
Weak Bisimulation Approximants

Will Harwood and Faron Moller

Department of Computer Science, Swansea University

Abstract. Bisimilarity , a canonical notion of equivalence between pro-
cesses, is defined co-inductively, but it may be approached – and even
reached – by its (transfinite) inductively-defined approximants. For ar-
bitrary processes this approximation may need to climb arbitrarily high
through the infinite ordinals before stabilising. In this paper we consider
a simple process algebra, the Basic Parallel Processes (BPP), and inves-
tigate the level at which the approximation becomes the thing itself.

1 Introduction

There has been great interest of late in the development of techniques for decid-
ing equivalences between infinite-state processes, particularly for the question of
bisimilarity between processes generated by some type of term algebra. Several
surveys of this developing area have been published, beginning with [13], and
there is now a chapter in the Handbook of Process Algebra dedicated to the
topic [1], as well as a website devoted to maintaining an up-to-date comprehen-
sive overview of the state-of-the-art.

While questions concerning strong bisimilarity have been successfully addressed,
techniques for tackling the question of weak bisimilarity, that is, when unobserv-
able transitions are allowed, are still lacking, and many open problems remain.
The main difficulty arising when considering weak bisimilarity is that processes
become infinite-branching: at any point in a computation, a single action can
result in a transition to any one of an infinite number of next states. Common
finiteness properties fail due to this; in particular, bisimilarity can no longer
be characterised by its finite approximations in the way that it can for finite-
branching processes. For arbitrary infinite-branching processes, we may need
to climb arbitrarily high through the transfinite approximations to bisimilarity
before reaching the bisimulation relation itself.

In this paper we consider the problem of weak bisimilarity for so-called Basic
Parallel Processes (BPP), a simple model of concurrent processes. These corre-
spond to commutative context-free processes, or equivalently to communication-
free Petri nets. The question as to the decidability of weak bisimilarity between
BPP processes remains unsolved. It has recently been shown that the problem is

28 Will Harwood and Faron Moller

at least PSPACE-hard [16], even in the restricted case of so-called normed BPP,
but this sheds no light one way or the other as to decidability. Jančar suggests
in [11] that the techniques he uses there to establish PSPACE-completeness of
strong bisimilarity for BPP might be exploited to give a decision procedure for
weak bisimilarity, but this conjecture remains unsubstantiated.

It has long been conjectured that for BPP, weak bisimilarity is characterised by
its (ω×2)-level approximation. Such a result could provide a way to a decision
procedure. However, no nontrivial approximation bound has before now been
established. In this paper we provide a non-trivial countable bound on the ap-
proximation: for a BPP defined over k variables, weak bisimilarity is reached by
the ωk level; weak bisimilarity is thus reached by the ωω level for any BPP.

Our argument is based on a new constructive proof of Dickson’s Lemma which
provides an ordinal bound on the sequences described by the Lemma. This proof
is presented in Section 2 of the paper. After this, the definitions necessary for the
remainder of the paper are outlined in Section 3 along with a variety of results,
and our results on BPP are presented in Section 4.

2 Ordinal Bounds for Dickson’s Lemma

An n-tuple ~y=(y1, . . . , yn)∈Nn dominates another n-tuple ~x=(x1, . . . , xn)∈Nn

if ~x ≤ ~y, where ≤ is considered pointwise. A sequence of n-tuples is a non-
dominating sequence over Nn if no element of the sequence dominates any of
its predecessors in the sequence. A rooted tree with nodes labelled by n-tuples
from Nn is a non-dominating tree over Nn if the sequence of labels along any
path through the tree is a non-dominating sequence.

Dickson’s Lemma [5] asserts that there can be no infinite non-dominating se-
quences.

Lemma 1 (Dickson’s Lemma). All non-dominating sequences are finite. That
is, given an infinite sequence of vectors ~x1, ~x2, ~x3, . . . ∈ Nn we can always find
indices i, j with i<j such that ~xi ≤ ~xj.

The standard proof of this lemma uses a straightforward induction on n: for the
base case, any sequence of decreasing natural numbers must be finite; and for
the induction step, from an infinite sequence of n-tuples you extract an infinite
subsequence in which the last components are nondecreasing (either constant or
increasing), and then apply induction on the sequence of (n−1)-tuples arising
when ignoring these last components.

