CS-M00 Research Methodology

Lecture 12: Specification and Verification

Anton Setzer

http://www.cs.swan.ac.uk/~csetzer/lectures/researchmethodology/12/index.html

Friday, 9 November 2012
Critical Systems

Specification

Verification

Dependent Type Theory
Critical Systems

Specification

Verification

Dependent Type Theory
Definition: A critical system is a computer, electronic or electromechanical system the failure of which may have serious consequences, such as substantial financial losses, substantial environmental damage, injuries or death of human beings.
Example 1: Nuclear Power
Example: Medical Devices
Example: Embedded Systems in Automobile Industry
Example: Railways
Failure of a Critical System

![Image of a train on fire]
Failure of a Critical System
Industrial Partners of Swansea Group in Safe and Secure Systems
Swansea Safe and Secure Systems Group

- The department of Computer Science has a big group working on logic, theoretical computer science and applications to verification of software and hardware.
- Long experience in working with verification of software and hardware.
- Industrial connections with Rolls Royce, Developers of Electronic Payment Systems.
Swansea Safe and Secure Systems Group

▶ Well established collaboration with Invensys Railsystems (Chippenham) on modelling and verification of new generations of railway interlocking systems.

▶ Currently working on radio controlled moving block systems (ERTMS).
Expertise of Swansea Safe and Secure Systems Group

- Specification, especially Algebraic Specification.
 - Peter Mosses (leader of the development of CASL).
 - John Tucker.
 - Markus Roggenbach (CASL, CSP-CASL).
Expertise of Swansea Group on Safe and Secure Systems

- Verification using automated theorem provers (ATP).
 - Oliver Kullmann (OK-Solver)
- Verification using interactive theorem provers (ITP).
 - Markus Roggenbach (Isabelle),
 - Ulrich Berger (Minlog, Coq),
 - Monika Seisenberger (Minlog),
 - Anton Setzer (Agda).
- Embedded Systems and Testing
 - Arnold Beckmann,
 - Markus Roggenbach.
Critical Systems

Specification

Verification

Dependent Type Theory
Why Formal Specification?

- Natural language specification can be ambiguous.
 - "The output is a red light or a green light".
 - Do you mean "either or" or "inclusive or"?
 - "This toilet is only for disabled students or staff".
 - Do you mean "disabled (students or staff)" or "(disabled students) or staff"?
Why Formal Specification?

- Formal specification enforces precision.
 - Example: If the level of the water in the tank is above a certain level, the plug valve must be closed. Do you mean
 - maximum level,
 - average,
 - medium,
 - or ... (lots of other possibilities)?
Why Formal Specification?

- Natural language specifications don’t allow formal verification.
Challenges in Specification

- Finding a suitable language which is
 - expressive
 - and simple enough for the user to understand it.
- Describe the meaning of specification languages (semantics).
- For specifying a formal system, determine the right
 - notions,
 - level of abstraction
Example

- Distant signals and main signal in railways. Is
 - the main signal a function of the distant signal,
 - or the distant signal a function of the main signal,
 - or are main signal and distant signal in a relation.

- During specification, often need to switch between different choices.

- General problem of modelling systems.
Critical Systems

Specification

Verification

Dependent Type Theory
Verification

- Verification is the process of determining whether a software product coincides with its specification.
- Many methods.
- Main method is testing.
- Testing usually not complete.
- In order to guarantee that a program is guaranteed to be correct, one needs prove that the output of software coincides with the specification.
 - Necessary especially for critical systems.
 - Increasingly used for general systems, e.g. by Microsoft, to guarantee security of its software.
- Done using theorem proving techniques.
4 Ways of Proving Theorems

1. Theorem proving by hand.
 - What mathematicians do all the time.
 - Will remain in the near future the main way for proving theorems.
 - Problem: Errors.
 - As in programs after a certain amount of lines there is a bug, after a certain amount of lines a proof has a bug.
 - The problem can only be reduced by careful proof checking, but not eliminated completely.
 - Unsuitable for verifying large software and hardware systems.
 - Data usually too large.
 - Likely that one makes the same mistakes as in the software.
4 Ways of Proving Theorems

2. Theorem proving with some machine support.
 ▶ Machine checks the syntax of the statements, creates a good layout, translates it into different languages.
 ▶ Theorem proving still to be done by hand.
 ▶ **Example:** most systems for specification of software.
 ▶ **Advantages:**
 ▶ Less errors.
 ▶ User is forced to obey a certain syntax.
 ▶ Specifications can be exchanged more easily.
 ▶ **Disadvantage:** Similar to 1.
4 Ways of Proving Theorems

