7 (a) Basic Notions

Verification is the process of determining whether the output of a life cycle phase fulfils the requirements specified in the previous phase.

- So task is not to demonstrate that the output of a development phase is actually correct,
- but that the output of a phase conforms to its input.

Therefore mistakes in early phases of a project may propagate through later stages without detection.
Validation is the process of confirming that the specification of a phase or of the complete system is appropriate and is consistent with the customer requirements.

- Validation might be performed on individual phases,
- but is usually performed on the complete system.

Testing is the process used to verify or validate a system or its components.

- Sometimes **testing** is used for testing, in which one executes the software in order to check whether it is performing as required.
- We use testing in the wider sense and dynamic testing for this more restricted version of testing.

Testing is performed at various stages during the life cycle of a system.

- There are three main activities.
 - **Module testing**
 - **System integration testing**
 - **System validation testing**

Main Testing Activities

- **Module testing** is the evaluation of small, simple functions of hardware or software.
 - Faults detected during module testing are usually easy to locate and to rectify.
- **System integration testing** investigates the characteristics of a collection of modules.
 - Usually investigates the correct interaction between modules.
 - Faults are more difficult to find and more expensive to rectify.
Main Testing Activities

- **System validation testing** tests whether the complete system satisfies the requirements.
 - Problems detected at this stage are usually due to weaknesses of customer requirements or the specification.
 - Problems detected are usually extremely costly to correct, since modifications have to propagate through the entire development process.

Testing Methods

- There are three main testing methods:
 - Dynamic testing.
 - Static analysis.
 - Modelling.

Dynamic Testing

- **Dynamic testing** is the execution of a system or component in order to investigate its characteristics.
- The tests may be carried out
 - in the system's natural working environment,
 - or within simulation of that environment.
 - Often more cost effective.

Dynamic Testing and Simulation

- Dynamic testing might as well be carried out on one or a few system components by using simulation.
 - Especially of advantage if one simulates hardware which has not been developed yet.
 - Then simulation is cost effective, since it allows to compare various designs of the hardware involved.
 - However, simulation never provides complete information on the system behaviour, e.g.
 - real-time operation,
 - problems with timing.
Static Analysis

- **Static analysis** is the investigation of the characteristics of a system or component without operating it.

- **Examples:**
 - Walkthroughs,
 - formal proofs,
 - data flow analysis.

- Automated software testing packages which carry out static analysis are called static code analysis tools.

- Many engineers mean by testing only dynamic testing, not static analysis.

Modelling

- **Modelling** means the mathematical representation of the behaviour of a system or component.
 - Usually carried out at an early stage, in order to investigate the basic nature of the proposed system or its environment.
 - **Animation** of a formal specification is an example of modelling.

Use of Testing Methods

- Typically, a software life cycle involves
 - dynamic testing,
 - static analysis,
 - some form of modelling.

Black/White Box Testing

- Testing methods can be categorised by the information available when performing the work.
 - **Black box testing** means the test engineer has no knowledge about the implementation of the system.
 - **White box testing** means that the test engineer has access to the implementation of the system.
Black Box Testing

- In black box testing, the test engineer relies completely on the specification of the system.
- Therefore it is sometimes called requirements-based testing.
- May be applied to individual modules or (more common) to subsystems or the complete system.
- Is widely used for testing software tools like compilers.

Comparison

- **Advantage of Black Box Testing:**
 - Greatest level of independence between developer and evaluator.
- **Advantage of White Box Testing**
 - The test engineer can use information about the implementation in order to develop better tests.

Black/White-Box vs. Static/Dynamic

- **Dynamic testing** can be white-box and black-box testing.
- **Static analysis** is necessarily white-box testing.
- **Mathematical modelling** doesn’t use the system software and hardware, so categories white/black-box testing don’t apply to it.

Planning for Verification and Validation

- **Test planning** is an essential part of the software life cycle.
- The next slide shows test planning within the V-model.
Testing for Safety

- Testing for safety requires that that tests are performed which show that each identified hazard is effectively countered.
 - Dynamic testing might be sufficient.
 - Since exhaustive dynamic testing is impossible, usually static analysis and mathematical modelling is required.
 - Properties like reliability and failure rates can usually not be tested dynamically, therefore static analysis is required.

The Roles of Testing

- Testing has three purposes in a safety-critical project:
 - Development testing.
 - Validation testing.
 - Production testing.

- **Overall safety validation** is the test that a system is in accordance with the safety requirements.
 - The results of it are documented in an overall safety validation report.
 - Some standards require traceability, i.e. that the key safety requirements are traceable throughout all stages of the software life cycle.
Development/Validation Testing

- **Development testing** is aimed at locating faults within the system, so that they may be removed.
 - Uses dynamic, static and modelling techniques.
- **Validation testing** aims at demonstrating the absence of faults and to demonstrate other positive features.
 - Uses again dynamic, static and modelling techniques.

Production Testing

- **Production testing** aims at testing whether a individual unit has defects as a result of manufacturing or component fault.
 - Tests the accuracy of the replication of the appropriate design.
 - Production tests of software are easy and use usually techniques like checksums.
 - Production tests of hardware are very complicated,
 - since the number of possible faults is extremely big.
 - Production testing is always **dynamic**.

Material Moved to Additional Material

The material for this subsection has been moved to the additional material, which is available from the website.
7 (a) Basic Notions

7 (b) Dynamic testing

7 (c) Static Analysis

Material Moved to Additional Material

The material for this subsection has been moved to the additional material, which is available from the website.

7 (d) Modelling

Material Moved to Additional Material

The material for this subsection has been moved to the additional material, which is available from the website.