
CSC313 High Integrity Systems/CSCM13 Critical Systems

CSC313/CSCM13 Chapter 6 1/ 52



CSC313 High Integrity Systems/
CSCM13 Critical Systems

Course Notes
Chapter 6: The Development Cycle for Safety-Critical Systems

Anton Setzer
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/∼csetzer/lectures/
critsys/current/index.html

December 8, 2016

CSC313/CSCM13 Chapter 6 2/ 52

http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/current/index.html
http://www.cs.swan.ac.uk/~csetzer/lectures/critsys/current/index.html


6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Chapter 6 3/ 52



6 (a) Life Cycle Models

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (a) 4/ 52



6 (a) Life Cycle Models

(a) Life Cycle Models

I Critical systems have to be developed up to highest standards.
I This means that one has to use methods which guarantee such

standards.
I The development of critical systems has to be well-documented and

therefore the development process is much more formalistic the usual.
I This is especially important since critical systems have often do be

certified.
I During certification, the documents used will be carefully checked.

CSC313/CSCM13 Sect. 6 (a) 5/ 52



6 (a) Life Cycle Models

Life Cycle Models

I Specification and verification are much more important than for
ordinary software.

I The standard life cycle model used for critical systems is the
V-model, which is very close to the waterfall model.

I The V-model was developed independently simultanteously in Germany
by a company in cooperation with the German Ministry of Defence,
and by the National Council on Systems Engineering for satellite
systems involving hardware, software and human interaction.

CSC313/CSCM13 Sect. 6 (a) 6/ 52



6 (a) Life Cycle Models

Life Cycle Models

I The origins of the V-model explain its tbfsuitability for critical
systems, since military software are often safety critical and
satellite systems are mission critical.

I Therefore that model was probably developed taking this into account.

CSC313/CSCM13 Sect. 6 (a) 7/ 52



6 (a) Life Cycle Models

Explanation Next Slide

I Items in blue Roman are development phases.

I Items in red italics are output from the development phases.

I −→ is the primary flow of information.

I 99K is the secondary flow of information.

CSC313/CSCM13 Sect. 6 (a) 8/ 52



6 (a) Life Cycle Models

V-Development Life Cycle

ServiceRequirements analysis

Specification Certification

Requirements documents

Specification

Top−Level Design

Design Specification

Detailed Design

Module Design

Certified System

Verified System

System Test

Integrated System

System Integration

Tested Modules

Construction/Coding Module−Test

Modules

CSC313/CSCM13 Sect. 6 (a) 9/ 52



6 (a) Life Cycle Models

Model from IEC 1508

The IEC 1508 model can be found in the Additional Material which is
available from the website.

CSC313/CSCM13 Sect. 6 (a) 10/ 52



6 (b) The Safety Life Cycle

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (b) 11/ 52



6 (b) The Safety Life Cycle

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CSC313/CSCM13 Sect. 6 (b) 12/ 52



6 (c) Development Methods

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (c) 13/ 52



6 (c) Development Methods

Material Moved to Additional Material

Here we present only the material on Specifications. The rest has been
moved to Additional material, which is available from the website.

CSC313/CSCM13 Sect. 6 (c) 14/ 52



6 (c) Development Methods

Specification

I The goal of a
:::::::::::::::
specification is to define in an unambiguous manner,

the precise operation of a system.
I Includes:

I the functionality and performance of the system,
I its interaction with other systems,
I safety invariants of the system,
I constraints of safety invariants on the design.

I In case of subcontracting of software, the specification forms a
contract between the supplier and the customer.

CSC313/CSCM13 Sect. 6 (c) 15/ 52



6 (c) Development Methods

Specification

I An ideal specification should be
I correct,
I complete,
I consistent,
I unambiguous.

I Especially completeness is often underestimated.

CSC313/CSCM13 Sect. 6 (c) 16/ 52



6 (c) Development Methods

Example of an Incomplete Specification

I A carriage moves vertically along a guideway between two end stops.

I On each end-stop is a limit switch that should prevent further travel.

I If neither limit-switch is closed the system should allow the
carriage to move in either direction under the control of other
routines.

I If the upper limit switch is closed the system controlling the
carriage should ensure that it can only move downwards and hence
away from that end-stop.

