Pattern and Copattern matching

Anton Setzer

Swansea University, Swansea UK

Leeds Logic Seminar, 13 May 2015
Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
\(\mathbb{N} \) as an Initial Algebra

- \(\mathbb{N} \) is initial algebra of the functor \(F(X) = 1 + X \)

\[
\begin{align*}
F(\mathbb{N}) &= 1 + \mathbb{N} \\
F(g) &= 1 + g \\
F(A) &= 1 + A
\end{align*}
\]

\[F(N) = 1 + N \quad \xrightarrow{0 + S} \quad N \]

\[F(g) = 1 + g \quad \xrightarrow{\exists!\ g} \quad \mathbb{N} \]

\[F(A) = 1 + A \quad \xrightarrow{f'} \quad A \]

\(f' \) can be decomposed as \(f' = a + f \)
Unique Iteration

Unique existence of g means **unique iteration**:

Given $a : A$ and $f : A \rightarrow A$ there exists a unique

$$g : \mathbb{N} \rightarrow A$$

$$g \ 0 \ = \ a$$

$$g \ (S \ n) \ = \ f \ (g \ n)$$

i.e

$$g \ (S^n \ 0) \ = \ f^n \ a$$
From the principle of unique iteration we can prove the principle of unique (primitive) recursion:

Given $a : A$ and $f : \mathbb{N} \to A \to A$ there exists a unique

$$
g : \mathbb{N} \to A$$

$$
g 0 = a$$

$$
g (S n) = f n (g n)$$
Induction

- From the principle of unique iteration we can prove the principle of induction:

 Assume $A : \mathbb{N} \to \text{Set}$, $a : A \ 0$ and $f : (n : \mathbb{N}) \to A \ n \to A \ (S \ n)$

 There exists a unique

 $$g : (n : \mathbb{N}) \to A \ n$$

 $$g \ 0 = a$$

 $$g \ (S \ n) = f \ n \ (g \ n)$$

- Using induction we can prove that if we have two solutions for a iteration or recursion principle, they are pointwise equal, i.e. uniqueness of iteration and recursion.
The above means that we can define

\[
g : (n : \mathbb{N}) \rightarrow A \ n
\]

\[
g \ 0 = a \ \text{for some} \ a : A
\]

\[
g \ (S \ n) = a' \ \text{for some} \ a' : A \ \text{depending on} \ n
\]

where in the second case we can use the **recursion hypothesis** or **induction hypothesis** \(g \ n \).

This means we can define \(g \ n \) by **pattern matching** on \(n : \mathbb{N} \).
Theorem

Assume \(\mathbb{N} : \text{Set}, \, 0 : \mathbb{N}, \, S : \mathbb{N} \rightarrow \mathbb{N} \).

The following are equivalent:

- The principle of unique iteration.
- The principle of unique recursion.
- The principle of unique induction.
- The principle of induction.
Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Streams as a Final Coalgebra

- Dual of \oplus is \times, so we use for clarity a functor using product rather than disjoint union:

- **Stream** is the final coalgebra of $F(X) = \mathbb{N} \times X$

$$
\begin{align*}
X & \xrightarrow{f} \mathbb{N} \times X = F(X) \\
\exists! g & \text{ s.t. } \text{id} \times g = F(g) \\
\text{Stream} & \xrightarrow{\text{head} \times \text{tail}} \mathbb{N} \times \text{Stream} = F(\text{Stream})
\end{align*}
$$

- We can decompose f as

$$
f = f_0 \times f_1$$
Unique Coiteration

This corresponds to the principle of unique coiteration:
There exists a unique

\[g : A \rightarrow \text{Stream} \]
\[\text{head} (g \ x) = f_0 \ x \]
\[\text{tail} (g \ x) = g \ (f_1 \ x) \]
Unique Coiteration

- We had:

 \[\text{head} \left(g \ x \right) = f_0 \ x \]
 \[\text{tail} \left(g \ x \right) = g \left(f_1 \ x \right) \]

