2.3.1. String Recognition (13.1)

We want to define a program which recognises strings “start” and “stop”. We start by defining a program which recognises the letter “s”. This can be given by a system given by the following diagram, which will be our first automaton (automata will be introduced soon).

This automaton has the following ingredients.

- States \(q_0, q_1 \).
- State \(q_0 \) is the starting state, indicated by the arrow into it coming from nowhere.
- State \(q_1 \), the state indicating that we have recognised letter “s”.
- A transition, which when recognising letter “s”, goes from state \(q_0 \) to \(q_1 \).
In order to recognise the letter “t”, we extend this automaton as follows:

- q_0 is the start state.
- q_1 indicates we have read string “s”.
- q_2 indicates we have read string “st”.

For the 3rd letter, we have two choices: “a” as part of the word “start”, and “o” as part of the word “stop”.

- q_0 is the start state.
- q_1 indicates we have read string “s”.
- q_2 indicates we have read string “st”.
- q_3 indicates we have read string “sta”.
- q_6 indicates we have read string “sto”.
Example Recognising Strings, Step 3

We can complete our automaton and obtain the following

This diagram contains a new ingredient:
States q_5 and q_7 are accepting states. If we have processed a word and reached such a state then the word is accepted as a string of the language of the automaton.
(In our example $L = \{\text{start, stop}\}$.)

Automata with Loops

In order to recognise infinite languages, we need automata with loops. The following automaton recognises $L = \cdots$
Automata with Loops

The following automaton recognises $L = \ldots$

```
q_0 \rightarrow a \rightarrow q_1
b
```

Nondeterministic Automata

The language \{start, stop\} can be as well recognised by the following nondeterministic automaton:

```
q_0 \rightarrow s \rightarrow q_1 \rightarrow t \rightarrow q_2 \rightarrow a \rightarrow q_3 \rightarrow r \rightarrow q_4 \rightarrow t \rightarrow q_5
```

▶ The automaton chooses in state q_0, non-deterministically, when in state q_0 and recognising a letter s, whether to go to q_1 or q_6.
▶ The accepted language is the set of strings such that for each of them we obtain an accepting state for at least one non-deterministic choice.

```
q_0 \rightarrow s \rightarrow q_1 \rightarrow t \rightarrow q_2 \rightarrow a \rightarrow q_3 \rightarrow r \rightarrow q_4 \rightarrow t \rightarrow q_5
```

▶ If we try to accept the word “stop” by moving $q_0 \xrightarrow{s} q_1 \xrightarrow{t} q_2$ we get stuck at q_2.
▶ That we fail to accept a word for one specific non-deterministic choice doesn’t imply that this word is not in the language.
▶ A word is not accepted only if for all non-deterministic choices the corresponding run of the automaton doesn’t accept the string.
Why Nondeterministic Automata?

- When translating regular grammars into automata, we will obtain non-deterministic automata.
- We will show later that from a non-deterministic automaton we can obtain an equivalent deterministic automaton.
- Non-deterministic machine models play an important role in the theory of algorithms and complexity.
 - In some cases (as for automata), deterministic and non-deterministic are equivalent.
 - Sometimes they are not.
 - In other cases it is an open problem whether they are equivalent.

Definition NFA

Definition

A **non-deterministic finite state automaton**, in short **NFA** \((Q, q_0, F, T, \delta)\) is given by

- A finite set \(Q\) of **states**.
- A single **initial state** \(q_0\).
- A set \(F \subseteq Q\) of **accepting states**.
- A finite set of **terminal symbols** \(T\).
- A function \(\delta : Q \times T \rightarrow \mathcal{P}(Q)\).

Here \(\mathcal{P}(Q)\) is the set of subsets of \(Q\).

\(\delta(q, a)\) gives the set of possible next states that the automaton can be in after reading the terminal symbol \(a \in T\) when in state \(q\).

Presentation of DFA by Picture

An NFA can be presented by a picture, like the following diagram:

- The arrow from nowhere into state \(q_0\) denotes that \(q_0\) is the initial state.
- Circles denote states.
- Arrows from a state \(q\) to \(q'\) labelled by a mean that \(q'\) is one element of \(\delta(q, a)\).
- Double circle like for \(q_5\) and \(q_9\) denote the accepting states.
2.3.2. Nondeterministic Finite State Automata (13.2)

Presentation of DFA by Table

automaton M

states q_0, \ldots, q_n

terminals a_0, \ldots, a_m

start q_i

final $q_{i_0}, q_{i_1}, \ldots, q_{i_m}$

transitions $\delta(q_j, a_i) = \{q_{k_1}, \ldots, q_{k_l}\}$.

We omit $\delta(q, a)$, if $\delta(q, a) = \emptyset$.

Example

The automaton given by the diagram

is represented by the table on the next slide.