3. Interactive Theorem Proving.
 - Proofs are fully checked by the system.
 - Proof steps have to be carried out by the user.
 - **Advantages:**
 - Correctness guaranteed (provided the theorem prover is correct).
 - Everything which can be proved by hand, should be possible to be proved in such systems.
4 Ways of Proving Theorems

▶ (Interactive theorem proving)
 ▶ **Disadvantages:**
 ▶ It takes much longer than proving by hand.
 ▶ Similar to programming:
 To say in words what a program should do, doesn’t take long.
 To write the actual program, can take a long time, since much more details are involved than expected.
 ▶ Requires experts in theorem proving.
4 Ways of Proving Theorems

4. **Automated Theorem Proving.**
 - The theorem is shown by the machine.
 - It is the task of the user to
 - state the theorem,
 - bring it into a form so that it can be solved,
 - usually adapt certain parameters so that the theorem proving solves the problem within reasonable amount of time.
4 Ways of Proving Theorems

- **(Automated theorem proving)**
 - **Advantages**
 - Less complicated to “feed the theorem into the machine” rather than actually proving it.
 - Might be done by non-specialists.
 - Sometimes faster than interactive theorem proving.
4 Ways of Proving Theorems

- (Automated theorem proving)
 - Disadvantages
 - Many problems cannot be proved automatically.
 - Can often deal only with finite problems.
 - We can show the correctness of one particular processor.
 - But we cannot show a theorem, stating the correctness of a parametric unit (like a generic n-bit adder for arbitrary n).
 - In some cases this can be overcome.
 - Limits on what can be done (some hardware problems can be verified as 32 bit versions, but not as 64 bit versions).
Verification in Industry

- Most verification done using testing.
- Some theorem proving by hand and with some machine support done.
- Increasingly theorem proving using automated theorem proving done.
 - Investment of Microsoft in various automated theorem provers.
 - Package management in Linux became much faster due to use of SAT solvers (Automated Theorem Provers).
Verification in Industry

- Interactive theorem proving on its way into industry.
 - Typical scenario:
 - General properties of a system proved used interactive theorem proving
 - E.g. signalling principles formally expressed safety.
 - That a concrete installation is in accordance with those general principles done using automated theorem proving.
 - E.g. show that a railway interlocking system fulfils signalling principles.
Critical Systems

Specification

Verification

Dependent Type Theory
Agda

- Agda is a theorem prover which is as well a prototype of a dependently typed programming language.
- In Agda proofs and programs are the same.
- A proof of a theorem A is a program p of type A written as $p : A$
- Relatively easy for programmers, since they don’t need to learn a different activity.
- Agda uses the novel concept of dependent types.
Example: Boolean Circuits
What is a Component?

A Boolean Component can be represented by a

\[f : \text{Bool}^n \rightarrow \text{Bool}^m \]
What is the type $\text{Bool}^n \to \text{Bool}^m$?

- $\text{Bool}^n \to \text{Bool}^m$ is a type depending on $n, m : \mathbb{N}$.
- In most languages you don’t have any dependent type. You need to replace this by $\text{List}(\text{Bool}) \to \text{List}(\text{Bool})$.
- In C++ you can define

$$\text{Bool}^n \to \text{Bool}^m$$

but only, if n, m are known at compile time.
 - Disallows dynamic dependencies, e.g. depending on user input.
- In Agda we can directly use $\text{Bool}^n \to \text{Bool}^m$ as a dependent type.
Example 2: Grammars

- Assume you want to write programs which manipulate Java programs.
 - E.g. change a variable not using brute query replace.
- One way of doing this:
 - Define a data type of Java programs.
 - Translate strings into this data type and back again.
 - Write programs which work on this data type of Java programs.
Example 2: Grammars

- An oversimplified grammar for Java might start as follows:

 $\text{JavaProg} \rightarrow \text{"class\{" JavaProgBody \text{"\} \"}}$

 $\text{JavaProgBody} \rightarrow (\text{VariableDecl})* (\text{MethodDecl})*$

 $\text{VariableDecl} \rightarrow \text{TypeDecl VariableName \";\"}$

 ...
Transformers of Java Programs

Let Grammarsymbol be the set of terminals and non-terminals (JavaProg, JavaProgbody, ...).

For each Grammarsymbol S we define the type $\llbracket S \rrbracket$ of entities of this type, e.g.

- $\llbracket \text{TypeDecl} \rrbracket = \text{String}$.
- $\llbracket \text{VariableName} \rrbracket = \text{String}$.
- $\llbracket \text{VariableDecl} \rrbracket = \text{String} \times \text{String}$.

