu-
la 2

NN N

Ada

e S SR NN

~J

30/ 37

Compiler faults are equivalent to one undetected fault in 50 000 lines

of code.

» Especially problem of optimisation.
» By using compilers heavily compilers are tested and compiler errors are
detected and removed.

€S_313/CS_M13

Chapter 1

32/ 37

Analysis (Cont.)

» One solution: development of new languages for high integrity
software.

» Same problem as for Modula-2: limited industrial use.
» Better solution: introduction of safe subsets.

» Rely on standard compilers and support tools.

» Only additional checker, which verifies that the program is in the
subset.

» Add annotations to the language.

CS_313/CS_M13 Chapter 1 33/ 37

Programming Languages Used

» Aerospace.

» Trend towards Ada.

Use of languages like FORTRAN, Jovial, C, C++.

140 languages used in the development of the Boeing 757/767.
75 languages used in development of the Boeing 747-400.

E.g. C4+—+ for the seat entertainment system of Boeing 777.
Northrup B2 bomber control system: C++

v

v

v

CS_313/CS_M13 Chapter 1 35/ 37

Safe Subsets

Wild jumps
Overwrites

Semantics

Model of mathematics
Operational arithmetic
Data typing

Exception handling
Safe subsets
Exhaustion of mem.
Separate compil.

Well understood

€S_313/CS_M13

CORAL SPADE-

subset

N

+ vt

» Aerospace (Related).

» Air traffic control systems in US, Canada, France: Ada.
» Denver Airport baggage system written in C4++, but initial problems

probably not directly related to the use of C++.

> Problems with the software for the Denver Airport baggage system
delayed the opening of this airport by one year.

» The economic damage caused by these problems -shows that this
software has some aspects of a business critical system.

> But that's a degree of critically which applies to almost all business

software.

€S_313/CS_M13

Pascal

+ 4+ + 4+

+ vt

Chapter 1

Programming Languages Used

Chapter 1

Modula2
subset

e T N N e

Ada
subset

l’

e N R S RN

34/ 37

36/ 37

Programming Languages Used

v

Spacecraft.
» European Space Agency: use of Ada in mission-critical systems.
» NASA: Assembler, Ada.
» Space shuttle: Hal/s and Ada plus other languages.
Automotive systems:
» Much assembler. Also C, C++, Modula-2
Railway industry:
» Ada as de-facto standard.
In general:

» Trend towards Ada for the high-integrity parts of the software.
» Use of assembler, where necessary.

v

v

v

CS_313/CS_M13 Chapter 1 37/ 37