The Extended Transition Function

We define an extended transition function, which determines the set of states, an NFA can reach from a state q, when reading a word $w \in T^*$:

Definition

Let $M = (Q, q_0, F, T, \delta)$ be an NFA. Then we define

$$\delta^* : Q \times T^* \rightarrow \mathcal{P}(Q)$$

by induction on the length of words $w \in T^*$:

- $\delta^*(q, \epsilon) := \{q\}$.
- If $w = aw'$ for $a \in T$, $w' \in T^*$, $\delta(q, a) = \{q_1, \ldots, q_m\}$ ($m = 0$ possible), then $\delta^*(q, w) = \bigcup_{i=1}^m \delta^*(q_i, w')$.
Example

For the automaton

we give some definitions of δ^*:

- $\delta^*(q_0, \epsilon) = \{q_0\}$.
- $\delta^*(q_0, s) = \{q_1, q_6\}$.
- $\delta^*(q_0, st) = \{q_2, q_7\}$.
- $\delta^*(q_0, sta) = \{q_3\}$.
- $\delta^*(q_0, star) = \{q_4\}$.
- $\delta^*(q_0, start) = \{q_5\}$.
- $\delta^*(q_0, sto) = \{q_8\}$.
- $\delta^*(q_0, stop) = \{q_9\}$.

The Language accepted by an NFA

Definition

Let $A = (Q, q_0, F, T, \delta)$ be an NFA. The language accepted by A is defined as

$$L(A) := \{w \in T^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$$
Operational Understanding of NFAs

One can now see that a string s is accepted by an automaton A in the sense above iff $s \in L(A)$.

Example 1: An Automaton accepting $\{1, 2, 3\}$

Display style:

<table>
<thead>
<tr>
<th>automaton</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td>q_0, q_1, q_2, q_3</td>
</tr>
<tr>
<td>terminals</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>start</td>
<td>q_0</td>
</tr>
<tr>
<td>final</td>
<td>q_1, q_2, q_3</td>
</tr>
<tr>
<td>transitions</td>
<td>$\delta(q_0, 1) = {q_1}$</td>
</tr>
<tr>
<td></td>
<td>$\delta(q_0, 2) = {q_2}$</td>
</tr>
<tr>
<td></td>
<td>$\delta(q_0, 3) = {q_3}$</td>
</tr>
</tbody>
</table>
Shorter pictorial presentation of the same automaton:

Example 2: Automaton accepting $0, 1, 2, 3, \ldots, 9$

Automaton M

States q_0, q_1

Terminals $1, 2, 3$

Start q_0

Final q_1

Transitions

- $\delta(q_0, 0) = \{q_1\}$
- $\delta(q_0, 1) = \{q_1\}$
- $\delta(q_0, 2) = \{q_1\}$
Example 3: Automaton accepting \[0, 1, \ldots, 9\]

Display style:

<table>
<thead>
<tr>
<th>automaton</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td>(q_0)</td>
</tr>
<tr>
<td>terminals</td>
<td>(0, \ldots, 9)</td>
</tr>
<tr>
<td>start</td>
<td>(q_0)</td>
</tr>
<tr>
<td>final</td>
<td>(q_0)</td>
</tr>
<tr>
<td>transitions</td>
<td>(\delta(q_0, a) = {q_0} \ (a \in {0, 1, \ldots, 9}))</td>
</tr>
</tbody>
</table>
Example

Automaton with empty move transitions are like NFAs, but have the possibility to make transitions without consuming a letter. These transitions are labelled as λ.

![Diagram of an automaton with empty move transitions](image)

Definition NFA with empty moves

A **non-deterministic finite state automaton with empty moves** (Q, q_0, F, T, δ) is given by

- A finite set Q of **states**.
- A single **initial state** q_0.
- A set $F \subseteq Q$ of **accepting states**.
- A finite set of **terminal symbols** T.
- A function $\delta : Q \times (T \cup \{\lambda\}) \rightarrow P(Q)$.

The Extended Transition Function

We extend the function δ^* to NFA with empty moves as follows:

Definition

Let $M = (Q, q_0, F, T, \delta)$ be an NFA with empty moves. Then we define

$$\delta^* : Q \times (\{\lambda\} \cup T^*) \rightarrow P(Q)$$

- We first define $\delta^*(q, \lambda)$ inductively:
 - $q \in \delta^*(q, \lambda)$.
 - If $q' \in \delta^*(q, \lambda)$ and $q'' \in \delta(q', \lambda)$, then $q'' \in \delta^*(q, \lambda)$.
- For $a \in T$ we define
 $$\delta^*(q, a) := \{q'' \mid \exists q' \in \delta^*(q, \lambda). q'' \in \delta(q, a)\}$$
The Extended Transition Function

Definition (Cont)

Now we define $\delta(q, w)$ by induction on the length of w:

- $\delta^*(q, \epsilon) := \delta^*(q, \lambda)$.
- $\delta^*(q, a)$ is defined as before.
- If $w = aw'$ for $a \in T$, $w' \in T^+$. Then

 $\delta^*(q, aw) := \{ q'' \mid \exists q' \in \delta^*(q, a), q'' \in \delta^*(q', w) \}$.