The problem with this proof is that it is nonconstructive; in particular, it gives
no clue as to the ordinal bound on the lengths of non-dominating sequences.

Weak Bisimulation Approximants 29

The difficulty with determining an ordinal bound comes from the fact that the
domination order is not a total order on n-tuples (as opposed, for example, to
lexicographical order). We provide here an alternative constructive proof from
which we can extract an ordinal bound on the lengths of such sequences.

Lemma 2 (Constructive Dickson’s Lemma). The ordinal bound on non-
dominating sequences of n-tuples is ωn.

Proof. That ωn is a lower bound is clear: we can construct non-dominating
sequences of n-tuples from Nn which decrease arbitrarily slowly with respect to
the lexicographical ordering <lex on Nn. That it is an upper bound will follow
from the construction of a function fn : (Nn)+ → Nn on non-empty sequences of
n-tuples which satisfies the following property: (here, ∗ represents the operation
of concatenating sequences)

If ~u∗
〈

~x
〉

is a non-dominating sequence of n-tuples, and ~u is itself non-

empty, then fn(~u∗
〈

~x
〉

)<lex fn(~u).

We shall inductively define these functions fn. The base case is straightforward:
we can define f1 by

f1(
〈

x1, . . . , xk
〉

) = xk.

A non-dominating sequence of natural numbers is simply a decreasing sequence,
which has ordinal bound ω.

For illustrative purposes we carry out the construction of the function f2 for
sequences of pairs, and later generalise our construction to sequences of n-tuples.

Given a non-empty finite sequence ~u =
〈

(x1, y1), . . . , (xk, yk)
〉

of pairs, define

• minx(~u) = min{xi : 1 ≤ i ≤ k }

• miny(~u) = min{ yi : 1 ≤ i ≤ k }

• S2(~u) =
{

(x, y) : minx(~u) ≤ x, miny(~u) ≤ y, and

(xi, yi) 6≤ (x, y) for all i : 1 ≤ i ≤ k
}

S2(~u) consists of the pairs with which the sequence ~u can be extended without
altering the minx and miny values and yet while maintaining non-domination.
Note that S2(~u) must be finite: if we let i and j be such that xi = minx(~u) and
yj = miny(~u), then in order for (x, y) 6≥ (xi, yi) and (x, y) 6≥ (xj , yj) we must
have x < xj (since y ≥ yj) and y < yi (since x ≥ xi).

30 Will Harwood and Faron Moller

Suppose that ~v = ~u∗
〈

(x, y)
〉

is a non-dominating sequence, and that ~u is itself
non-empty. Then clearly minx(~v) ≤ minx(~u) and miny(~v) ≤ miny(~u); and if
equality holds in both cases then S2(~v) (S2(~u) since S2(~v) ⊆ S2(~u) yet (x, y) ∈
S2(~u) \ S2(~v). Thus |S2(~v)| < |S2(~u)|.

We can then define the function f2 on non-empty sequences ~u of pairs as follows:

f2(~u) =
〈

minx(~u)+miny(~u), |S2(~u)|
〉

If ~u∗
〈

(x, y)
〉

is a non-dominating sequence and ~u is itself non-empty, then by

the above argument we must have that f2(~u∗
〈

(x, y)
〉

)<lex f2(~u).

For the inductive construction of fn we assume we have constructed the function
fn−1 as required. For 1 ≤ i ≤ n we define the function

π-i(
〈

x1, . . . , xn
〉

)
def
=

〈

x1, . . . , xi−1, xi+1, . . . , xn
〉

which simply deletes the ith component from the n-tuple
〈

x1, . . . , xn
〉

. Next,

given a non-empty finite sequence ~u =
〈

~x1, . . . , ~xk
〉

of n-tuples, we define the
set

nd-i(~u)
def
=

{

〈

π-i(~xi1), . . . , π-i(~xip)
〉

: p > 0, 0 < i1 < · · · < ip ≤ n, and
〈

π-i(~xi1), . . . , π-i(~xip)
〉

is non-dominating
}

which consists of the non-dominating subsequences of (n−1)-tuples of ~u in which
the ith components of the n-tuples have been deleted. Finally we make the
following definitions:

