Software Testing IV

Prof. Dr. Holger Schlingloff
Humboldt-Universität zu Berlin
and
Fraunhofer Institute of Computer Architecture
and Software Technology FIRST
Outline of this Lecture Series

- **2006/ 11/ 24**: Introduction, Definitions, Examples
- **2006/ 11/ 25-1**: Functional testing
- **2006/ 11/ 25-2**: Structural testing
- **2006/ 11/ 26-1**: Model-based test generation
- **2006/ 11/ 26-2**: Specification-based test generation

- Next week: Your turn!
Outline of This Lecture

• Test generation from Finite State Machines
• Test generation from UML StateCharts
• Test generation from Timed Automata
Description of Systems

- Finite automata have been known since the 1960’s
 - Moore / Mealy: used to describe relations between words (input sequence is transformed into output sequence)
 - Rabin / Scott: used to describe sets of words (accepting / non-accepting states)

- Can be used to describe the control flow of any system
 - states are (equivalence classes of) configurations of the SUT
 - transitions are actions (external or internal) changing the state
Labelled Transition Systems

• “finite automaton without accepting states”
• formally: \((S, L, T, s_0)\)
 - \(S\): finite or countable nonempty set of states
 - \(L\): finite set of labels, \(\tau \notin L\)
 - transition relation \(T \subseteq S \times (L \cup \{\tau\}) \times S\)
 - \(s_0\) initial state

• Run=finite sequence \(\{(s_i, s_{i+1})_{i \in N}\}\), where \(s_0\) is the initial state and \((s_i, s_{i+1}) \in T\)

• Trace = sequence of observable actions (labels\(\neq \tau\)) of a run

• Undirected communication! Actions just “happen”!
Example: A Light Switch

- can be switched up and down
- may internally switch off
- cf. windshield wiper example
Test Generation

Remarks:
- each “box” can be manual or automated
- if everything is automated, only the tools are tested

Requirements:
- SUT must accept inputs from test driver
- SUT must provide recognisable outputs for test driver
- SUT must be resettable by test driver
- SUT must be deterministic
Conformance

• Given an LTS, what does it mean that an implementation is “correct” with respect to this model?
 - same structure? same states? same state classes?
 - same behaviour? same observable behaviour?
 - same choices? fewer choices? more choices?
 - same timing? more specific timing?

• Fault model (extra/missing state, unexpected output, quiescence, …)

• Conformance notions (Tretmans)
Trace Refinement

- Observable behaviour: set of sequences of visible actions of the SUT
- Traces (P) = set of observable behaviours of process P
- $\text{Imp} \leq_T \text{Spec}$ gdw. $\text{Traces(}\text{Imp}) \subseteq \text{Traces(}\text{Spec})$

pre-order (transitive, reflexive)

\Rightarrow minimal element is the empty trace

\Rightarrow comparable to language inclusion in finite automata theory
Testing Trace Refinement

• Test case = trace
• Test suite = set of traces
• Test execution of trace σ for Imp and Spec:
 • $\sigma \notin \text{Traces}(\text{Imp})$ \Rightarrow pass
 • $\sigma \in \text{Traces}(\text{Imp}) \cap \text{Traces}(\text{Spec})$ \Rightarrow pass
 • fail, else
• Verdict of a test suite is the conjunction of individual verdicts

• Complete test suite: set of all traces over the alphabet
• $\text{Imp} \leq_T \text{Spec}$ iff complete test suite passes
• not feasible, thus additional hypotheses (length of traces, number of certain actions etc.)
Failures

- Failure = (σ, A), where σ is a sequence of observable actions, A is a set of actions.

- Failures(P) = set of failures (σ, A), such that there is an execution of P where σ can be observed, and afterwards no action from A is activated (P after σ refuses A).