Informal Understanding

So $q \in \delta(q, a_1 \cdots a_n)$ if we can reach from q using finitely many λ-transitions, then one a_1-transition, then again finitely many λ-transitions, an a_2 transition, ..., finitely many λ-transitions, and an a_n transition:

$q_0 \xrightarrow{\lambda} \cdots \xrightarrow{\lambda} q_1 \xrightarrow{a_1} q_2 \xrightarrow{\lambda} \cdots \xrightarrow{\lambda} q_{n-1} \xrightarrow{\lambda} q_n \xrightarrow{a_n} q' \in F$

Language Accepted

Definition

Let $M = (Q, q_0, F, T, \delta)$ be an NFA with empty moves. Then

$L(A) := \{ w \in T^* \mid \exists q \in \delta^*(q_0, w), \delta^*(q, \lambda) \cap F \neq \emptyset \}$.

NFA with Empty Moves are Equivalent to NFAs

We show that for every NFA M with empty moves we can find an NFA M' without any moves s.t. $L(M') = L(M)$.

This is done as follows:

Let $M = (Q, q_0, F, T, \delta)$.

M' is obtained from M by

- replacing δ by δ^*, i.e. replacing $\delta(q, a)$ by $\delta^*(q, a)$.
- replacing F by $F' := \{ q \in Q. \delta^*(q, \lambda) \cap F \neq \emptyset \}$.

So the transitions are obtained by allowing first finitely many empty moves and then one proper transition.

At the end we might need to make finitely many empty moves before reaching the accepting state, therefore the set of accepting states is the set of states from which we can reach an accepting state of M using empty moves.
Correctness of the Translation

One can now easily see that $\delta_{M'}^*(q, w) = \delta_{M}^*(q, w)$.

Now it follows

$$L(M') = \{ w \in T^* \mid \delta_{M'}^*(q, w) \cap F' \neq \emptyset \}$$

$$\quad = \{ w \in T^* \mid \exists q' \in \delta_{M'}^*(q, w). \delta_{M}^*(q', \lambda) \cap F \neq \emptyset \}$$

$$\quad = L(M)$$

Example

Consider the NFA with empty moves from above:

The transformed automaton is as follows:

Theorem

For any NFA M with empty moves there exist an NFA without empty moves s.t. $L(M') = L(M)$.
2.3.5. Deterministic Finite State Automata (13.6)

Definition DFA

Let $M = (Q, q_0, F, T, \delta)$ be an NFA. M is a deterministic finite state automaton, in short DFA, if for all $q \in Q$, $a \in T$ $\delta(q, a)$ has at most one element.

So deterministic finite state automata are those automata corresponding to real programs: we have never to make a choice.

Theorem

Let M be an NFA. Then there exists a DFA M' s.t. $L(M) = L(M')$.

Note that with this notation we have for DFAs: $\delta^*(q, \epsilon) = q$, $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$.

Notation

1. If $M = (Q, q_0, F, T, \delta)$ is an NFA, we write
 - $q \xrightarrow{a} q'$ for $q' \in \delta(q, a)$.
 - $q \xrightarrow{aw} q'$ for $q' \in \delta^*(q, w)$.

2. If $M = (Q, q_0, F, T, \delta)$ is a DFA, we often write $\delta(q, a) = q'$ if $q \xrightarrow{a} q'$, and $\delta^*(q, w) = q'$ if $q \xrightarrow{w} q'$.

So we consider δ, δ^* as partial functions $Q \times A \to Q$.

Theorem

Let M be an NFA. Then there exists a DFA M' s.t. $L(M) = L(M')$.

Defenition

2.3.5. Deterministic Finite State Automata (13.6)
Proof Idea

- We will define a new automaton $M' = (Q', q'_0, F', T, \delta')$.
- Q' is the set of all subsets of Q, i.e. $\mathcal{P}(Q)$.
 - Having reached state $\{q_1, \ldots, q_k\}$ means that $\{q_1, \ldots, q_k\}$ are the set of states we could have reached in M by making different choices, but following the same word.
- $q'_0 := \{q_0\}$.
 - Initially the states we have reached are the elements of $\{q_0\}$.
- We set $\{q_1, \ldots, q_k\} \xrightarrow{a} \{q'_1, \ldots, q'_k\}$
 if $\{q'_1, \ldots, q'_k\}$ are the set of states we can reach from a state q_i following an arrow labelled by a.
 - If we could have reached any of the states $\{q_1, \ldots, q_k\}$, then after reading a in addition, we could have reached states $\{q'_1, \ldots, q'_k\}$.

The accepting states are the set of states containing at least one accepting state.
- If having read word w we can reach the states $\{q_1, \ldots, q_k\}$, then the word w can be accepted, if one of q_1, \ldots, q_k is an accepting state.