$\llbracket S \rrbracket$ is a dependent type depending on $S : \text{GrammarSymbol}$.
Type of the Parser

Parser : (GrammarSymbol × String) → Bool

Transformer : (S : GrammarSymbol) → (s : String) → Parser(S, s) == true → [S]

- Makes heavy use of the dependent type [S].
- Parser Libraries in C++, Haskell, Agda have been built based on this idea.
Generative Programming

- These are examples of generative programming.
- In generative programming you want to build highly generic programs, which generate and manipulate programs from elements of data types.
So we have

- a base data type `BaseType` (like `GrammarSymbol` before),
- a type of programs `Program(S)` based on `S : BaseType` (like `[S]` before),
- operations which manipulate `Program(S)`, e.g.

\[
\begin{align*}
\text{transform1} & : ((S : BaseType1) \times \text{Program1}(S)) \\
& \rightarrow \text{BaseType2} \\
\text{transform2} & : ((S : BaseType1) \times \text{Program1}(S)) \\
& \rightarrow \text{Program2}(\text{transform1}(S, s))
\end{align*}
\]
Generative Programming

- Now we can create factories for generating programs.
- Replace handcrafted programs by generated programs.
- Similar to step from pre-industrial to industrial age.
Assume we want to assign a type to a sorting function \texttt{sort} on lists of natural numbers.

In most programming languages, the type of \texttt{sort} is essentially

\begin{align*}
\texttt{sort} : \text{NatList} \rightarrow \text{NatList}
\end{align*}

for the type of lists of natural numbers \texttt{NatList}.

In dependent type theory, we can demand more correctness, namely that its type is

\begin{align*}
\texttt{sort} : \text{NatList} \rightarrow \text{SortedList}
\end{align*}

We assume some notion of \texttt{NatList} (list of natural numbers).
What is SortedList?

- An element of SortedList is a list which is sorted.
- It is a pair \(\langle l, p \rangle \) s.t.
 - \(l \) is a NatList.
 - \(p \) is a proof or verification that \(l \) is sorted:
 - \(p : \text{Sorted}(l) \).
Sorted Lists

- For the moment, ignore what is meant by $\text{Sorted}(l)$ as a type.
- Only important: $\text{Sorted}(l)$ depends on l.
 - $\text{Sorted}(l)$ is a predicate expressed as a type.
- Elements of SortedList are pairs $\langle l, p \rangle$ s.t.
 - $l : \text{NatList}$.
 - $p : \text{Sorted}(l)$.
- $\text{Sorted}(l)$ is a dependent type.
Sorted Lists (Cont.)

- An element of $\text{Sorted}(l)$ will be a **proof** that l is sorted.
- If l is **sorted**, then $\text{Sorted}(l)$ will be provable, and therefore will have an **element**.
 - It is possible to write a program which computes an element of $\text{Sorted}(l)$.
- If l is **not sorted**, then $\text{Sorted}(l)$ will have no proof and it will therefore **no element**.
 - Then it is not possible to write a program which computes an element of $\text{Sorted}(l)$.
The Dependent Product

- Then the pair $\langle l, p \rangle$ will be an element of

\[
\text{SortedList} := (l : \text{NatList}) \times \text{Sorted}(l).
\]

- SortedList is the type of pairs $\langle l, p \rangle$ s.t.
 - $l : \text{NatList},$
 - $p : \text{Sorted}(l)$

called the **dependent product**

- sort : NatList $\rightarrow ((l : \text{NatList}) \times \text{Sorted}(l))$ expresses:
 - sort converts lists into sorted lists.
The Dependent Function Type

- From a sorting function we know more:
 - It takes a list and converts it into a sorted list with the same elements.
- Assume a type (or predicate) $\text{EqElements}(l, l')$ standing for
 - l and l' have the same elements.
The Dependent Function Type

- A refined version of \(\text{sort} \) has type

\[
(l : \text{NatList}) \rightarrow ((l' : \text{NatList}) \times \text{Sorted}(l') \times \text{EqElements}(l, l'))
\]

- “\(\text{sort}(l) \) is a list, which is sorted and has the same elements”.
- “\(\text{sort} \) is a program, which takes a list and returns a sorted list with the same elements.”
- The type of \(\text{sort} \) is an instance of the dependent function type:
 - The result type depends on the arguments.
Conclusion

- Critical Systems require more formal specification and verification.
- Expertise in Swansea in specification and verification.
- Problems of natural language specification can be overcome by formal specification.
- Verification techniques – from proving by hand to interactive and automated theorem proving.
- Agda as an example of a programming language based on dependent types.
- Use of dependent types for generative programming.