- in automata: „non-transitions“

- $Imp \leq_F Spec$ iff Failures(Imp) ⊆ Failures($Spec$)

- also a partial order

- finer than trace-Refinement:

 $Imp \leq_F Spec \Rightarrow Imp \leq_T Spec$
Failure Refinement

- $Imp \leq_F Spec$ iff $\text{Failures}(Imp) \subseteq \text{Failures}(Spec)$
- $Imp \leq_F Spec$ iff $(Imp\text{ after }\sigma\text{ refuses }A)$ implies $(Spec\text{ after }\sigma\text{ refuses }A)$
 - Imp may only refuse those actions which are also refused by $Spec$
 - Imp may only perform those actions which are allowed by $Spec$
 - Imp has „less deadlocks“ than $Spec$
- Refinement with respect to this relation
 - transformational development
 - correctness proofs
Testing of Failure Refinement

- Test suite $T = \text{set of failures } (\sigma, A)$
- Complete test suite = set of all failures for a set of observable events
- Verdict of a test (σ, A) with respect to Imp and $Spec$
 - $\sigma \notin \text{Traces(Imp)} \Rightarrow \text{pass}$
 - $(\sigma, a) \in \text{Traces(Imp)}$ for some $a \in A \Rightarrow \text{pass}$
 - $(\sigma, A) \in \text{Failures(Imp)} \cap \text{Failures(Spec)} \Rightarrow \text{pass}$
 - fail, else
- Verdict of a test suite: all test cases pass
- Test of an implementation Imp
 - $\text{Imp} \leq_{F} \text{Spec}$ iff complete test suite passes
 (under certain side-conditions)
Conformance

• $Imp \text{ conf } Spec$ iff for all σ in Traces($Spec$):
 $\left(Imp \text{ after } \sigma \text{ refuses } A \right) \rightarrow \left(Spec \text{ after } \sigma \text{ refuses } A \right)$
 - for action sequences of the specification same as \leq_F
 - Imp may implement „additional functionality“
 - weaker than \leq_F (i.e. $Imp \leq_F Spec \rightarrow Imp \text{ conf } Spec$)

• conformance testing similar as with failure-refinement-testing

• widely used as a correctness criterion
IOCO

- Taking also inputs and outputs into consideration
- All inputs are always enabled
- \(\text{out}(P \text{ after } \sigma) = \{a! \mid P \text{ may execute } \sigma \text{ and then output } a!\} \)
- \(\text{Imp ioco Spec iff for all } \sigma \text{ in Traces}(Spec): \)
 \(\text{out}(\text{Imp after } \sigma) \subseteq \text{out}(Spec \text{ after } \sigma) \)
- Idea
 - \(\text{Imp} \) is more deterministic than \(\text{Spec} \) with respect to specified inputs
 - \(\text{Imp} \) may implement additional functionality for unspecified inputs
Implementation: TGV

- TGV “Test Generation with Verification”
- Conformance testing for reactive systems, black box test
- Automated test generation from LTS, IOCO
- Interaction via PCOs
- Verdict
 - fail: a non-conformance was observed
 - pass: trace could be executed in the SUT
 - inconc: else
TGV Testing Purposes

• A testing purpose in TGV is a “small” LTS with additional transitions ACCEPT, REFUSE
• TGV builds the cartesian product of spec and testing purpose
• Test generation: determinisation of LTS and TP, enumeration of traces
UML StateCharts

- can be seen as LTS with
 - hierarchy
 - parallelism
 - inheritance
Parallelism

• What is the meaning of parallelism in the specification?
 ▪ structural: must be implemented in parallel
 ▪ engineering: may be implemented in any order
 ▪ pragmatic: will be implemented according to the tool’s scheduling strategy
Test Generation from StateCharts

- ATG ("automated test generator"): Add-on to the UML-tool Rhapsody by ILogix / IBM

- First, the model is translated into C++ by the Rhapsody code generator
- Then, inputs and outputs to the model / SUT are identified
- Then, ATG constructs test cases from the generated code according to certain coverage goals
 - all states
 - all transitions
 - MC/DC
A “Real-Life” Example

- A safety protocol for industrial automation
Real Time

- Real Time concepts in UML (-state diagrams)
 (a) after (time) as a trigger
 (b) absolute time point (after start) as a trigger