Resulting DFA

- **automaton** M'
- **states** $\mathcal{P}(Q)$
- **terminals** T
- **start** $\{q_0\}$
- **final** $A \in \mathcal{P}(Q)$ s.t. $A \cap F \neq \emptyset$
- **transitions** $\delta'(\{q_1, \ldots, q_k\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup \cdots \cup \delta(q_k, a)$

Simplification

- Usually only some states of M' are reachable.
- We can omit all unreachable states and get an equivalent automaton.
- We can construct the reachable states of M' by starting with $\{q_0\}$, and constructing from there systematically all transitions and the states reached.
- Furthermore, there will be a state \emptyset.
 - When we have reached that state we have consumed a word for which there is no complete run of M.
 - $\emptyset \not\in F'$, $\delta'(\emptyset, a) = \emptyset$.
 - So \emptyset is a sink, a state from which we cannot escape, and which doesn’t accept anything.
 - If we omit \emptyset, we obtain a DFA with the same language.
Example 1

Consider the following NFA accepting \{\text{start, stop}\}:

We obtain up to renaming of states the DFA we defined originally:

Example 2

Consider the following NFA accepting \(L = \ldots\):

We obtain up to renaming of states the DFA we defined originally:
Consider the DFA as given above.

We show for $A := \{q_1, \ldots, q_k\} \subseteq Q$ that
\[\delta^*(A, w) = \delta^*(q_1, w) \cup \cdots \cup \delta^*(q_k, w) \]
by induction on the length of w:

We write $\delta^*(\{q_1, \ldots, q_k\}, w)$ for $\delta^*(q_1, w) \cup \cdots \cup \delta^*(q_k, w)$, and have to show for $A \subseteq Q$ that
\[\delta^*(A, w) = \delta^*(A, w) \]

Case $w = \epsilon$: \[\delta^*(A, \epsilon) = A = \delta^*(A, \epsilon) \]

Case $w = aw'$:
\[
\begin{align*}
\delta^*(A, w) \\
= \delta^*(A, aw') \\
= \delta^*(\delta(A, a), w') \\
= \delta^*(\delta(A, a), w') \\
\text{IH} \\
= \delta^*(\delta(A, a), w') \\
= \delta^*(A, aw') = \delta^*(A, w)
\end{align*}
\]

We obtain now
\[
L(M') = \{ w \in T^* | \delta^*(\{q_0\}, w) \in F' \} = \{ w \in T^* | \delta^*(\{q_0\}, w) \cap F \neq \emptyset \} = L(M)
\]

Theorem

We will show that regular expressions coincide with regular languages and with languages recognised by a DFA or NFA.

Here we prove one part of this result:

Theorem

For every right linear grammar G there exists an NFA M s.t.
\[L(G) = L(M) \]
Proof Idea

A derivation of a word in G has the form

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_n$$

where we have productions

$$A_i \rightarrow a_{i+1} A_{i+1} \quad A_n \rightarrow a_n$$

or

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_{n-1}$$

where we have productions

$$A_i \rightarrow a_{i+1} A_{i+1} \quad A_n \rightarrow \epsilon$$

So we have:

- If $A \rightarrow a A'$, then $A \rightarrow a A'$.
- If $A \rightarrow a$ then $A \rightarrow q_F$.
- $q_F \in F$.
- If $A \rightarrow \epsilon$, then $A \in F$.

Proof Idea

Define M with states $N \cup \{q_F\}$ for a special new accepting state q_F such that the derivation

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_n$$

corresponds to a sequence of transitions

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F$$

and a derivation

$$S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_n$$

corresponds to a sequence of transitions

$$S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \in F$$

Constructed NFA

We obtain from $G = (N, T, S, P)$ the following NFA:

<table>
<thead>
<tr>
<th>automaton</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>states</td>
<td>$N \cup {q_F}$</td>
</tr>
<tr>
<td>terminals</td>
<td>T</td>
</tr>
<tr>
<td>start</td>
<td>S</td>
</tr>
<tr>
<td>final</td>
<td>$A \in N$ s.t. $A \rightarrow \epsilon$. q_F</td>
</tr>
<tr>
<td>transitions</td>
<td>$\delta(A, a) = {A' \mid A \rightarrow a A'}$ $\cup {q_F \mid A \rightarrow a}$</td>
</tr>
</tbody>
</table>
Formal Proof

We show that \(L(M) = L(G) \):

- Assume \(w = a_1 \cdots a_n \in L(M) \).

Then there exists a sequence of transitions in \(A \)

\[
S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} q_F
\]

or

\[
S = A_0 \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} A_n \in F
\]

But from this we obtain derivations

\[
S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \rightarrow a_1 a_2 \cdots a_{n-1} a_n = w
\]

or

\[
S = A_0 \rightarrow a_1 A_1 \rightarrow a_1 a_2 A_2 \rightarrow \cdots \rightarrow a_1 a_2 \cdots a_n A_n \rightarrow a_1 a_2 \cdots a_n = w
\]

So \(w \in L(G) \).