I If the lower limit switch is closed the system controlling the
carriage should ensure that it can only move upwards.

CSC313/CSCM13 Sect. 6 (c) 17/ 52



6 (c) Development Methods

Example of an Incomplete Specification

I Missing: what happens if both switches are closed?
I Could not happen if switches operate correctly.
I However one switch might be broken, and then the system should deal

with this error.

I As it stands, in this case the system might reach an unsafe state.

CSC313/CSCM13 Sect. 6 (c) 18/ 52



6 (c) Development Methods

Problems of Natural Specifications

I Most specification are written in a natural language (e.g. English).

I There are 3 problems with natural language specifications.

1. Natural language is often ambiguous.
I Example: “This toilet is available to disabled students and staff only”.

I Is it available to disabled staff only or to all staff?

CSC313/CSCM13 Sect. 6 (c) 19/ 52



6 (c) Development Methods

Problems of Natural Specifications

2. Natural language specifications are much longer than mathematical
formulations, and therefore it is more easy to overlook something.

I That’s the reason why in mathematics one writes formulae
I e.g.

∀x , y .x = y → y = x

I instead of natural language texts
I e.g.

“for all x and y, if x is equal to y then y is equal to x”

CSC313/CSCM13 Sect. 6 (c) 20/ 52



6 (c) Development Methods

Problems of Natural Specifications

2. (Cont.)
I Without it would be much more difficult to keep an overview of what is

currently available in a mathematical proof.
I Similarly in natural language specifications one might insert

inconsistencies or inaccuracies, which one would see immediately
when using formal languages.

3. One cannot apply automatic checks (e.g. whether there are
inconsistencies) to specifications written in natural languages.

CSC313/CSCM13 Sect. 6 (c) 21/ 52



6 (c) Development Methods

Specification Languages

I Therefore formal specification languages have been developed.
I Are used in industry.
I Usually some tool support exists (syntax checks, some consistency

checks).

CSC313/CSCM13 Sect. 6 (c) 22/ 52



6 (c) Development Methods

Formal Specification Languages

I Two approaches:
I

:::::::::::::
Model-based

::::::::::::::
specification

::::::::::::
languages:

I Based on a general model for representing programs (usually a set
theoretic model)

I The system to be specified is constructed in this model using
mathematical constructs such as sets and sequences.

I The system operations are defined by how they modify the system
state.

CSC313/CSCM13 Sect. 6 (c) 23/ 52



6 (c) Development Methods

Formal Specification Languages

I
::::::::::
Algebraic

::::::::::::::
specification

:::::::::::
languages:

I Systems are described in terms of operations and their relationship.
I Relationships are described axiomatically.
I With a consistent specification usually a large variety of models is

associated.
I The consequences of a specification are what holds in all models

associated with a specification.

CSC313/CSCM13 Sect. 6 (c) 24/ 52



6 (c) Development Methods

Formal Specification Languages

I Examples of formal specification languages:
I Algebraic languages:

I Sequential: Larch, OBJ, Maude, CASL
I Concurrent: Lotos.

I Model-based languages:
I Sequential: VDM, Z, B-method, Event-B.
I Concurrent: CSP, CCS, Petri Nets.

I Prof. Mosses was the leader of the initiative creating CASL.

I Dr. Roggenbach is a specialist on CASL, and has integrated CSP into
it.

I Prof. Moller is a specialist on CCS.

I Prof. Tucker is a specialist on algebraic specification.

I Dr. Seisenberger, Dr. Harman are using and teaching Maude.

I Dr. Setzer is a user of CASL.

CSC313/CSCM13 Sect. 6 (c) 25/ 52



6 (d) Designing for Safety

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (d) 26/ 52



6 (d) Designing for Safety

(d) Designing for Safety

We present here only some material. The rest has been moved to
Additional material, which is available from the website.

CSC313/CSCM13 Sect. 6 (d) 27/ 52



6 (d) Designing for Safety

Software Partitioning

I Reason for partitioning of software:
I Small units are easier to understand than a large monolithic

program.
I Partitioning provides isolation between software functions.
I Allows to design the program so that faults are contained in one

modules.
I Makes fault tolerance possible.