- By choosing \(f_0, f_1 \) we can define \(g : X \rightarrow \text{Stream} \) s.t.

 \[\text{head} \left(g \ x \right) = n \quad \text{for some } n : \mathbb{N} \text{ depending on } x \]
 \[\text{tail} \left(g \ x \right) = g \ x' \quad \text{for some } x' : X \text{ depending on } x \]
From unique coiteration we can derive **unique corecursion**: There exists a unique

\[g : A \to \text{Stream} \]

- head \((g \ x) = n \) for some \(n : \mathbb{N} \) depending on \(x \)
- tail \((g \ x) = g \ x' \) for some \(x' : X \) depending on \(x \)
 - or
 - \(= s \) for some \(s : \text{Stream} \) depending on \(x \)

This means we can define \(g \ x \) by **copattern matching**
Examples

We can define

\[
\text{cons} : (\mathbb{N} \times \text{Stream}) \rightarrow \text{Stream}
\]
\[
\text{head} (\text{cons}(n, s)) = n
\]
\[
\text{tail} (\text{cons}(n, s)) = s
\]

Note: \text{cons} not primitive but \textbf{defined} by corecursion

\[
\text{inc} : \mathbb{N} \rightarrow \text{Stream}
\]
\[
\text{head} (\text{inc } n) = n
\]
\[
\text{tail} (\text{inc } n) = \text{inc } (n + 1)
\]
Examples

\[
\begin{align*}
\text{inc}' & : \mathbb{N} \rightarrow \text{Stream} \\
\text{head} \ (\text{inc}'(n)) & = n \\
\text{tail} \ (\text{inc}'(n)) & = \text{inc}''(n + 1)
\end{align*}
\]

\[
\begin{align*}
\text{inc}'' & : \mathbb{N} \rightarrow \text{Stream} \\
\text{head} \ (\text{inc}''(n)) & = n \\
\text{tail} \ (\text{inc}''(n)) & = \text{inc}'(n + 1)
\end{align*}
\]
Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Bisimilarity

- Bisimilarity \sim on Streams is an **indexed final coalgebra**.
- Consider the category $\text{Set}^{\text{Stream} \times \text{Stream}}$ of binary relations

\[\varphi : \text{Stream} \times \text{Stream} \to \text{Set} \]

- Let

\[F^\sim : \text{Set}^{\text{Stream} \times \text{Stream}} \to \text{Set}^{\text{Stream} \times \text{Stream}} \]

\[F^\sim(\varphi, (s, s')) = (\text{head } s = \text{head } s') \times \varphi (\text{tail } s, \text{tail } s') \]
That \sim is a F^{\sim} coalgebra means there exist

$$\text{elim}_{\sim} : (s, s' : \text{Stream}) \rightarrow s \sim s' \rightarrow (\text{head } s = \text{head } s') \times (\text{tail } s \sim \text{tail } s')$$

i.e.

$$s \sim s' \rightarrow (\text{head } s = \text{head } s') \land ((\text{tail } s) \sim (\text{tail } s'))$$

Let elim_{\sim}^0 and elim_{\sim}^1 the two components of elim_{\sim},

$$\text{elim}_{\sim}^0 : (s, s' : \text{Stream}) \rightarrow s \sim s' \rightarrow \text{head } s = \text{head } s'$$
$$\text{elim}_{\sim}^1 : (s, s' : \text{Stream}) \rightarrow s \sim s' \rightarrow \text{tail } s \sim \text{tail } s'$$

and hide the first two arguments of elim_{\sim}^i.
Bisimilarity

- That \sim is a final F^{\sim}-coalgebra means that it is the largest such relation:

$$\varphi(s, s') \xrightarrow{f} \text{head } s = \text{head } s' \land \varphi(\text{tail } s, \text{tail } s')$$

$$\exists! g \quad \text{id} \land g$$

$$s \sim s' \xrightarrow{\text{elim} \sim} \text{head } s = \text{head } s' \land (\text{tail } s) \sim (\text{tail } s')$$