Example

Consider the Grammar:

<table>
<thead>
<tr>
<th>grammar</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>0, 1</td>
</tr>
<tr>
<td>nonterminals</td>
<td>(S, T)</td>
</tr>
<tr>
<td>start symbol</td>
<td>(S)</td>
</tr>
</tbody>
</table>
| productions | \(S \rightarrow 0, S \rightarrow 1T, \)
\(T \rightarrow 0T, T \rightarrow 1T, \)
\(T \rightarrow \epsilon, T \rightarrow 0, T \rightarrow 1 \) |

Corresponding Automaton

(Note that it is nondeterministic).
Corresponding Automaton

With corresponding rules:

- $S \rightarrow 0$
- $S \rightarrow 1T$
- $T \rightarrow 0$
- $T \rightarrow 1$
- $T \rightarrow \epsilon$

Accepting state because of

Theorem

Let $M = (Q, q_0, F, T, \delta)$ be an NFA. Then there exist a regular expression L' s.t. $L' = L(M)$.

Before proving it we give an example:

Example

Consider the following automaton for the language $L = ?$

We derive regular expressions and simplify them at each intermediate step in order to keep them simple.
We write $\{0, 1\}$ for $\{0\}|\{1\}$ and similar notations.
2.3.7. Translating NFAs into Regular Expressions (13.10)

From M to $L_{q,q'}^\emptyset$

Original automaton:

We derive $L_{q,q'}^\emptyset$, which is the set of strings which allows us to get from q to q' with intermediate states in \emptyset, i.e. without any intermediate states:

- $\{a_1\} | \cdots | \{a_n\}$, if $q \neq q'$ and we have transitions $q \xrightarrow{a_i} q'$,
- $\{a_1\} | \cdots | \{a_n\} | \{\epsilon\}$, if $q = q'$ and we have transitions $q \xrightarrow{a_i} q'$.
Calculation of $L_{q_0, q'}^q$

$L_{q_0, q'}^q$:

\[
\begin{align*}
L_{q_0, q'}^q &= L_{q_0}^q \mid (L_{q_0, q_0}^q L_{q_0, q_0}^q)^* L_{q_0, q'}^q,
\end{align*}
\]

We derive $L_{q, q'}^q$, which is the set of strings which allows us to get from q to q' with intermediate states in \{q_0, q_1\}.

This language is

$L_{q, q'}^q = L_{q_0}^q \mid (L_{q_0, q_0}^q L_{q_0, q_0}^q)^* L_{q_0, q'}^q$
From $L_{q_0,q_1}^{q_0}$ to $L_{q_0,q_1}^{q_0,q_1}$

States with $L_{q_0,q_1}^{q_0}$:

- $\{1\}^* \cdot \{0\}$
- \emptyset
- $\{0,1,\varepsilon\}$

States with $L_{q_0,q_1}^{q_0,q_1}$, the complete language between those states:

- $\{1\}^* \cdot \{0\} \cdot \{0,1\}^*$

The Language of M: $L(M)$

States with $L_{q_0,q_1}^{q_0,q_1}$:

- $\{1\}^*$
- \emptyset
- $\{0,1\}^*$

- $L_{q_0,q_1}^{q_0,q_1}$ is the set of strings which allows us to get from q_0 to q_1 using any intermediate states.
- The language $L(M)$ is the set of strings which allow us to get from q_0 to any accepting state.
- In the example there is only one accepting state (q_1), so the language accepted by M is

$$L(M) = L_{q_0,q_1}^{q_0,q_1} = \{1\}^* \cdot \{0\} \cdot \{0,1\}^*$$

Proof of the Theorem

We construct for states $q,q' \in M$ a regular expression $L_{q,q'}$ s.t.

$$L_{q,q'} = \{ w \in T^* \mid q \xrightarrow{w} q' \}$$

If $F = \{q_1,\ldots,q_k\}$ then we obtain

$$L(M) = L_{q_0,q_1} \mid L_{q_0,q_2} \mid \cdots \mid L_{q_0,q_k}$$

which is a regular expression.

(If F is empty, then $L(M) = \emptyset$, which is a regular expression).

Let M' be as M, but with additional accepting state q_0, then we get

$$L(M') = L_{q_0,q_1}^{q_0,q_1} \mid L_{q_0,q_1} = \{1\}^* \mid (\{1\}^* \cdot \{0\} \cdot \{0,1\}^*) = \{0,1\}^*$$
2.3.7. Translating NFAs into Regular Expressions (13.10)

Proof

$L_{q,q'}$ is defined in stages by referring to $L_{q_1,...,q_l}^q$, where

$L_{q_1,...,q_l}^q = \{ a_1 \cdots a_k \in T^* | \exists p_i \in \{ q_1, \ldots, q_l \}. q \xrightarrow{a_1} p_1 \xrightarrow{a_2} p_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{k-1}} p_{k-1} \xrightarrow{a_k} q' \}$

So $L_{q,q'}^q$ is the set of words which allow us to get from q to q' by using as intermediate states q_1, \ldots, q_l only.

We show that $L_{q_1,...,q_k}^q$ is a regular expression by induction on k.