I Allows to assign to modules different levels of integrity.
I If modules depend on each other, their criticality is that of the most

critical one.
I If modules are independent on each other, different (and often lower)

levels of criticality can be assigned to them.

CSC313/CSCM13 Sect. 6 (d) 28/ 52



6 (d) Designing for Safety

Hierarchical Design

I One approach towards designing systems is hierarchical design.
I In a hierarchical design, a system is divided into a series of layers.
I Modules within the higher layers depend for their correct operation on

the correct functioning of lower-level components.
I Lower levels might represent processors, control devices, sensors.
I Higher levels might represent application-level software.
I Intermediate levels are components like communication software and

device drivers.

CSC313/CSCM13 Sect. 6 (d) 29/ 52



6 (d) Designing for Safety

Layered Structures

I The result of a hierarchical design is a structure as follows:

High level 

Intermediate level

I/O Routines

CSC313/CSCM13 Sect. 6 (d) 30/ 52



6 (d) Designing for Safety

Layered Structures

I In a layered structure as before, upper modules depend on lower ones.

I Therefore information about faults detected at lower levels have to be
passed on to higher levels.

I This is necessary in order to have good fault management, with the
goal of having fault avoidance and fault removal.

CSC313/CSCM13 Sect. 6 (d) 31/ 52



6 (d) Designing for Safety

Isolating Critical Functions

I It’s important that critical functions are contained within modules,
preferably within lower level modules.

I For instance, if a high level modules decides depending on information
from one lower level module, whether a critical actuator controlled by
another lower level module is activated, then this high level module
and all intermediate modules involved have a high degree of criticality.

CSC313/CSCM13 Sect. 6 (d) 32/ 52



6 (d) Designing for Safety

Long Chain of Responsibility

High level 

Intermediate level

I/O Routines

Sensor Actuator

CSC313/CSCM13 Sect. 6 (d) 33/ 52



6 (d) Designing for Safety

Better Architecture

I If instead this decision is done directly by one low level module, then
only this small module is critical.

I And it is much easier to verify a smaller module, rather than a big
chain of modules.

CSC313/CSCM13 Sect. 6 (d) 34/ 52



6 (d) Designing for Safety

Short Chain of Responsibility

High level 

Intermediate level

I/O Routines

Sensor Actuator

CSC313/CSCM13 Sect. 6 (d) 35/ 52



6 (d) Designing for Safety

Firewalls

I In critical systems, a
::::::::
firewall is a system which protects the critical

elements of the system.
I A firewall might be

I a physical barrier,
I or a logical barrier to the system software, which prevents failure of

the software outside the firewall from affecting the critical software
within.

I Part of this is the prevention of unauthorised access or
modification of data and code within the protected region.

I That aspect of firewalls is what is associated with firewalls in the area
of Internet security.

CSC313/CSCM13 Sect. 6 (d) 36/ 52



6 (d) Designing for Safety

Safety Kernel

I A
:::::::
safety

::::::::
kernel is

I a relatively small simple arrangement,
I usually a combination of hardware and software,
I that performs a set of safety-critical functions or provide operating

system components that perform critical tasks.
I Therefore the criticality of the system is concentrated in this kernel.
I It is crucial that the kernel is well protected from outside influences.

I Might be achieved physically, by use of separate hardware.
I Might be achieved by software, by providing software isolation.

CSC313/CSCM13 Sect. 6 (d) 37/ 52



6 (d) Designing for Safety

Example: Railway Control System

I For instance in a railway control system, one might have
I A small safety kernel, which

I receives high level commands about routes of trains to be chosen,
I checks whether there are any conflicts,
I and, if there are no conflicts, sets signals and activates switches

accordingly.

I A very complex software, which in an intelligent way controls the
railway system

I but all the commands of which are passed on to the small critical
module.

I Then one can assign a low level of integrity to the complex software,
and only needs to assign a high level to the small safety kernel.

CSC313/CSCM13 Sect. 6 (d) 38/ 52



6 (d) Designing for Safety

Software Isolation

I A unit in a program is
:::::::::
isolated, if other modules can only influence

it by using the public interface of the unit (which includes global
variables).

I This means that
I neither any local variable can be changed by any other unit,

I access to the unit is only possible through the “front door”,

I nor the execution of the unit can be blocked by other modules
consuming all the time or memory available.

