CS_236 Language and Computation
Course Notes
Additional Material
Sect I.3.: Basics of Regular Languages and Expressions

Anton Setzer
(Based on a book draft by J. V. Tucker and K. Stephenson)
Dept. of Computer Science, Swansea University

http://www.cs.swan.ac.uk/~csetzer/lectures/languageComputation/10/index.html

December 8, 2010
I.3.1. Regular Languages (12.2)

I.3.2. Regular Expressions (13.8)
I.3.1. Regular Languages (12.2)

I.3.2. Regular Expressions (13.8)
Proof of Lemma Lemma I.3.1.2.

In a first step we omit all transitions $A \rightarrow B$ for $A, B \in N$:
Let $G = (N, T, S, P)$ be a grammar having such transitions. We form a grammar G' having no such transitions as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>N</td>
</tr>
<tr>
<td>nonterminals</td>
<td>T</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$A \rightarrow w$ if $A \Rightarrow^_G A' \rightarrow w$ for some $A, A' \in N$, $w \in T^$ $A \rightarrow wB$ if $A \Rightarrow^_G A' \rightarrow wB$ for some $A, A', B \in N$, $w \in T^$</td>
</tr>
</tbody>
</table>
So in G' we just jump over all silent transitions $A \longrightarrow B$ in G. We can in fact decide whether $A \Rightarrow^* A'$, since such a derivation must have the form $A = A'$ or $A = A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_n = A$ for some $A_i \in N$. And if such derivation exists then a derivation exists in which all A_i are distinct (omit loops). Therefore n can be restricted to the number of elements in N, and therefore there are only finitely many possible derivations, which we can enumerate. For each of them we can check whether it is in fact a derivation, and therefore determine all possible derivations $A \Rightarrow^* A'$.

Proof
Proof

Now one can easily see that for \(w \in T^* \)

\[
S \Rightarrow_G^* w \text{ iff } S \Rightarrow_{G'}^* w
\]
End of Proof of I.3.1.2.

We have now obtained a grammar which doesn’t contain silent productions of the form $A \rightarrow B$ for nonterminals A, B.

The following lemma shows that such languages are definable by left-linear or right-linear grammars.
Lemma I.3.1.3.

1. Assume a grammar G which has only productions of the form

 \[A \rightarrow Bw \text{ or } A \rightarrow w' \]

 for some $w \in T^+$, $w' \in T^*$, $A, B \in N$. Then $L(G) = L(G')$ for some left-linear grammar G', and G' can effectively computed from G.

2. Assume a grammar G which has only productions of the form

 \[A \rightarrow wB \text{ or } A \rightarrow w' \]

 for some $w \in T^+$, $w' \in T^*$, $A, B \in N$. Then $L(G) = L(G')$ for some right-linear grammar G', and G' can effectively computed from G.
Proof of Lemma I.3.1.3.

- In (2) replace
 - Productions $A \rightarrow a_1 a_2 \cdots a_n B$ with $n \geq 2$ by $A \rightarrow a_1 A_1$, $A_1 \rightarrow a_2 A_2$, \ldots, $A_{n-1} \rightarrow a_n B$ for some new nonterminals A_i.
 - Productions $A \rightarrow a_1 a_2 \cdots a_n$ with $n \geq 2$ by $A \rightarrow a_1 A_1$, $A_1 \rightarrow a_2 A_2$, \ldots, $A_{n-1} \rightarrow a_n$ for some new nonterminals A_i.

- (1) is proved similarly.
I.3.1. Regular Languages (12.2)

I.3.2. Regular Expressions (13.8)
Proof of Lemma I.3.1.1.

Assume in 1./2./3.

\[G = (T, N, S, P), \quad G' = (T', N', S', P') \]

After renaming of nonterminals we can assume \(N \cap N' = \emptyset \).
Let \(S'' \) be a new symbol not in \(N \cup N' \cup T \cup T' \).
We define multi-step left/right-linear grammars with those properties, from which one can construct ordinary (one-step) left/right-linear grammars with those properties.
We only carry out the proof for right-linear grammars.
Proof of 1.

We define G_1 as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>grammar</td>
<td>G_1</td>
</tr>
<tr>
<td>terminals</td>
<td>$T \cup T'$</td>
</tr>
<tr>
<td>nonterminals</td>
<td>$N \cup N' \cup {S''}$</td>
</tr>
<tr>
<td>start symbol</td>
<td>S''</td>
</tr>
</tbody>
</table>
| **productions** | $S'' \rightarrow S$
| | $S'' \rightarrow S'$
| | P
| | P'
Proof of 1.