- This means that

$$\forall s, s'. \varphi(s, s') \rightarrow \text{head } s = \text{head } s' \land \varphi(\text{tail } s, \text{tail } s')$$

then

$$\forall s, s'. \varphi(s, s') \rightarrow s \sim s'$$
Bisimilarity

- So we have

\[s \sim s' \rightarrow \text{head } s = \text{head } s' \land (\text{tail } s) \sim (\text{tail } s') \]

and if

\[\forall s, s'. \varphi (s, s') \rightarrow \text{head } s = \text{head } s' \land \varphi (\text{tail } s, \text{tail } s') \]

then

\[\forall s, s'. \varphi (s, s') \rightarrow s \sim s' \]
Corecursive Proof of Bisimilarity

- Because \sim is a final coalgebra we can compute proofs of it by corecursion:
- We can define

$$f : (s, s' : \text{Stream}) \rightarrow \varphi s s' \rightarrow s \sim s'$$

$$\text{elim}_0^\sim (f \ s \ s' \ x) = \text{an element of head } s = \text{head } s'$$

$$\text{elim}_0^\sim (f \ s \ s' \ x) = \text{an element of (tail } s) \sim (\text{tail } s')$$

where in the last line we can use

- either a proof of tail $s \sim$ tail s' defined before
- or use the corecursion hypothesis $f (\text{tail } s) (\text{tail } s') x'$ for some $x' : \varphi (\text{tail } s) (\text{tail } s')$
The following are equivalent

▶ The principle of unique coiteration.
▶ The principle of unique corecursion.
▶ The principle of iteration together with the principle that bisimilarity \sim implies equality

$$\forall s, s' : \text{Stream}. s \sim s' \rightarrow s = s'$$

Because of the possibility of defining elements of $s \sim s'$ the latter can be considered as a **principle of coinduction**.
Let $\varphi : \text{Stream} \to \text{Stream} \to \text{Set}$.

We can prove
\[
\forall s, s' : \text{Stream}. \varphi s s' \to s = s'
\]
by showing
\[
\forall s, s' : \text{Stream}. \varphi s s' \to \text{head } s = \text{head } s'
\]
\[
\forall s, s' : \text{Stream}. \varphi s s' \to \text{tail } s = \text{tail } s'
\]

where for proving $\text{tail } s = \text{tail } s'$ we can use the coinduction hypothesis that $\varphi (\text{tail } s) (\text{tail } s')$ implies $\text{tail } s = \text{tail } s'$.
Indexed Coinduction

Instead of defining φ as a predicate $\text{Stream} \to \text{Stream} \to \text{Set}$ we can assume

$$A : \text{Set}$$
$$s, t : A \to \text{Stream}$$

and define

$$\varphi \ s' \ t' = (a : A) \times (s' = s \ a) \times (t' = t \ a)$$

Coinduction of φ becomes then the principle of indexed coinduction (see next slide)
Indexed Coinduction

- Assume

\[A \rightarrow Set \]
\[s_0, s_1 : A \rightarrow Stream \]

- We can prove

\[\forall a : A. s_0 a = s_1 a \]

by showing

\[\forall a : A. \text{head} (s a) = \text{head} (t a) \]
\[\forall a : A. \text{tail} (s a) = \text{tail} (t a) \]

where for proving \(\text{tail} (s a) = \text{tail} (t a) \) we can use that \(\text{tail} (s a) = s a' \) and \(\text{tail} (t a) = t a' \) and therefore by \textbf{coinduction-hypothesis} \(s a' = t a' \).
Example Proof by Coinduction

- Remember

\[
\begin{align*}
\text{inc} & : \mathbb{N} \rightarrow \text{Stream} \\
\text{head}(\text{inc } n) & = n \\
\text{tail} \ (\text{inc } n) & = \text{inc} \ (n + 1) \\
\text{inc}' & : \mathbb{N} \rightarrow \text{Stream} \\
\text{head}(\text{inc}'(n)) & = n \\
\text{tail} \ (\text{inc}'(n)) & = \text{inc}''(n + 1) \\
\text{inc}'' & : \mathbb{N} \rightarrow \text{Stream} \\
\text{head}(\text{inc}''(n)) & = n \\
\text{tail} \ (\text{inc}''(n)) & = \text{inc}'(n + 1)
\end{align*}
\]
Example Proof by Coinduction