• min-i(~u)
def
= min<lex

{ fn−1(~x) : ~x ∈ nd-i(~u) }

• Sn(~u) =
{

~x : min-i(~u) = min-i(~u∗
〈

~x
〉

) for all i : 1 ≤ i ≤ n, and

~xi 6≤ ~x for all i : 1 ≤ i ≤ k
}

Sn(~u) consists of the n-tuples with which the sequence ~u can be extended with-
out altering the min-i values and yet while maintaining non-domination. Note
that Sn(~u) must be finite. To see this, let i1, . . . , ip be such that

min-i(~u) = fn−1(
〈

π-i(~xi1), . . . , π-i(~xip)
〉

),

and suppose that ~x ∈ Sn(~u). If
〈

π-i(~xi1), . . . , π-i(~xip)
〉

∗
〈

π-i(~x)
〉

is non-dominating,
then by induction we would get that

Weak Bisimulation Approximants 31

min-i(~u∗
〈

~x
〉

) ≤lex fn−1(
〈

π-i(~xi1), . . . , π-i(~xip)
〉

∗
〈

π-i(~x)
〉

)

<lex fn−1(
〈

π-i(~xi1), . . . , π-i(~xip)
〉

) = min-i(~u)

contradicting ~x ∈ Sn(~u). Therefore we must have π-i(~x) ≥ π-i(~xij) for some j.
But since ~x 6≥ ~xij we must then have (~x)i < (~xij)i.

Suppose that ~v = ~u∗
〈

~x
〉

is a non-dominating sequence, and that ~u is itself
non-empty. Then min-i(~v) ≤ min-i(~u) for all i (since nd-i(~u) ⊆ nd-i(~v)); and
if equality holds in all cases then Sn(~v) (Sn(~u) since Sn(~v) ⊆ Sn(~u) yet
~x ∈ Sn(~u) \ Sn(~v). Thus |Sn(~v)| < |Sn(~u)|.

We can then define the function fn on non-empty sequences ~u of n-tuples as
follows:

fn(~u) =
(

∑n
i=1 min-i(~u)

)

∗
〈

|Sn(~u)|
〉

where the sum is taken component-wise. If ~u∗
〈

~x
〉

is a non-dominating sequence
and ~u is itself non-empty, then by the above argument we must have that
fn(~u∗

〈

~x
〉

)<lex fn(~u). �

2.1 Ordinal Bounds on Trees

This theorem easily extends to trees, where we take the following definition of
the height of a well-founded tree.

Definition 1. The height of a well-founded tree rooted at t is defined by

h(t)
def
= sup{h(s) + 1 : t −→ s }.

Theorem 1. If t is a non-dominating tree over Nn, then h(t) ≤ ωn.

Proof. For each node x of the tree, define `(x) ∈ Nn as `(x) = fn(πx), where fn
is as defined in the proof of Lemma 2, and πx is the non-dominating sequence
of labels on the path from the root of t to x. It will suffice then to prove that
h(x) ≤ `(x) (viewing `(x) as an ordinal) for all nodes x of the tree. This is
accomplished by a straightforward induction on h(x):

h(x) = sup{h(y) + 1 : x→ y }

≤ sup{ `(y) + 1 : x→ y } (by induction)

≤ `(x). �

32 Will Harwood and Faron Moller

3 Processes and Bisimilarity

A process is represented by (a state in) a labelled transition system defined
as follows.

Definition 2. A labelled transition system (LTS) is a triple S = (S,Act ,→)
where S is a set of states, Act is a finite set of actions, and → ⊆ S ×Act ×S
is a transition relation.

We write s
a
→ s′ instead of (s, a, s′) ∈ → and we extend this notation to elements

of Act∗ in the natural way.

It is common to admit silent transitions to model the internal unobservable
evolution of a system. In standard automata theory these are typically referred
to as epsilon transitions, but in concurrency theory they are represented by a
special action τ ∈ Act . With this, we can then define observable transitions as
follows:

s
τ
⇒ t iff s (

τ
→)∗ t and

s
a
⇒ t iff s (

τ
→)∗ ·

a
→ · (

τ
→)∗ t for a 6= τ .

