I.3.1. Regular Languages (12.2)

Proof of Lemma Lemma I.3.1.2.

In a first step we omit all transitions $A \rightarrow B$ for $A, B \in N$.
Let $G = (N, T, S, P)$ be a grammar having such transitions.
We form a grammar G' having no such transitions as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>N</td>
</tr>
<tr>
<td>nonterminals</td>
<td>T</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
</tbody>
</table>
| productions | $A \rightarrow w$ if $A \Rightarrow^*_{G} A' \rightarrow w$ for some $A, A' \in N$, $w \in T^*$
 | $A \rightarrow wB$ if $A \Rightarrow^*_{G} A' \rightarrow wB$ for some $A, A', B \in N$, $w \in T^*$ |
Proof

So in \(G' \) we just jump over all silent transitions \(A \rightarrow B \) in \(G \).
We can in fact decide whether \(A \Rightarrow^* A' \), since such a derivation must have
the form \(A = A' \) or \(A = A_1 \Rightarrow A_2 \Rightarrow \cdots \Rightarrow A_n = A \) for some \(A_i \in N \).
And if such derivation exists then a derivation exists in which all \(A_i \) are
distinct (omit loops).
Therefore \(n \) can be restricted to the number of elements in \(N \), and therefore
there are only finitely many possible derivations, which we can enumerate.
For each of them we can check whether it is in fact a derivation, and
therefore determine all possible derivations \(A \Rightarrow^* A' \).

End of Proof of I.3.1.2.

We have now obtained a grammar which doesn’t contain
silent productions of the form \(A \rightarrow B \) for nonterminals \(A, B \).
The following lemma shows that such languages are definable by left-linear
or right-linear grammars.

Lemma I.3.1.3.

Lemma (I.3.1.3.)

1. Assume a grammar \(G \) which has only productions of the form
 \[A \rightarrow Bw \text{ or } A \rightarrow w' \]
 for some \(w \in T^+ \), \(w' \in T^* \), \(A, B \in N \). Then \(L(G) = L(G') \) for some
 left-linear grammar \(G' \), and \(G' \) can effectively computed from \(G \).

2. Assume a grammar \(G \) which has only productions of the form
 \[A \rightarrow wB \text{ or } A \rightarrow w' \]
 for some \(w \in T^+ \), \(w' \in T^* \), \(A, B \in N \). Then \(L(G) = L(G') \) for some
 right-linear grammar \(G' \), and \(G' \) can effectively computed from \(G \).
Proof of Lemma I.3.1.3.

In (2) replace

- Productions $A \rightarrow a_1 a_2 \cdots a_n B$ with $n \geq 2$ by $A \rightarrow a_1 A_1$, $A_1 \rightarrow a_2 A_2$, $A_{n-1} \rightarrow a_n B$ for some new nonterminals A_i.
- Productions $A \rightarrow a_1 a_2 \cdots a_n$ with $n \geq 2$ by $A \rightarrow a_1 A_1$, $A_1 \rightarrow a_2 A_2$, \ldots, $A_{n-1} \rightarrow a_n$ for some new nonterminals A_i.

(1) is proved similarly.

Proof of Lemma I.3.1.1.

Assume in 1./2./3.

\[G = (T, N, S, P), \quad G' = (T', N', S', P') \]

After renaming of nonterminals we can assume $N \cap N' = \emptyset$.

Let S'' be a new symbol not in $N \cup N' \cup T \cup T'$.

We define multi-step left/right-linear grammars with those properties, from which one can construct ordinary (one-step) left/right-linear grammars with those properties.

We only carry out the proof for right-linear grammars.

We define G_1 as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>$T \cup T'$</td>
</tr>
<tr>
<td>nonterminals</td>
<td>$N \cup N' \cup {S''}$</td>
</tr>
<tr>
<td>start symbol</td>
<td>S''</td>
</tr>
</tbody>
</table>
| productions | $S'' \rightarrow S$
| | $S'' \rightarrow S'$
| | P
| | P' |
Proof of 1.