- We show

\[\forall n \in \mathbb{N}. \text{inc}' n = \text{inc} n \land \text{inc}'' n = \text{inc} n \]

- Formally we would use in the above

\[A = \mathbb{N} + \mathbb{N} \]
\[s \ (\text{inl} \ n) = \text{inc}' n \]
\[s \ (\text{inr} \ n) = \text{inc}'' n \]
\[t \ (\text{inl} \ n) = \text{inc} n \]
\[t \ (\text{inr} \ n) = \text{inc} n \]

and show

\[\forall a : A. s \ a = t \ a \]
Example Proof by Coinduction

Proof of

∀n ∈ ℕ. \text{inc}' n = \text{inc} n ∧ \text{inc}'' n = \text{inc} n

Assume n : ℕ.

head (\text{inc}' n) = n = head (\text{inc} n)
head (\text{inc}'' n) = n = head (\text{inc} n)

\text{tail} (\text{inc}' n) = \text{inc}'' (n + 1) \overset{\text{co-IH}}{=} \text{inc} (n + 1) = \text{tail} (\text{inc} n)
\text{tail} (\text{inc}'' n) = \text{inc}' (n + 1) \overset{\text{co-IH}}{=} \text{inc} (n + 1) = \text{tail} (\text{inc} n)
Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Consider the following (unlabelled) transition system:

\[
p \sim q \rightarrow (\forall p'. p \rightarrow p' \\
\rightarrow \exists q'. q \rightarrow q' \land p' \sim q') \\
\land \cdots \text{ symmetric case} \cdots \}
\]
Proof using the Definition of \sim

- We show $p \sim q \land p \sim r$ by coinduction:

 - **Coinduction step for** $p \sim q$:
 - Assume $p \xrightarrow{} p'$. Then $p' = p$.
 - We have $q \xrightarrow{} r$ and by co-IH $p \sim r$.
 - Assume $q \xrightarrow{} q'$. Then $q' = r$.
 - We have $p \xrightarrow{} p$ and by co-IH $p \sim r$.

 - **Coinduction step for** $p \sim r$:
 - Assume $p \xrightarrow{} p'$. Then $p' = p$.
 - We have $r \xrightarrow{} q$ and by co-IH $p \sim q$.
 - Assume $r \xrightarrow{} r'$. Then $r' = q$.
 - We have $p \xrightarrow{} p$ and by co-IH $p \sim q$.
The standard argument for showing $p \sim q \land p \sim r$ is as follows:

Define a relation φ on states by

$$\varphi(p', q') \iff p' = p \land (q' = q \lor q' = r)$$

Show φ is a simulation:

$$\forall p, p', q. \varphi(p, q) \land p \rightarrow p' \Rightarrow \exists q'. q \rightarrow q' \land \varphi(p', q')$$

$$\forall p, q, q'. \varphi(p, q) \land q \rightarrow q' \Rightarrow \exists p'. p \rightarrow p' \land \varphi(p', q')$$
Comparison with Proofs by Induction

- We can compare both proofs to proofs by induction on natural number. Consider a proof of
\[\forall n, m, k. n + (m + k) = (n + m) + k \]
- The traditional proof would correspond to defining a relation
\[R(k) \iff \forall n, m. n + (m + k) = (n + m) + k \]
 and showing
\[R(0) \land \forall n. R(n) \to R(S(n)) \]
- Although this argument and the standard inductive proof using the induction hypothesis are equivalent, the standard inductive proof is more convenient and easier to follow.
- We hope that proofs by coinduction will similarly be easier if we do it by referring to the coinduction hypothesis.
Mixed Patterns and Copatterns