CSC313/CSCM13 Sect. 6 (d) 39/ 52



6 (e) Human Factors in Safety

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (e) 40/ 52



6 (e) Human Factors in Safety

(e) Human Factors in Safety

I As operators or users, human beings can be considered as
components of critical systems.

I Humans bring both complications and potential benefits to a system.
I Complications:

I Humans are often unreliable and unpredictable.
I Therefore many accidents are attributed to human error.
I Computers are superior in terms of speed and the ability to follow

a predefined set of instructions.

CSC313/CSCM13 Sect. 6 (e) 41/ 52



6 (e) Human Factors in Safety

Benefits of Humans in Critical Systems

I Benefits:
I Humans are flexible and adaptable.
I They are extremely good at dealing with unexpected events.
I They are invaluable if a system strays from its normal operating

regime.

CSC313/CSCM13 Sect. 6 (e) 42/ 52



6 (e) Human Factors in Safety

Liveware

I Humans considered as a further component in a critical system,
implement safety features.

I E.g. a pilot, which in an emergency takes over control over the plane
provides some kind of fault tolerance.

I Therefore, one can apply the terminology
:::::::::
liveware to humans as

components.
I Besides hardware and software, safety features can be implemented by

liveware.

I Appropriate partitioning of safety features between hardware, software
and liveware is important.

CSC313/CSCM13 Sect. 6 (e) 43/ 52



6 (e) Human Factors in Safety

Role of Liveware in Critical Systems

I Because of their adaptability, humans form some kind of backup
system in critical systems.

I In order to make this possible, it is necessary that the human operators
can take over responsibility from the computer system.

I For instance, in an aircraft the pilot is allowed to override the
automatic landing system, by switching to manual control.

I Therefore the pilot can make mistakes the computer system would
avoid.

I But this allows the pilot to overcome faults within the system.

I In general this means that humans can be used very well in order to
provide additional fault tolerance.

CSC313/CSCM13 Sect. 6 (e) 44/ 52



6 (e) Human Factors in Safety

Problems of Liveware

I Problem is that humans add complexity to a system.
I Humans are not as reliable as a computer system, when it is about

performing routine tasks.
I Therefore one usually attempts to remove humans from tasks that can

be implemented by following a well-defined set of rules.

I From the above considerations it follows that one preferably should
I remove humans from routine tasks,
I but use them in the form of controllers, which take over responsibility

in case of an emergency.

CSC313/CSCM13 Sect. 6 (e) 45/ 52



6 (e) Human Factors in Safety

Human Error

I When an accident occurs, the reasons will in most cases be attributed
to either system failure or human error.

I Very often the conclusion is human error.
I However, many human errors are due to to deficits in the

Human-Computer Interface (HCI).
I Example: If an air plane crashes because the pilot does not notice

that it is short of fuel this is human error.
I If that happens several times, then one can question the display and

warning system of the aircraft, and therefore the HCI.

CSC313/CSCM13 Sect. 6 (e) 46/ 52



6 (f) Safety Analysis

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (f) 47/ 52



6 (f) Safety Analysis

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CSC313/CSCM13 Sect. 6 (f) 48/ 52



6 (g) Safety Management

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (g) 49/ 52



6 (g) Safety Management

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CSC313/CSCM13 Sect. 6 (g) 50/ 52



6 (h) The Safety Case

6 (a) Life Cycle Models

6 (b) The Safety Life Cycle

6 (c) Development Methods

6 (d) Designing for Safety

6 (e) Human Factors in Safety

6 (f) Safety Analysis

6 (g) Safety Management

6 (h) The Safety Case

CSC313/CSCM13 Sect. 6 (h) 51/ 52



6 (h) The Safety Case

Material Moved to Additional Material

The material for this subsection has been moved to the additional
material, which is available from the website.

CSC313/CSCM13 Sect. 6 (h) 52/ 52


	6 (a) Life Cycle Models
	6 (b) The Safety Life Cycle
	6 (c) Development Methods
	6 (d) Designing for Safety
	6 (e) Human Factors in Safety
	6 (f) Safety Analysis
	6 (g) Safety Management
	6 (h) The Safety Case