The notion of “behavioural sameness” between two processes (which we view as
two states in the same LTS) can be formally captured in many different ways (see,
e.g., [6] for an overview). Among those behavioural equivalences, bisimilarity
enjoys special attention. Its formal definition is as follows.

Definition 3. Let S = (S,Act ,→) be an LTS. A binary relation R ⊆ S × S is
a bisimulation relation iff whenever (s, t) ∈ R, we have that

– for each transition s
a
→ s′ there is a transition t

a
→ t′ such that (s′, t′) ∈ R;

and
– for each transition t

a
→ t′ there is a transition s

a
→ s′ such that (s′, t′) ∈ R.

Processes s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff
they are related by some bisimulation. Thus ∼ is the union, and ergo the largest,
of all bisimulation relations.

If we replace the transition relation → in this definition with the weak transition
relation ⇒, we arrive at the definition of weak bisimulation equivalence
(weak bisimilarity), which we denote by ≈.

The above definition of (weak) bisimilarity is a co-inductive one, but can be
approximated using the following stratification.

Weak Bisimulation Approximants 33

Definition 4. The bisimulation approximants ∼κ, for all ordinals κ ∈ O,
are defined as follows:

– s ∼0 t for all process states s and t.

– s ∼κ+1 t iff

• for each transition s
a
→ s′ there is a transition t

a
→ t′ such that s′ ∼κ t

′;
and

• for each transition t
a
→ t′ there is a transition s

a
→ s′ such that s′ ∼κ t

′.

– For all limit ordinals λ, s ∼λ t iff s ∼κ t for all κ < λ.

The weak bisimulation approximants ≈κ are defined by replacing the tran-
sition relation → with the weak transition relation ⇒.

The following results are then standard.

Theorem 2.

1. Each ∼κ and ≈κ is an equivalence relation.

2. The relations ∼κ and ≈κ define strict decreasing hierarchies: over general
processes, ∼κ (∼λ and ≈κ (≈λ whenever κ > λ.

3. s ∼ t iff s ∼κ for all ordinals κ ∈ O, and s ≈ t iff s ≈κ t for all ordinals
κ ∈ O. That is, ∼ = ∩κ∈O ∼κ and ≈ = ∩κ∈O ≈κ.

If s 6∼ t, we must have a least ordinal κ ∈ O such that s 6∼κ+1 t, and for this
value κ we must have s ∼κ t. (If s 6∼λ t for a limit ordinal λ then we must have
s 6∼κ t, and hence s 6∼κ+1 t, for some κ < λ.) We shall identify this value κ by
writing s ∼!

κ t. In the same way we write s ≈!
κ t to identify the least ordinal

κ ∈ O such that s 6≈κ+1.

3.1 Bisimulation Games and Optimal Move Trees

There is a further approach to defining (weak) bisimilarity, one based on games
and strategies, whose usefulness is outlined in the tutorial [12]. We describe it
here for bisimilarity; its description for weak bisimilarity requires only replacing
the transition relation → with the weak transition relation ⇒, after which all
results stated will hold for the weak bisimilarity relations.

A game G(s, t) corresponding to two states s and t of a process is played between
two players, A and B; the first player A (the adversary) wants to show that the
states s and t are different, while the second player B (the bisimulator) wants to
show that they are the same. To this end the game is played by the two players
exchanging moves as follows:

34 Will Harwood and Faron Moller

– A chooses any transition s
a
→ s′ or t

a
→ t′ from one of the states s and t;

– B responds by choosing a matching transition t
a
→ t′ or s

a
→ s′ from the

other state;

– the game then continues from the new position G(s′, t′).

The second player B wins this game if B can match every move that the first
player A makes (that is, if A cannot move or the game continues indefinitely); if,
however, B at some point cannot match a move made by A then player A wins.
The following is then a straightforward result.

Theorem 3. s ∼ t iff the second player B has a winning strategy for G(s, t).

If s 6∼ t, then s ∼!
κ t for some κ ∈ O, and this κ in a sense determines how long

the game must last, assuming both players are playing optimally, before B loses
the game G(s, t):

– Since s 6∼κ+1 t, A can make a move such that regardless of B’s response the
situation will result in a game G(s′, t′) in which s′ 6∼κ t

′; such a move is an
optimal move for A.