Then $L_{q,q'}^Q = L_{q,q'}^q$ is a regular expression as well.

Proof

Induction Step: Assume we have shown that $L_{p,p'}^q$ are regular expressions for all $p, p' \in Q$.

We show the same for $L_{q,q'}^q$.

A transition $q \xrightarrow{w} q'$ which uses only intermediate states q_1, \ldots, q_k can have two forms:

- Either we don't use q_k as an intermediate state. So we have only intermediate states q_1, \ldots, q_{k-1} and have $w \in L_{q_1,...,q_{k-1}}^q$.

- Or we reach q_k as an intermediate state. We single out
 - the first part of the transition which doesn’t use state q_k until one reaches for the first time as an intermediate state q_k (note that $q = q_k$ or $q' = q_k$ is possible)
 - the second part where we several times go from q_k to q_k with intermediate states $\neq q_k$,
 - and the last part where we get from q_k to q' without using q_k.

So we have

$q \xrightarrow{vw_1} q_k \xrightarrow{w_2} q_k \xrightarrow{w_3} \cdots \xrightarrow{w_j} q_k \xrightarrow{v'} q'$

where $j = 0$ is possible, all intermediate transitions avoid q_k and $w = vw_1w_2 \cdots w_kv'$.
2.3.7. Translating NFAs into Regular Expressions (13.10)

Proof

In the second part we have

\[q \xrightarrow{v} q_k \xrightarrow{w_1} q_k \xrightarrow{w_2} \cdots \xrightarrow{w_j} q_k \xrightarrow{v'} q' \]

Therefore

\[w = v w_1 \cdots w_j v' \in L_{q_1, \ldots, q_{k-1}}^q q_k, q' \]

So

\[L_{q_1, \ldots, q_k} = L_{q_1, \ldots, q_{k-1}}^q q_k, q' \subset (L_{q_1, \ldots, q_{k-1}}^q q_k, q')^* L_{q_1, \ldots, q_k} \]

and the right hand side is by using the IH a regular expression.

2.3.8. Equivalence Theorem

We are going to show that

\[\text{Regular Expressions,} \]
\[\text{languages definable by regular grammars,} \]
\[\text{languages definable by NFAs with empty moves,} \]
\[\text{languages definable by NFAs,} \]
\[\text{languages definable by DFAs} \]

all define the same language.

We already have everything in order to show the above with regular grammars restricted to right-linear grammars.
Theorem

Let L be a language over an alphabet T. The following is equivalent:

1. L is a regular expression.
2. L is definable by a right-linear grammar.
3. L is definable by an NFA with empty moves.
4. L is definable by an NFA.
5. L is definable by a DFA.

Proof

- $(1) \rightarrow (2)$ was shown in 2.2.3.
 - (Regular grammars are closed under the operations for forming regular languages).
- $(2) \rightarrow (4)$ was shown in 2.3.6.
 - Right-linear grammars can be simulated by an NFA.
- $(4) \rightarrow (1)$ was shown in 2.3.7.
 - We can determine the language between states of an NFA as a regular expression.
- So (1), (2), (4) are equivalent.

- $(3) \rightarrow (4)$ was shown in 2.3.4.
 - We can omit the empty moves in NFAs with empty moves.
- $(4) \rightarrow (5)$ was shown in 2.3.5.
 - NFAs can be translated into DFAs using as states sets of states.
 - $(5) \rightarrow (4) \rightarrow (3)$ are trivial.
 - DFAs are special cases of NFAs.
 - NFAs are special cases of NFAs with empty moves.
- So (3), (4), (5) are equivalent.
- So (1), (2), (3), (4), (5) are equivalent.

Equivalence of Left-Linear and Right-Linear Grammars

- It remains to show that left-linear and right-linear grammars are equivalent.
- This is shown as follows:
 - The languages derived by left-linear grammars are L^R for languages derived by right-linear grammars.
 - Regular Expressions are closed under the reverse operation, i.e. if L is a regular expression, so is L^R.
 - Therefore as well right-linear grammars are closed under the reverse operation, therefore left-linear and right-linear grammars are equivalent.
Right-Linear Languages are the Reverse of Left-Linear Ones

Lemma

1. Let G be a left-linear grammar. Then there exist a right-linear grammar \(G' \) over the same alphabet s.t. \(L(G) = L(G')^R \).
2. Let G be a right-linear grammar. Then there exist a left-linear grammar \(G' \) over the same alphabet s.t. \(L(G) = L(G')^R \).

