Definition

Definition: A critical system is a
- computer, electronic or electromechanical system
- the failure of which may have serious consequences, such as
 - substantial financial losses,
 - substantial environmental damage,
 - injuries or death of human beings.
Example 1: Nuclear Power

Example: Medical Devices

Example: Embedded Systems in Automobile Industry

Example: Railways
Failure of a Critical System

Swansea Safe and Secure Systems Group

- The department of Computer Science has a big group working on logic, theoretical computer science and applications to verification of software and hardware.
- Long experience in working with verification of software and hardware.
- Industrial connections with Rolls Royce, Developers of Electronic Payment Systems.
Swansea Safe and Secure Systems Group

- Well established collaboration with Invensys Railsystems (Chippenham) on modelling and verification of new generations of railway interlocking systems.
 - Currently working on radio controlled moving block systems (ERTMS).

Expertise of Swansea Group on Safe and Secure Systems

- Verification using automated theorem provers (ATP).
 - Oliver Kullmann (OK-Solver)
- Verification using interactive theorem provers (ITP).
 - Markus Roggenbach (Isabelle),
 - Ulrich Berger (Minlog, Coq),
 - Monika Seisenberger (Minlog),
 - Anton Setzer (Agda).
- Embedded Systems and Testing
 - Arnold Beckmann,
 - Markus Roggenbach.

Expertise of Swansea Safe and Secure Systems Group

- Specification, especially Algebraic Specification.
 - Peter Mosses (leader of the development of CASL).
 - John Tucker.
 - Markus Roggenbach (CASL, CSP-CASL).
Why Formal Specification?

- Natural language specification can be ambiguous.
 - “The output is a red light or a green light”.
 - Do you mean “either or” or “inclusive or”?
 - “This toilet is only for disabled students or staff”.
 - Do you mean “disabled (students or staff)” or “(disabled students) or staff”?

- Formal specification enforce precision.
 - Example: If the level of the water in the tank is above a certain level, the plug valve must be closed.
 - Do you mean maximum level, average, medium, or . . . (lots of other possibilities)?

- Natural language specifications don’t allow formal verification.

Challenges in Specification

- Finding a suitable language which is
 - expressive
 - and simple enough for the user to understand it.
- Describe the meaning of specification languages (semantics).
- For specifying a formal system, determine the right
 - notions,
 - level of abstraction
Example

- Distant signals and main signal in railways.
 - Is
 - the main signal a function of the distant signal,
 - or the distant signal a function of the main signal,
 - or are main signal and distant signal in a relation.
- During specification, often need to switch between different choices.
- General problem of modelling systems.

Verification

- Verification is the process of determining whether a software product coincides with its specification.
- Many methods.
- Main method is testing.
- Testing usually not complete.
- In order to guarantee that a program is guaranteed to be correct, one needs prove that the output of software coincides with the specification.
 - Necessary especially for critical systems.
 - Increasingly used for general systems, e.g. by Microsoft, to guarantee security of its software.
- Done using theorem proving techniques.

4 Ways of Proving Theorems

1. Theorem proving by hand.
 - What mathematicians do all the time.
 - Will remain in the near future the main way for proving theorems.
 - Problem: Errors.
 - As in programs after a certain amount of lines there is a bug, after a certain amount of lines a proof has a bug.
 - The problem can only be reduced by careful proof checking, but not eliminated completely.
 - Unsuitable for verifying large software and hardware systems.
 - Data usually too large.
 - Likely that one makes the same mistakes as in the software.
2. **Theorem proving with some machine support.**
 - Machine checks the syntax of the statements, creates a good layout, translates it into different languages.
 - Theorem proving still to be done by hand.
 - **Example:** most systems for specification of software.
 - **Advantages:**
 - Less errors.
 - User is forced to obey a certain syntax.
 - Specifications can be exchanged more easily.
 - **Disadvantage:** Similar to 1.

3. **Interactive Theorem Proving.**
 - Proofs are fully checked by the system.
 - Proof steps have to be carried out by the user.
 - **Advantages:**
 - Correctness guaranteed (provided the theorem prover is correct).
 - Everything which can be proved by hand, should be possible to be proved in such systems.