So G_1 has the productions from G and G' plus

$$S'' \rightarrow S \text{ and } S'' \rightarrow S' .$$

Derivations in G_1 have the form

$$S'' \Rightarrow S \Rightarrow^* w$$

and

$$S'' \Rightarrow S' \Rightarrow^* w'$$

for derivations

$$S \Rightarrow^*_G w$$

and

$$S' \Rightarrow^*_G w'$$

So for $w'' \in (T \cup T')^*$ we have

$$S'' \Rightarrow^*_G w'' \text{ iff } S \Rightarrow^*_G w'' \text{ or } S' \Rightarrow^*_G w'' ,$$

so $L(G'') = L(G) \cup L(G')$.
Proof of 2.

We define G_2 as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>$T \cup T'$</td>
</tr>
<tr>
<td>nonterminals</td>
<td>$N \cup N'$</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$A \rightarrow aA'$ for $A \rightarrow aA' \in P$ ($A, A' \in N, a \in T$) $A \rightarrow aS'$ for $A \rightarrow a \in P$ ($A \in N, a \in T$) P'</td>
</tr>
</tbody>
</table>
Proof of 2.

So G_2 has

- the productions from G',
- the productions of the form $A \rightarrow aA$ from G and
- productions $A \rightarrow aS'$, if $A \rightarrow a$ is a production from G.

A derivation in G_2 starts with a derivation

\[
S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow a_1 a_2 a_3 A_3 \Rightarrow \cdots \Rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \cdots a_n S'
\]

for derivations in G of the form

\[
S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow a_1 a_2 a_3 A_3 \Rightarrow \cdots \Rightarrow a_1 a_2 \cdots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \cdots a_n .
\]
Proof of 2.

Then this is followed by a derivation

\[a_1 a_2 \cdots a_n S' \Rightarrow a_1 a_2 \cdots a_n b_1 B_1 \Rightarrow a_1 a_2 \cdots a_n b_1 b_2 B_2 \Rightarrow \cdots \]
\[\Rightarrow a_1 a_2 \cdots a_n b_1 b_2 \cdots b_{m-1} B_{m-1} \Rightarrow a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m , \]

for a derivation in \(G' \) of the form

\[S' \Rightarrow b_1 B_1 \Rightarrow b_1 b_2 B_2 \Rightarrow \cdots \]
\[\Rightarrow b_1 b_2 \cdots b_{m-1} B_{m-1} \Rightarrow b_1 b_2 \cdots b_m \]

Therefore \(S \Rightarrow^*_{G_2} w \) for some \(w \in (T \cup T')^* \) if and only if \(S \Rightarrow^*_{G_1} w' \) and \(S' \Rightarrow^*_{G_2} w'' \) for some \(w', w'' \) s.t. \(w = w''w''' \). So \(L(G_2) = L(G) \cdot L(G') \).
Proof of 3.

We define G_3 as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>T</td>
</tr>
<tr>
<td>nonterminals</td>
<td>N</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
</tbody>
</table>
| productions | $S \rightarrow \epsilon,$
 | $A \rightarrow aA'$ for $A \rightarrow aA' \in P$ ($A, A' \in N, a \in T$)
 | $A \rightarrow aS$ for $A \rightarrow a \in P$ ($A \in N, a \in T$) |
Proof of 3.

Derivations in G_3 are $S \Rightarrow \epsilon$ or they start similarly as for concatenation with

$$S \Rightarrow^* wS$$

for a derivation in G

$$S \Rightarrow^* w$$

and $w \in N^+$. In the latter case it can continue either (using $S \rightarrow \epsilon$) with $wS \Rightarrow w$ or with

$$wS \Rightarrow^* ww'S$$

for a derivation in G

$$S \Rightarrow^* w'$$

Again in the latter case we can continue (using $S \rightarrow \epsilon$) with $ww'S \rightarrow ww'$ or with

$$ww'S \Rightarrow^* ww'w''S$$

for a derivation in G

$$S \Rightarrow^* w''$$
Proof of 3.

We obtain that in G_3 we have

$$S \Rightarrow^* w$$

if there exist derivations in G of

- $S \Rightarrow^* w_1$
- $S \Rightarrow^* w_2$
- \ldots
- $S \Rightarrow^* w_n$

s.t. $w = w_1 w_2 \cdots w_n$. So we get

$$L(G_3) = \{ w_1 w_2 \cdots w_n \mid n \geq 0, w_1, \ldots, w_n \in L(G) \} = L(G)^*$$
Induction on the definition of regular expressions.

Case 1: $L = \emptyset, \epsilon, a$
(where $a \in T$). Then L is finite, therefore definable by a left/right-linear grammar.

Case 2: $L = (L_1) \mid (L_2)$ or $L = (L_1)(L_2)$ or $L = (L_1)^*$. By IH L_i are defined by left/right-linear grammars G_i. By Lemma I.3.2.1. it follows that L can be defined by a left/right-linear grammar.