«O0)>» «F» «=)» 4« Q>

Anton Setzer
Swansea University

Swanesa, UK
(Joint work with Chi Ming Chuang, Swansea)

August 24, 2010

it
-

. Introduction

. Restrictions and assumptions about Agda

. Proof Part 1: Proof of Theorem assuming simple pattern matching

. Proof Part 2: Reduction to simple pattern matching

. Conclusion

2/ 34

1. Introduction

Goal

» We want use dependent type theory for extracting programs from
intuitionistic proofs about real numbers.
» System to be used is Agda

» We want to use the fact that in dependent type theory proofs and
programs are the same.
» Therefore if we have
p:V¥x:Ady:Bpx,y
we get a function
f.=XMm(px):A—B
s.t.
Ax.my (p x) 1 Vx : A x (f x)

» Question: What happens if we add axioms, e.g. axioms formalising
the real numbers.

3/ 34

1. Introduction
Real Number Computations
» For formalising real numbers we follow the approach by Berger.
» For axiomatising the real numbers we postulate
R : Set

together with certain operations and their properties.

» We will define coalgebraically
SignedDigit : R — Set

the set of real numbers which have a signed digit representation,
i.e. which can be written as

0.dodrd> - -

where d; € {-1,0,1}.
(They are necessarily elements of the interval [—1,1]).

4/ 34

1. Introduction

Streams

» Let Stream be the data type of signed digit streams.

» We can define
toStream : (r : R) — SignedDigit r — Stream

which determines for an element r : R s.t. SignedDigit r holds its
signed digit representation.

» We can define
toList : Stream — N — List Digit
which determines for a stream s and n : N the list of the first n digits

of s.

5/ 34

1. Introduction

Real Number Computations

» We will show that the signed digits are closed under certain
operations e.g.

Vr,s : R.SignedDigit r — SignedDigit s — SignedDigit (av r s)
Vr,s : R.SignedDigit r — SignedDigit s — SignedDigit (r * s)
SignedDigit Y2

and potentially more complicated operations.
(Here av is the average function

r+s
2

avrs =

Since elements of SignedDigit are in [—1, 1] signed digit are not
closed under +; however, they are closed under under av).

6/ 34

» Therefore we can determine certain r : R s.t.

holds.

p : SignedDigit r
» Then

q : toList (toStream r p) n
is the list of the first n digits of r.

» We would like that g evaluates to

[do, ..., dn_1]
for some d; : Digit, so in ordinary mathematics

r=0_d0...dn_1...
«0» «Fr» «=)r» « Q>
e e

it
-

1. Introduction

Real Number Computations

» For instance we could find d; s.t.

V2+4/2

J —0.dy-dyq1--

» Our approach should be extensible to more advanced functions carried
out by Ulrich Berger.

» Problem: Evaluation of g might make use of the axioms used which
are just postulates.

8/ 34

» Assume we introduce the axiom

postulate axioml : = (0 # 0)
which is

postulate axioml : 0 # 0 — L
» Let's axiomatise errnoeously as well

postulate wrongAxiom : 0 # 0
» We can define
lemma : 1 — Digit
lemma ()
» Now

doesn’t normalise.

lemma (axiom1 wrongAxiom) : Digit
«0» «Fr» «=)r» « » Q>

1. Introduction

Example 2
» Assume the correct axiom

axiom?2 : —0 ==

» The equality is defined in Agda (using a hidden argument {A : Set})

as
data - == _{A:Set} (a: A): A— Set where
refl:a==a
_ == _ means that the arguments of == are written before and after
it (infix).

a == b is defined for all a,b: A by having refl : a == a for all a: A.
» Define by case distinction on ==

transfer : (P: R — Set) —» (r,s :R) »r==s—Pr—Ps
transfer Prrrefl p=p

10/ 34

transfer : (P: R — Set) — (r,s:R) = r==s—Pr—Ps
transfer Prrrefl p=p

» Let P: R — Set, P r = Digit.
» Then

q := transfer P —0 0 axiom2 0 : Digit

but doesn’t normalise, since axiom?2 doesn’'t normalise to a
constructor of —0 ==

«O0)>» «F» «=)» 4« Q>

it
-

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

«O» «Fr « y 4= o

2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

For simplicity we restrict our language.
We have as types

» postulated types
postulate A: B — C — Set

» non-indexed (but possibly parametrized) algebraic and coalgebraic
data types

(co)data A (B : Set) (n: N) : Set where
CG:ABn— ABn
G:N—ABn

» So A B n refers only to A B n.