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Nested Pattern Matching

- Course of Value primitive recursion allows deep pattern matching.
 E.g. we can define the Fibonacci numbers

\[
\begin{align*}
\text{fib} & : \mathbb{N} \to \mathbb{N} \\
\text{fib} \ 0 & = 1 \\
\text{fib} \ (S \ 0) & = 1 \\
\text{fib} \ (S \ (S \ n)) & = \text{fib} \ n + \text{fib} \ (S \ n)
\end{align*}
\]

- We can now even mix pattern and copattern matching.
We can define new functions by patterns and copatterns. Example:

Define stream:\n\[f \ n = \ n, n, n - 1, n - 1, \ldots 0, 0, N, N, N - 1, N - 1, \ldots 0, 0, N, N, N - 1, N - 1, \ldots \]
Example Mixed Pattern/Copattern Matching

\[f(n) = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots \]

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[f = ? \]
Example Mixed Pattern/Copattern Matching

\[f \ n = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots \]

Copattern matching on \(f : \mathbb{N} \rightarrow \text{Stream} \):

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[f \ n = ? \]

Anton Setzer (Swansea)
Example Mixed Pattern/Copattern Matching

\[f \ n = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots \]

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[f \ n = ? \]

Copattern matching on \(f \ n : \text{Stream} \):

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[\text{head} \ (f \ n) = ? \]

\[\text{tail} \ (f \ n) = ? \]
Example Mixed Pattern/Copattern Matching

\[
f(n) = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots
\]

\[
f : \mathbb{N} \to \text{Stream}
\]

\[
f(n) = ?
\]

Solve first case, copattern match on second case:

\[
f : \mathbb{N} \to \text{Stream}
\]

\[
\text{head} \ (f(n)) = n
\]

\[
\text{head} \ (\text{tail} \ (f(n))) = ?
\]

\[
\text{tail} \ (\text{tail} \ (f(n))) = ?
\]
Example Mixed Pattern/Copattern Matching

\[f \ n = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots \]

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[f \ n = ? \]

Solve second line, pattern match on \(n \)

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[\text{head} \ (f \ n) \ = \ n \]

\[\text{head} \ (\text{tail} \ (f \ n)) \ = \ n \]

\[\text{tail} \ (\text{tail} \ (f \ 0)) \ = \ ? \]

\[\text{tail} \ (\text{tail} \ (f \ (S \ n))) \ = \ ? \]
Example Mixed Pattern/Copattern Matching

\[f \ n = n, n, n-1, n-1, \ldots 0, 0, N, N, N-1, N-1, \ldots 0, 0, N, N, N-1, N-1, \ldots \]

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[f \ n = ? \]

Solve remaining cases

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[\text{head} \ (f \ n) = n \]

\[\text{head} \ (\text{tail} \ (f \ n)) = n \]

\[\text{tail} \ (\text{tail} \ (f \ 0)) = f \ N \]

\[\text{tail} \ (\text{tail} \ (f \ (S \ n))) = f \ n \]
Results of paper in POPL (2013)

- Development of a recursive simply typed calculus (no termination check).
- Allows to derive schemata for pattern/copattern matching.
- Proof that subject reduction holds.

\[t : A, \quad t \rightarrow t' \text{ implies } t' : A \]

- Subject reduction fails when using codata types in combination with the equality type (e.g. in Coq and early versions of Agda).
Unnesting of Pattern/Copattern Matching

Iteration, Recursion, Induction

Coiteration, Corecursion

Bisimilarity and Coinduction

Proofs by Coinduction of Bisimilarity in Transition Systems

Mixed Patterns and Copatterns

Unnesting of Pattern/Copattern Matching
Consider Example from above

\[f : \mathbb{N} \rightarrow \text{Stream} \]

\[
\begin{align*}
\text{head} \ (f \ n) &= n \\
\text{head} \ (\text{tail} \ (f \ n)) &= n \\
\text{tail} \ (\text{tail} \ (f \ 0)) &= f \ N \\
\text{tail} \ (\text{tail} \ (f \ (S \ n))) &= f \ n
\end{align*}
\]

We show how this example can be reduced to unnested (co)pattern matching.