 - (Interactive theorem proving)
 - **Disadvantages:**
 - It takes much longer than proving by hand.
 - Similar to programming:
 - To say in words what a program should do, doesn’t take long.
 - To write the actual program, can take a long time, since much more details are involved than expected.
 - Requires experts in theorem proving.

4. **Automated Theorem Proving.**
 - The theorem is shown by the machine.
 - It is the task of the user to
 - state the theorem,
 - bring it into a form so that it can be solved,
 - usually adapt certain parameters so that the theorem proving solves the problem within reasonable amount of time.
4 Ways of Proving Theorems

- (Automated theorem proving)
 - **Advantages**
 - Less complicated to “feed the theorem into the machine” rather than actually proving it.
 - Might be done by non-specialists.
 - Sometimes faster than interactive theorem proving.

- Disadvantages
 - Many problems cannot be proved automatically.
 - Can often deal only with finite problems.
 - We can show the correctness of one particular processor.
 - But we cannot show a theorem, stating the correctness of a parametric unit (like a generic n-bit adder for arbitrary n).
 - In some cases this can be overcome.
 - Limits on what can be done (some hardware problems can be verified as 32 bit versions, but not as 64 bit versions).

Verification in Industry

- Most verification done using testing.
- Some theorem proving by hand and with some machine support done.
- Increasingly theorem proving using automated theorem proving done.
 - Investment of Microsoft in various automated theorem provers.
 - Package management in Linux became much faster due to use of SAT solvers (Automated Theorem Provers).

- Interactive theorem proving on its way into industry.
 - Typical scenario:
 - General properties of a system proved used interactive theorem proving
 - E.g. signalling principles formally expressed safety.
 - That a concrete installation is in accordance with those general principles done using automated theorem proving.
 - E.g. show that a railway interlocking system fulfils signalling principles.
Agda

- Agda is a theorem prover which is also a prototype of a dependently typed programming language.
- In Agda, proofs and programs are the same.
- A proof of a theorem \(A \) is a program \(p \) of type \(A \) written as
 \[
 p : A
 \]
- Relatively easy for programmers, since they don’t need to learn a different activity.
- Agda uses the novel concept of dependent types.

Example: Boolean Circuits

A Boolean Component can be represented by a

\[
 f : \text{Bool}^n \rightarrow \text{Bool}^m
\]
What is the type $\text{Bool}^n \rightarrow \text{Bool}^m$?

- $\text{Bool}^n \rightarrow \text{Bool}^m$ is a type depending on $n, m : \mathbb{N}$.
- In most languages you don’t have any dependent type. You need to replace this by $\text{List(Bool)} \rightarrow \text{List(Bool)}$.
- In C++ you can define $\text{Bool}^n \rightarrow \text{Bool}^m$ but only, if n, m are known at compile time.
 - Disallows dynamic dependencies, e.g. depending on user input.
- In Agda we can directly use $\text{Bool}^n \rightarrow \text{Bool}^m$ as a dependent type.

Example 2: Grammars

- Assume you want to write programs which manipulate Java programs.
 - E.g. change a variable not using brute query replace.
- One way of doing this:
 - Define a data type of Java programs.
 - Translate strings into this data type and back again.
 - Write programs which work on this data type of Java programs.

Transformers of Java Programs

- An oversimplified grammar for Java might start as follows:
 - $\text{JavaProg} \rightarrow \text{"class\{\ " JavaProgBody \text{"\)}}$
 - $\text{JavaProgBody} \rightarrow (\text{VariableDecl})* (\text{MethodDecl})*$
 - $\text{VariableDecl} \rightarrow \text{TypeDecl VariableName \";\"}$
 - ...

- Let Grammarsymbol be the set of terminals and non-terminals (JavaProg, JavaProgbody, ...).
- For each Grammarsymbol S we define the type $\llbracket S \rrbracket$ of entities of this type, e.g.
 - $\llbracket \text{TypeDecl} \rrbracket = \text{String}$.
 - $\llbracket \text{VariableName} \rrbracket = \text{String}$.
 - $\llbracket \text{VariableDecl} \rrbracket = \text{String} \times \text{String}$.
- $\llbracket S \rrbracket$ is a dependent type depending on $S : \text{GrammarSymbol}$.
Type of the Parser

Parser : (GrammarSymbol × String) → Bool

Transformer : (S : GrammarSymbol)
 → (s : String)
 → Parser(S, s) == true
 → **S**

▶ Makes heavy use of the dependent type **S**.
▶ Parser Libraries in C++, Haskell, Agda have been built based on this idea.