13/ 34

2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

» restricted indexed algebraic and coalgebraic data types

(co)data A (B : Set) : (n: N) — Set where
CG:(n:N)—-ABO0O—ABn
G:(n:N)—-AB(n+3)—ABn

» So A B n can refer to A B n’ for other n’ but n is first argument of
constructor (constructors are uniform in n).

» The equality type - == _ which is the only generalised indexed
inductive definition allowed:

data - == _{A: Set} (a: A) : A— Set where

refl:a==a

14/ 34

2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Types)

» Dependent function types

(a1: A1) = (a2: Ax) — - — A

» Types defined in the same way as functions below.
» Not allowed in this setting:

>

>
>
>

other generalised indexed inductive definitions,
induction-recursion,

induction-induction,

record types.

15/ 34

2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Functions)

» We have postulated functions
postulate f : (a1 : A1) — - — A,
» We have directly defined functions

fi(ar:A)— - — Appa
fai---ap=s

» We have functions defined by possibly deep pattern matching e.g.
f:(a:A)—(b:B)—C

f(C1(Cax)) (C3y)=s
f(C1(Cyx)) ()

(second line absurdity pattern, assuming Bla := C; (C), x)] is a
directly empty algebraic data type (no constructor)).

16/ 34

» Not allowed:

» let and where-expressions (can be reduced easily).
» No with-expressions (can be reduced as well).

«Or «Fr o« > DA

a

2. Restrictions and assumptions about Agda

Restrictions on Language of Agda (Functions)

» Functions can be defined mutually.
» Functions can be defined recursively.

» Termination checker of Agda imposes restrictions.

» We assume that Agda with these restrictions is normalising.

» The theory of coalgebras (represented by codata) is not fully worked
out in Agda yet, but a satisfactory solution is possible.

» That functions defined by pattern matching have complete pattern
matching is guaranteed by the coverage checker.

18/ 34

» We assume termination and coverage checked Agda code is
normalising and coverage complete.

it
a

it

v

«Or «Fr o« > DA

2. Restrictions and assumptions about Agda

Specific Restricitions on Agda code

» Postulated functions have as result type equalities or postulated
types.
» Therefore postulated axioms which imply negations are not allowed:

axioml : = (0 # 0)

stands for
axioml : 0 #0 — L

which has as result type an algebraic data type (L which is the empty
algebraic data type)

» Functions defined by case distinction on equalities have as result type
only equalities or postulated types.

» So when using postulated functions and equalities we stay within
equalities and postulated types.

20/ 34

» Assume Agda code with these restrctions.

» Assume r : A in normal form, where A is an algebraic data type.
» Then r starts with a constructor.
Especially,

» If r: List Digit, r in normal form, then r = [d1, .
and d; € {-1,0,1}.

., dy] for some n

«0» «Fr» «=)r» « Q>

it
-

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

«O0)>» «F)r « > « = Q>

~ matching

Proof

» Assume we have only simple pattern matching for functions with
result types non-generalised algebraic/coalgebraic data types, i.e.
functions are defined by pattern matching have only complete
non-nested patterns on one argument:

fi(ag:A) — - —(ak:Ak) — - — (an: An) — Ant1

I _
fxie X1 (Cryg Vo) Xkt1 Xn = 51

or

f:(al:Al)—>--~—>(ak:Ak)a--~—>(a,,:A,,)—>A,,+1
fxg X1 () Xy Xn

23/ 34

~ matching

Proof of Part 1

» Induction on length of r.
» Assume r : A in normal form, A algebraic data type.