– For every λ < κ, regardless of the move made by A, B can respond in such
a way that the situation will result in a game G(s′, t′) in which s′ ∼λ t

′.

With this in mind, we can make the following definition.

Definition 5. An optimal move tree is a tree whose nodes are labelled by
pairs of non-bisimilar states of a process in which an edge (s, t) −→ (s′, t′) exists
precisely when (s, t) is a node of the tree and the following holds:

In the game G(s, t), a single exchange of moves in which A makes an
optimal move may result in the game G(s′, t′)

The optimal move tree rooted at (s, t) is denoted by omt(s, t).

If (s, t) −→ (s′, t′) is an edge in an optimal move tree, then s ∼!
κ t and s′ ∼!

λ t
′

for some κ and λ with κ > λ. Hence every optimal move tree is well-founded.
Furthermore, the following result is easily realised.

Lemma 3. h(omt(s, t)) = κ iff s ∼!
κ t.

Weak Bisimulation Approximants 35

3.2 Bounded Branching Processes

Over the class of finite-branching labelled transition systems, it is a standard
result that ∼ = ∼ω. We give here a generalisation of this result for infinite-
branching processes.

Definition 6. A limit ordinal κ is regular iff it is not the supremum of fewer
than κ smaller ordinals.

Thus for example ω is regular as it is not the supremum of any finite collection
of natural numbers. It is easily seen that any regular ordinal must in fact be a
cardinal number ℵ.

Definition 7. A process is <-ℵ-branching iff all of its states have fewer than
ℵ transitions leading out of them. A tree t is <-ℵ-branching iff all of its nodes
have fewer than ℵ children.

Theorem 4. If ℵ is a regular cardinal, and t is a well-founded <-ℵ-branching
tree, then h(t) < ℵ.

Proof. By transfinite induction on h(t). If t −→ s then h(s) < h(t); and by
induction h(s) < ℵ and hence h(s)+1 < ℵ. Since h(t) = sup{h(s)+1 : t −→ s },
by the regularity of ℵ we must have that h(t) < ℵ. �

The most basic form of this result is König’s Lemma: any finite branching well-
founded tree can only have finitely-many nodes (and hence finite height).

The next result follows directly from the fact that |A×A| = |A| for any infinite
set A.

Lemma 4. If s and t are non-equivalent states of a <-ℵ-branching process, then
omt(s, t) is <-ℵ-branching.

¿From the above, we arrive at a theorem on approximant collapse, which gen-
eralises the standard result that ∼ = ∼ω on finitely branching processes as well
as a result in [18] concerning the countably-branching processes.

Theorem 5. For regular cardinals ℵ, ∼ = ∼ℵ over the class of <-ℵ-branching
processes.

Proof. ∼ ⊆ ∼ℵ is a given. If on the other hand s 6∼ t, then h(omt(s, t)) = κ
where s ∼!

κ t. Thus, by Lemma 4 and Theorem 4, κ < ℵ, and hence s 6∼ℵ t. �

36 Will Harwood and Faron Moller

4 Basic Parallel Processes

A Basic Process Algebra (BPA) process is defined by a context-free grammar
in Greibach normal form. Formally this is given by a triple G = (V,A, Γ),
where V is a finite set of variables (nonterminal symbols), A is a finite set of
labels (terminal symbols), and Γ ⊆ V × A × V ∗ is a finite set of rewrite rules
(productions); it is assumed that every variable has at least one associated rewrite
rule. Such a grammar gives rise to the LTS SG = (V ∗, A,→) in which the states
are sequences of variables, the actions are the labels, and the transition relation
is given by the rewrite rules extended by the prefix rewriting rule: if (X, a, α) ∈ Γ

then Xβ
a
→ αβ for all β ∈ V ∗. In this way, concatenation of variables naturally

represents sequential composition.

A Basic Parallel Processes (BPP) process is defined in exactly the same fashion
from such a grammar. However, in this case elements of V ∗ are read modulo
commutativity of concatenation, so that concatenation is interpreted as parallel
composition rather than sequential composition. The states of the BPP process
associated with a grammar are thus given not by sequences of variables but
rather by multisets of variables.

As an example, Figure 1 depicts BPA and BPP processes defined by the same

A
a //

b

��

AB
a //

b

��

ABB
a //

b

��

. . .