In a second step (not shown today) one can reduce it to primitive (co)recursion operators.
Unnesting of Nested (Co)Pattern Matching

We follow the steps in the pattern matching:
We start with

\[
f : \mathbb{N} \rightarrow \text{Stream}
\]

\[
\text{head } (f \ n) = n
\]

\[
\text{tail } (f \ n) = ?
\]
Copattern matching on tail \((f \ n)\):

\[
\begin{align*}
 f : \mathbb{N} & \to \text{Stream} \\
 \text{head} \ (f \ n) & = \ n \\
 \text{head} \ (\text{tail} \ (f \ n)) & = \ n \\
 \text{tail} \ (\text{tail} \ (f \ n)) & = \ ? \\
\end{align*}
\]

corresponds to

\[
\begin{align*}
 f : \mathbb{N} & \to \text{Stream} \\
 \text{head} \ (f \ n) & = \ n \\
 \text{tail} \ (f \ n) & = \ g \ n \\
\end{align*}
\]

\[
\begin{align*}
 g : \mathbb{N} & \to \text{Stream} \\
 \text{head} \ (\text{tail} \ (f \ n)) & =) \ \text{head} \ (g \ n) = \ n \\
 \text{tail} \ (\text{tail} \ (f \ n)) & =) \ \text{tail} \ (g \ n) = \ ? \\
\end{align*}
\]
Pattern matching on \(\text{tail} \left(\text{tail} \left(f \ n \right) \right) \):

\[
\begin{align*}
 f : \mathbb{N} \rightarrow \text{Stream} \\
 \text{head} \left(f \ n \right) &= n \\
 \text{head} \left(\text{tail} \left(f \ n \right) \right) &= n \\
 \text{tail} \left(\text{tail} \left(f \ 0 \right) \right) &= f \ N \\
 \text{tail} \left(\text{tail} \left(f \left(S \ n \right) \right) \right) &= f \ n
\end{align*}
\]

corresponds to

\[
\begin{align*}
 f : \mathbb{N} \rightarrow \text{Stream} \\
 \text{head} \left(f \ n \right) &= n \\
 \text{tail} \left(f \ n \right) &= g \ n
\end{align*}
\]

\[
\begin{align*}
 g : \mathbb{N} \rightarrow \text{Stream} \\
 \text{head} \left(\text{tail} \left(f \ n \right) \right) &=) \text{head} \left(g \ n \right) = n \\
 \text{tail} \left(\text{tail} \left(f \ n \right) \right) &=) \text{tail} \left(g \ n \right) = k \ n
\end{align*}
\]

\[
\begin{align*}
 k : \mathbb{N} \rightarrow \text{Stream} \\
 \text{tail} \left(\text{tail} \left(f \ 0 \right) \right) &=) k \ 0 = f \ N \\
 \text{tail} \left(\text{tail} \left(f \left(S \ n \right) \right) \right) &=) k \ \left(S \ n \right) = f \ n
\end{align*}
\]
Conclusion

- Principle of induction is well established and makes proofs much easier.
- In theoretical computer science coinductive principles occur frequently.
 - Main reason: interactive programs running continuously in various frameworks (imperative, object-oriented, process-calculi)
- Coalgebras as being defined by their eliminators rather than infinite applications of constructors makes clear when recursive calls are allowed.
- Proofs by coinduction in the above situation can be carried out similarly as proofs by induction.
- Main difficulty: when are we allowed to apply co-IH?
 - In the corecursion step we have a proof obligation, and can use the co-IH to prove it.
Conclusion

- Copattern matching as the dual of pattern matching.
 - Pattern matching is an elimination principle for inductive types (initial algebras).
 - Copattern matching is an introduction principle for coinductive types (final coalgebras).
- Mixed pattern and copattern matching can be reduced to simple pattern and copattern matching.