Generative Programming

▶ These are examples of generative programming.
▶ In generative programming you want to build highly generic programs, which generate and manipulate programs from elements of data types.

Generative Programming

▶ So we have
 ▶ a base data type BaseType (like GrammarSymbol before),
 ▶ a type of programs Program(S) based on S : BaseType (like **S** before),
 ▶ operations which manipulate Program(S), e.g.

 transform1 : ((S : BaseType1) × Program1(S))
 → BaseType2
 transform2 : ((S : BaseType1) × Program1(S))
 → Program2(transform1(S, s))

▶ Now we can create factories for generating programs.
▶ Replace handcrafted programs by generated programs.
▶ Similar to step from pre-industrial to industrial age.
Dependent Types for Writing Verified Programs

- Assume we want to assign a type to a sorting function `sort` on lists of natural numbers.
- In most programming language, the type of it is essentially
 \[\text{sort} : \text{NatList} \rightarrow \text{NatList} \]
 for the type of lists of natural numbers `NatList`.
- In dependent type theory, we can demand more correctness, namely that its type is
 \[\text{sort} : \text{NatList} \rightarrow \text{SortedList} \]

- We assume some notion of `NatList` (list of natural numbers).

SortedList

- What is SortedList?
 - An element of `SortedList` is a list which is sorted.
 - It is a pair `⟨l, p⟩` s.t.
 - `l` is a `NatList`.
 - `p` is a proof or verification that `l` is sorted:
 - `p : \text{Sorted}(l)`.

Sorted Lists

- For the moment, ignore what is meant by `Sorted(l)` as a type.
- Only important: `Sorted(l)` depends on `l`.
 - `Sorted(l)` is a predicate expressed as a type.
- Elements of SortedList are pairs `⟨l, p⟩` s.t.
 - `l : \text{NatList}`.
 - `p : \text{Sorted}(l)`.
- `Sorted(l)` is a dependent type.

- An element of `Sorted(l)` will be a **proof** that `l` is sorted.
- If `l` is **sorted**, then `Sorted(l)` will be provable, and therefore **will have an element**.
 - It is possible to write a program which computes an element of `Sorted(l)`.
- If `l` is **not sorted**, then `Sorted(l)` will have no proof and it will therefore **no element**.
 - Then it is not possible to write a program which computes an element of `Sorted(l)`.
The Dependent Product

- Then the pair \(\langle l, p \rangle \) will be an element of

\[
\text{SortedList} := (l : \text{NatList}) \times \text{Sorted}(l)
\]

- SortedList is the type of pairs \(\langle l, p \rangle \) s.t.
 - \(l : \text{NatList} \)
 - \(p : \text{Sorted}(l) \)

 called the **dependent product**

- sort : NatList \(\rightarrow\) ((NatList) \(\times\) Sorted()) expresses:
 - sort converts lists into sorted lists.

The Dependent Function Type

- From a sorting function we know more:
 - It takes a list and converts it into a sorted list with the same elements.
 - Assume a type (or predicate) EqElements\((l, l')\) standing for
 - \(l \) and \(l' \) have the same elements.

A refined version of sort has type

\[
(l : \text{NatList}) \rightarrow ((l' : \text{NatList}) \times \text{Sorted}(l') \times \text{EqElements}(l, l'))
\]

- “sort\((l)\) is a list, which is sorted and has the same elements”.
- “sort is a program, which takes a list and returns a sorted list with the same elements.”
- The type of sort is an instance of the **dependent function type**: The result type depends on the arguments.

Conclusion

- Critical Systems require more formal specification and verification.
- Expertise in Swansea in specification and verification.
- Problems of natural language specification can be overcome by formal specification.
- Verification techniques – from proving by hand to interactive and automated theorem proving.
- Agda as an example of a programming language based on dependent types.
- Use of dependent types for generative programming.