Proof

We prove only (1), (2) is analogously. Let G be a left-linear grammar with alphabet \(T \), nonterminals \(N \) and start symbol \(S \). Let \(G' \) be identical to \(G \) but with rules

\[A \rightarrow aB \quad (A,B \in N, a \in T) \]

replaced by

\[A \rightarrow Ba \]

\(G' \) is right-linear. Further it follows immediately for any \(w \in (N \cup T)^* \) that

\[S \Rightarrow_G w \text{ iff } S \Rightarrow_{G'} w^R \]

Therefore

\[
L(G') = \{ w \in T^* | S \Rightarrow_{G'} w \} \\
= \{ w^R \in T^* | S \Rightarrow_{G} w \} \\
= \{ w \in T^* | S \Rightarrow_{G} w \}^R \\
= L(G)^R
\]
2.3.8. Equivalence Theorem

Proof

(1) We show that if \(L \) is a regular expression, so is \(L^R \) by induction on the definition of regular expressions:

- For \(L = \emptyset, \{\epsilon\}, \{a\} \) we have that \(L^R = L \) is a regular expression.
- For \(L = L_1 \mid L_2 \) we have that \(L^R = L_1^R \mid L_2^R \) which is a regular expression by IH.
- For \(L = L_1.L_2 \) we have that \(L^R = L_2^R.L_1^R \) which is a regular expression by IH.
- For \(L = L_1^* \) we have that \(L^R = (L_1^R)^* \) which is a regular expression by IH.

(2) Follows since languages definable by right-linear grammars are exactly the languages definable by regular expressions.

Left-Linear and Right-Linear Grammars are Equivalent

Lemma

Let \(L \) be a language over an alphabet \(T \). The following are equivalent:

1. \(L = L(G) \) for a left-linear grammar \(G \).
2. \(L = L(G) \) for a right-linear grammar \(G \).

Theorem

Let \(L \) be a language over an alphabet \(T \). The following are equivalent:

1. \(L \) is a regular expression.
2. \(L \) is a regular.
3. \(L \) is definable by a right-linear grammar.
4. \(L \) is definable by a left-linear grammar.
5. \(L \) is definable by an NFA with empty moves
6. \(L \) is definable by an NFA.
7. \(L \) is definable by a DFA.
Proof

By the above.

Motivation

▶ We want to show that there are languages which are context-free but not regular.
▶ In order to do this we prove the pumping lemma, which uses the fact that an NFA has only finitely many states. (We could use as well the fact that a regular grammar has only finitely many nonterminals).

Using the Finiteness of an NFA

Consider an NFA

This NFA has 5 states.
Any run of the NFA for a word of length ≥ 5 uses at least 6 states. Therefore it must visit one state at least twice. So there must be a loop within the first 5 letters of such a word.
Using the Finiteness of an NFA

Here is the run for the word $z = \text{ababa}$ using colours blue, red and green.

> The **blue part** is the part before we reached a state visited twice, corresponding to the word $u = a$.
> The **red part** is the part from the state visited twice until we reach it again, corresponding to the word $v = \text{bab}$.
> The **green part** is the remaining part, corresponding to the word $w = a$.
> The loop must occur within the first 5 letters, so $|uv| \leq 5$. Because v is along a loop, $|v| \geq 1$.

Generalisation

Assume an NFA M having n states. Then for every word $x \in L(M)$ s.t. $|x| \geq n$ there exist words u, v, w s.t.

$$x = uvw, \ |uv| \leq n, \ |v| \geq 1$$

and s.t.

$$uv^i w \in L(M) \text{ for all } i \in \mathbb{N}$$

This follows by the above considerations.

So we have proved the following theorem:

Pumping Lemma for Regular Languages

Let L be a regular language.
Then there exist a fixed number n depending on L only s.t. we have the following:
> If $x \in L$ is a word, $|x| \geq n$, then there exist words u, v, w s.t.

$$x = uvw, \ |uv| \leq n, \ |v| \geq 1$$

and s.t.

$$uv^i w \in L(M) \text{ for all } i \in \mathbb{N}$$
Lemma
The language $L := \{ a^i b^i \mid i \geq 1 \}$ is context-free but not regular.

Proof (Example 1)
- We have already seen that L is context-free.
- Assume L is regular.
- Let n be as in the pumping lemma.
- Consider $x := a^n b^n \in L$.
- $|x| \geq n$, so there exist u, v, w s.t.
 $x = uvw$, $|uv| \leq n$, $|v| \geq 1$, and s.t.
 $uv^i w \in L$ for all $i \geq n$.
- Since $|uv| \leq n$, u and v are substrings of a^n.
- Therefore $uv^2 w = a^{n+l} b^n$ where $l = |v|$.
- But $a^{n+l} b^n \notin L$, a contradiction.

Lemma
The language $L := \{ xx^R \mid x \in \{a, b\}^* \}$ is context-free but not regular.