» Show r starts with a constructor.
> letr=Ffr---rp
» Assume f is not a constructor.
» f cannot be a postulated function or defined by case distinction on an
equality.
f cannot be directly defined.

So f is defined by pattern matching on one argument say argument
No. i.

» By IH r; starts with a constructor.
» So r reduces in one step, is not in normal form, a contradiction.

vy

24/ 34

1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

«O0)>» «F)r « > « = Q>

» Agda code following the assumptions can be reduced to

» normalising and coverage complete Agda code
» fulfilling the assumptions and

» using only simple pattern matching for functions having result types

non-generalised (co)algebraic data types.

<O «Fr « = DA

» Assume a function which has no simple pattern matching:

f:i(xa:B)—-—(xn:By)— A
fxl---xk_lr,% crt=s
f-Xl--.Xk_lrk --r’{IZSI
where one of r,’; is not a variable.

it
-

«O0)>» «F» «=)» 4« Q>

4. Proof Part 2: Reduction to simple pattern matching

Step 1

» Replace if r,i is a variable this by having a simple pattern matching on
that argument:
Assume By has constructors Cy, ..., C; (we assume here the easier
case of non-indexed inductive definitions).
Assume r} is a variable.
Replace the above by

fi(xq:B1)— - —(xp:Bp)— A

leXk_l r/% ..-rr];:52

leXk_l rli ...r/y:sl

28/ 34

column k.

» Assume Step 1 has been carried out so that no variables occur in

«Or «Fr o« > DA

it
a

it

v

> Assume we have

fi(x:By)—
fX]_.

- — (Xn . n) A
ot =il
el S Sn1) "k+1 =t
1) 1jy 1J .
Foxaxie1 (G 5% 1 5n1) fk+1 1 t
k) _ 2’1
fxixie1 (Cosptoosmh) rk+1 i
2. 2 o
fxyxk—1 (Cosp” gj)rkﬂ., 2 _ o
fxgxe1 (C AR)r]
| . - n k+1
fxl.

r’i’1=t/,1
g
Sn/)rk+1 e oy
«O>» «Fr «Z» « i .
e VAT

/ H
k-1 (Cr 5y

» Replace this by defining mutually

fi(x1:B1)— = (xn:Bp) — A
fxio xk—1 (Cryr Ym) Xk1 - Xn

=81 X1 Xk—1 Y1 Y Xk+1
fxi- X1 (CryrYn) Xkg1- Xn

=8I X1 Xk—1 Y1 Yny Xk+1 " Xn
gl-:...
i, il il
g’- Xl...xk_l 51 ..sni rk+1 .
y
8i X1 Xk—1 5

il = ¢
,_]" I"J'l/

;o 2 .
) 1" i
...snl_ rk+1...rn _tx/[]
«0O0)>» «F»r «Z» « > Q>
e e

.-Xn

» Difficulty: find a well-founded measure for Agda code such that after

carrying out several steps 1 and one step 2 the measure is reduced.
» Problem: Step 1 increases the length of the pattern matching.

«0» «Fr» «=)r» « Q>

it
-

. 5Comcson
1. Introduction

2. Restrictions and assumptions about Agda

3. Proof Part 1: Proof of Theorem assuming simple pattern matching

5. Conclusion

«0>» «Fr «=>» 4 > Q>

4. Proof Part 2: Reduction to simple pattern matching

5. Conclusion

Conclusion

» We can extract in Agda programs from proofs using postulated
axioms, if restrictions are applied.

» Chi Ming Chuang has shown that signed digit reals are closed under
av and * and contain the rationals.

» We could obtain programs normalising to signed digit representations
for some real numbers.

» In order to execute them the compiled version of Agda needed to be
used.

34/ 34

	1. Introduction
	2. Restrictions and assumptions about Agda
	3. Proof Part 1: Proof of Theorem assuming simple pattern matching
	4. Proof Part 2: Reduction to simple pattern matching
	5. Conclusion