ε Bc
oo BBc

oo . . .
c

oo

A

a **

b

��

AB
c

ii

a ,,

b

��

ABB
c

jj

a
**

b

��

. . .
c

ll

ε Bc
oo BBc

oo . . .
c

oo

Fig. 1. BPA and BPP processes defined by the grammar A
a
→ AB, A

c
→ ε, B

b
→ ε

grammar given by the three rules A
a
→ AB, A

c
→ ε and B

b
→ ε.

Decidability results for (strong) bisimilarity checking have been long established
for both BPA [4] and BPP [2, 3]. For a wide class of interest (normed processes)
these problems have been shown to have polynomial-time solutions [8–10]. More
recently the decision problems for full BPA and BPP have been shown to be
PSPACE-hard [14, 15].

Decidability results for weak bisimilarity are much harder to establish, mainly
due to the problems of infinite branching. While over BPA and BPP we have
∼ = ∩n∈ω ∼m, the infinite-branching nature of the weak transition relations
makes this result false. As an example, Figure 2 gives a BPP process with
states P and Q in which P ≈n Q for all n ∈ ω yet P 6≈ Q. In this case we
have P ≈ω Q, but from these we can produce BPP process states Xn and Yn
such that Xn ≈

!
ω+n Yn by adding the following production rules to the defining

grammar:

Weak Bisimulation Approximants 37

A
a
→ A P

τ
→ A Q

a
→ ε

P
τ
→ Q Q

τ
→ QQ

P

τ

��

τ // A aff

ε Q
a

oo
τ **

QQ
τ ,,

a
oo QQQ

τ
**

a
oo . . .

a
oo

Fig. 2. A BPP process with states P and Q satisfying P ≈!
ω Q

X1
a
→ P Xi+1

a
→ Xi

Y1
a
→ Q Yi+1

a
→ Yi

We can construct BPA processes with statesXn and Yn such thatXn ≈
!
ωn Yn [18],

but no example BPP states X and Y are known which satisfy X ≈!
ω×2 Y . This

leads to the following long-standing conjecture.

Conjecture 1 (Hirshfeld, Jančar). On BPP processes, ≈ = ≈ω×2.

BPP processes with silent moves are countably-branching, and thus by Theo-
rem 5 ≈ = ≈ℵ1

. In [18] there is an argument attributed to J. Bradfield which
shows that the approximation hierarchy collapses by≈ωCK

1
, the first non-recursive

ordinal. But this is to measure in lightyears what should require centimetres; we
proceed here to a more modest bound, based on our ordinal analysis of Dickson’s
Lemma.

We assume an underlying grammar (V,A, Γ) defining our BPP process, and re-
call that a state in the associated process is simply a sequence α ∈ V ∗ viewed
as a multiset. With this, we make the important observation about weak bisim-
ulation approximants over BPP: besides being equivalences, they are in fact
congruences.

Lemma 5. For all α, β, γ ∈ V ∗, if α ≈κ β then αγ ≈κ βγ.

Proof. By a simple induction on κ. �

We next observe a result due to Hirshfeld [7].

Lemma 6. If α ≈!
κ β and αγ ≈!

µ βδ with µ<κ, then αγ ≈!
µ αδ and βγ ≈!

µ βδ.

Proof. αγ ≈µ αδ since αγ ≈µ βδ ≈κ αδ. On the other hand, if αγ ≈µ+1 αδ then
αγ ≈µ+1 αδ ≈κ βδ. Thus αγ ≈!

µ αδ. (βγ ≈!
µ βδ can be shown similarly). �

BPP processes, being multisets over the finite variable set V , can be represented
as |V |-tuples over N. Given non-equivalent BPP states α and β, omt(α, β) can

38 Will Harwood and Faron Moller

then be viewed as a N2·|V |-labelled tree. In general this tree will not be non-
dominating, but the above lemma will enable us to produce a non-dominating
N2·|V |-labelled tree from omt(α, β)

Lemma 7. For BPP processes, if α ≈!
κ β then there exists a N2·|V |-labelled

non-dominating tree of height κ.