So G_1 has the productions from G and G' plus

$$S'' \rightarrow S \text{ and } S'' \rightarrow S'.$$

Derivations in G_1 have the form

$$S'' \Rightarrow S \Rightarrow^* w$$

and

$$S'' \Rightarrow S' \Rightarrow^* w'$$

for derivations

$$S \Rightarrow^*_G w$$

and

$$S' \Rightarrow^*_G w'$$

So for $w'' \in (T \cup T')^*$ we have

$$S'' \Rightarrow^*_{G_1} w'' \iff S \Rightarrow^*_G w' \text{ or } S' \Rightarrow^*_G w'',$$

so $L(G'') = L(G) \cup L(G').$

Proof of 2.

We define G_2 as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>$T \cup T'$</td>
</tr>
<tr>
<td>nonterminals</td>
<td>$N \cup N'$</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$A \rightarrow aA'$ for $A \rightarrow a \in P (A, A' \in N, a \in T)$ $A \rightarrow aS'$ for $A \rightarrow a \in P (A \in N, a \in T)$ P'</td>
</tr>
</tbody>
</table>

Then this is followed by a derivation

$$a_1a_2 \cdots a_nS' \Rightarrow a_1a_2 \cdots a_nb_1B_1 \Rightarrow a_1a_2 \cdots a_nb_1b_2B_2 \Rightarrow \cdots \Rightarrow a_1a_2 \cdots a_nb_1b_2 \cdots b_m,$$

for a derivation in G' of the form

$$S' \Rightarrow b_1B_1 \Rightarrow b_1b_2B_2 \Rightarrow \cdots \Rightarrow b_1b_2 \cdots b_{m-1}B_{m-1} \Rightarrow b_1b_2 \cdots b_m.$$
I.3.2. Regular Expressions (13.8)

Proof of 3.

We define G_3 as follows:

<table>
<thead>
<tr>
<th>grammar</th>
<th>G_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminals</td>
<td>T</td>
</tr>
<tr>
<td>nonterminals</td>
<td>N</td>
</tr>
<tr>
<td>start symbol</td>
<td>S</td>
</tr>
<tr>
<td>productions</td>
<td>$S \rightarrow \epsilon$, $A \rightarrow aA'$ for $A \rightarrow aA' \in P (A, A' \in N, a \in T)$, $A \rightarrow aS$ for $A \rightarrow a \in P (A \in N, a \in T)$</td>
</tr>
</tbody>
</table>

Derivations in G_3 are $S \Rightarrow \epsilon$ or they start similarly as for concatenation with $S \Rightarrow^* wS$ for a derivation in G

and $w \in N^+$. In the latter case it can continue either (using $S \rightarrow \epsilon$) with $wS \Rightarrow w$ or with $wS \Rightarrow^* ww'S$

for a derivation in G

Again in the latter case we can continue (using $S \rightarrow \epsilon$) with $ww'S \Rightarrow ww'$ or with $ww'S \Rightarrow^* ww'w''S$

for a derivation in G

$S \Rightarrow^* w''$

Proof of Lemma I.3.2.2.

Induction on the definition of regular expressions.

Case 1: $L = \emptyset, \epsilon, a$
(where $a \in T$). Then L is finite, therefore definable by a left/right-linear grammar.

Case 2: $L = (L_1) \cup (L_2)$ or $L = (L_1)L_2$ or $L = (L_1)^*$. By IH L_i are defined by left/right-linear grammars G_i. By Lemma I.3.2.1. it follows that L can be defined by a left/right-linear grammar.

We obtain that in G_3 we have

$S \Rightarrow^* w$

if there exist derivations in G of

- $S \Rightarrow^* w_1$
- $S \Rightarrow^* w_2$
- ...
- $S \Rightarrow^* w_n$

s.t. $w = w_1w_2 \cdots w_n$. So we get

$L(G_3) = \{ w_1w_2 \cdots w_n \mid n \geq 0, w_1, \ldots, w_n \in L(G) \} = L(G)^*$