Proof (Example 2)
- We have already seen that L is context-free.
- Assume L is regular.
- Let n be as in the pumping lemma.
- Consider $x := a^n bba^n \in L$.
- $|x| \geq n$, so there exist u, v, w s.t.
 $x = uvw$, $|uv| \leq n$, $|v| \geq 1$, and s.t.
 $uv^i w \in L$ for all $i \geq n$.
- Since $|uv| \leq n$, u and v are substrings of a^n.
- Therefore $uv^2 w = a^{n+l} bba^n$ where $l = |v|$.
- But $a^{n+l} bba^n \notin L$, a contradiction.
2.3.1. String Recognition (13.1)
2.3.2. Nondeterministic Finite State Automata (13.2)
2.3.3. Examples of Automata (13.3)
2.3.4. Automata with Empty Move Transitions (13.4)
2.3.5. Deterministic Finite State Automata (13.6)
2.3.6. Regular Grammars and NFAs (13.5)
2.3.7. Translating NFAs into Regular Expressions (13.10)
2.3.8. Equivalence Theorem
2.3.9. The Pumping Lemma for Regular Languages (12.4, 12.5)
2.3.10. Closure Properties and Decidability of Regular Languages

Closure Properties

Lemma

Regular languages are closed under
1. complement,
2. intersection,
3. the operation \(L \mapsto L^R \).

So if \(L, L' \) are regular languages over alphabet \(T \), so are
1. \(L^c \) (the complement of \(L \), i.e. \(\{ t \in T^* \mid t \notin L \} \)),
2. \(L \cap L' \),
3. \(L^R \) (i.e. \(\{ w^R \mid w \in L \} \), where \(w^R \) is the result of reverting \(w \)).

Closure under Intersection

- Assume \(L, L' \) regular languages.
- There exist DFAs \(M = (Q, q_0, F, T, \delta) \) and \(M' = (Q', q'_0, F', T', \delta') \) s.t. \(L = L(M) \), \(L' = L(M') \).
- By a lemma defined below we can assume \(M \) and \(M' \) have total transitions, i.e.

\[
\forall q \in Q \forall a \in T : \exists q' \in Q : \delta(q, a) = q',
\]

similarly for \(M' \).
- Let \(M'' := (Q \times Q', (q_0, q'_0), F \times F', T, \delta'') \) where \(\delta''((q, q'), a) = (\delta(q, a), \delta(q', a)) \).
2.3.10. Closure Properties/Decidability of Regular Languages

Closure under Intersection

- We have in M'' for $w \in T^*$
 $$(q, q') \xrightarrow{w} (p, p') \text{ iff } q \xrightarrow{w} p \land q' \xrightarrow{w} p'$$

- Therefore

 $$L(M'') = \{ w \in T^* \mid \exists q \in F \times F' (q_0, q_0) \xrightarrow{w} q \}$$
 $$= \{ w \in T^* \mid \exists q \in F, q' \in F' (q_0, q_0) \xrightarrow{w} (q, q') \}$$
 $$= \{ w \in T^* \mid \exists q \in F, q' \in F' (q_0, q_0) \xrightarrow{w} q \land q_0 \xrightarrow{w} q' \}$$
 $$= \{ w \in T^* \mid w \in L(M) \land w \in L(M') \}$$
 $$= L(M) \cap L(M') = L \cap L'$$

- Therefore $L \cap L'$ is regular.

Closure under Complement

- Assume L a regular language.
- There exist DFA $M = (Q, q_0, T, \delta)$ s.t. $L = L(M)$.
- As before we assume that δ is total.
- Let $M' := (Q_{q_0}, Q \setminus F, T, \delta)$.

- Therefore $L \cap L'$ is regular.

From DFA to Total DFA

Lemma

Let $M = (Q, q_0, T, \delta)$ be a DFA. Then we can define a DFA $M' = (Q', q'_0, T', \delta')$, s.t.
- $\forall q \in Q', \forall a \in T. \delta(q, a)$ is defined.
- $L(M') = L(M)$.

- So L^c is regular.
2.3.10. Closure Properties/Decidability of Regular Languages

Proof

- Take M and modify it as follows:
- Add one additional state q' to Q.
- F stays at it is (so $q' \not\in F'$).
- If for some $q \in Q$, $a \in T$ $\delta(q, a)$ is not defined, change this to $\delta(q, a) = q'$.
- Further add $\delta(q', a) = q'$.
- Let the new automaton be called M':
- This automaton operates as M, except when M fails, then M' switches to state q' and stays there for ever, without accepting the word.
- So $L(M) = L(M')$.

Decision Problems

Theorem

- We can decide for regular languages whether $L = \emptyset$.
- We can decide for regular languages L and L' whether $L \subseteq L'$.
- We can decide for regular languages L and L' whether $L = L'$.

Proof

- Check for emptiness: We can decide for a regular expression whether it is the empty language:
 - \emptyset is the empty language.
 - $\{a\}, \{\epsilon\}$ are not empty.
 - $L | L'$ is empty iff both L and L' are empty.
 - $L \cdot L'$ is empty if L is empty or L' is empty.
 - L^* is never empty.
- Since any other description of a regular language can be transformed into a regular expression, we can decide for regular languages whether they are empty.

- Decision of inclusion:
 \[
 L \subseteq L' \iff L \cap (L')^c = \emptyset
 \]
 The right hand side is decidable.
- Decision for equality:
 \[
 L = L' \iff L \subseteq L' \land L' \subseteq L
 \]
 The right hand side is decidable.