Proof. We apply the following substitution procedure to each successive level
of the weak-transition optimal move tree omt(α, β) (where the level of a node
refers to the distance from the root (α, β) to the node):

for each node u at this level, if u dominates some ancestor node v, that
is, if there exists an ancestor node v = (ϕ, ψ) where u = (ϕγ, ψδ), then
replace the subtree rooted at u with either u′ = omt(ϕγ, ϕδ) (if ϕ <lex ψ)
or u′ = omt(ψγ, ψδ) (if ψ <lex ϕ). (If this u′ itself then dominates an
ancestor node, repeat this action.)

That <lex is a well-founded relation on N|V |×2 means this repetition must halt;
Lemma 6 implies that this is a height-preserving operation; and the well-founded-
ness of omt(α, β) means that the sequence of levels is finite. �

Theorem 6. Over BPP processes, ≈ = ≈ωω

Proof. If α ≈ β then α ≈ωω β is a given. If, on the other hand, α 6≈ β, then
α ≈!

κ β for some κ, and by the combination of Lemma 7 and Theorem 1 we must
have that κ ≤ ω2·|V |. Thus, α 6≈ωω β. �

References

1. O. Burkart, D. Caucal, F. Moller and B. Steffen. Verification over Infinite States.
Chapter 9 in the Handbook of Process Algebra, pp545-623, Elsevier Pub-
lishers, 2001.

2. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is de-
cidable for basic parallel processes. In Proceedings of the 4th International
Conference on Concurrency Theory (CONCUR’93), LNCS 715, pages 143-157,
Springer, 1993.

3. S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, decidability and
axiomatisability for bisimulation equivalence on basic parallel processes. In Pro-
ceedings of the 8th Annual IEEE Symposium on Logic in Computer Science
(LICS’93), pages 386-396, IEEE Computer Society Press, 1993.

4. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. In Proceedings of the 3rd International Conference
on Concurrency Theory (CONCUR’92), LNCS 630, pages 138-147, Springer,
1992.

Weak Bisimulation Approximants 39

5. L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers
with distinct factors. American Journal of Mathematics 3:413-422, 1913.

6. R. Glabbeek. The linear time – branching time spectrum I: The semantics
of concrete sequential processes. Chapter 1 in the Handbook of Process
Algebra, pp3-99, Elsevier Publishers, 2001.

7. Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulation. Elec-
tronic Notes in Theoretical Computer Science 5:2-13, 1997.

8. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context-free processes. In Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’94), pages 623-
631, IEEE Computer Society Press, 1994.

9. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for decid-
ing bisimilarity of normed context-free processes. Theoretical Computer Sci-
ence 15:143-159, 1996.

10. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for decid-
ing bisimulation equivalence of normed basic parallel processes. Mathematical
Structures in Computer Science 6:251-259, 1996.

11. P. Jančar. Strong bisimilarity on Basic Parallel Processes is PSPACE-complete.
In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science (LICS’03), pages 218-227, IEEE Computer Society Press, 2003.

12. P. Jančar and F. Moller. Techniques for decidability and undecidability of bisim-
ilarity. In Proceedings of the 10th International Conference on Concurrency
Theory (CONCUR’99), LNCS 1664, pages 30-45, Springer, 1999.

13. F. Moller. Infinite Results. In Proceedings of the 7th International Conference
on Concurrency Theory (CONCUR’96), LNCS 1119, pages 195-216, Springer,
1996.

14. J. Srba. Strong bisimilarity and regularity of Basic Process Algebra is PSPACE-
hard. In Proceedings of the 29th International Conference on Automata, Lan-
guages and Programming (ICALP’02), LNCS 2380, pages 716-727, Springer,
2002.

15. J. Srba. Strong bisimilarity and regularity of Basic Parallel Processes is
PSPACE-hard. In Proceedings of the 19th International Symposium on The-
oretical Aspects of Computer Science (STACS’02), LNCS 2285, pages 535-546,
Springer, 2002.

16. J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP.
Mathematical Structures in Computer Science 13:567-587, 2003.

17. J. Srba. Roadmap of Infinite Results. http://www.brics.dk/~srba/roadmap.
18. J. Stribrna. Decidability and complexity of equivalences for simple process alge-

bras. PhD thesis ECS-LFCS-99-408, University of Edinburgh, 1999.