- Informal semantics
 (a) transition will be executed \(t \) time units after becoming active
 (b) transition will be executed at the given time point

- Often, this is not sufficient
 - no minimal / maximal waiting times
 - no possibility of using several clocks
Timed Automata

• Extension of LTS by clocks
 ▪ All clocks are constantly running (no stopwatches)
 ▪ All clocks run at the same speed (perfect clocks, $t'=1$)
 ▪ Clocks can be reset by transitions
 ▪ Clocks can influence the switching of transitions

- One clock x.
- No invariant at s_1, so the system may stay arbitrarily long in s_1.
- When transitioning to s_2 by a the clock will be reset to 0.
- In s_2 the clock is running.
- After at least 1 time unit the transition to s is possible, after at most 2 time units it must happen.
Example

- Double-click switch
 - Click on, click off
 - After clicking twice fastly in a row, it becomes brighter

- Additional requirement
 - after at most 300 ms turn darker again

More about timed automata: Rajeev Alur, Tom Henzinger
http://www.cis.upenn.edu/~alur/Talks/sfm-rt-04.ppt
Formal Definition

• Assume a set X of time variables. A *timed condition* is a Boolean combination of formulas of the kind $x < c$, $x \leq c$ (where c is any rational number).

• A timed automaton is a tuple consisting of
 - a finite set L of *locations*
 - a subset L_0 of *initial locations*
 - a finite alphabet Σ of *events*
 - a finite set Ξ of *clocks* (clock-variables)
 - An *invariant* $\text{Inv}(s)$ for every location (timed condition, optional)
 - a finite set E of *transitions* consisting of
 - source, target
 - event from the alphabet (optional)
 - timed condition (optional)
 - set of clocks to be reset (optional)
Semantics of Timed Automata

• Each timed automaton is assigned an infinite LTS:
 - states: \((l, v)\) where \(l\) is a location and \(v\) is an assignment of clocks with real numbers which satisfies \(\text{Inv}(l)\)
 - initial state: \((l_0, (0, \ldots, 0))\)
 - transitions
 - control transition: \((l, v) \xrightarrow{a} (l', v')\) if a transition \((l, a, g, r, l')\) exists such that \(v\) satisfies \(g\) and \(v' = v[r := 0]\)
 - time transition: \((l, v) \xrightarrow{d} (l', v')\) if \(l' = l\) and \(v' = v + d\) and both \(v\) and \(v'\) satisfy \(\text{Inv}(l)\)

• Each path through the transition system is an execution of the timed automaton
 - control and time transitions strictly alternating
 - semantics = set of (infinite) executions, non-Zeno
Determinism

• Attention: if e.g. the conditions are inconsistent, the set of executions may be empty

• Additional requirements to take care of such situations
 ▪ the timed conditions are mutually inconsistent (at least those for the same event)
 ▪ they sum up to true, i.e. the disjunction of all timed conditions is a tautology

• Often combined with other determinism requirements, e.g. input enabledness
Extensions of Timed Automata

- **Input / Output – Timed Automata**
 - partitioning of Σ in inputs (i?), outputs (o!), and internal events
 - each transition can be labelled by an input or an internal event, and at the same time by several outputs

- **Additional variables v_1, \ldots, v_n with finite domains W_1, \ldots, W_n**
 - location = (place, values (w_1, \ldots, w_n))

- **Parallel and hierarchical automata**
 - similar to StateCharts
 - usual automata product semantics (interleaving)
 - only for convenience in modelling
Test Generation from TA

- Which one to choose?
 (Random choice might result in „bad coverage“)
- Wanted: a strategy which covers all behaviours
Idea: Equivalence Classes

- Partition the infinite state space into finitely many "regions" such that all regions are behaviorally "similar"
- Cover the region graph with untimed methods
Quotients of Automata

• Recall the definition of the quotient automaton of a finite automaton with respect to a partitioning of the state space

 ▪ abstraction of certain variables
 - smaller domains
 e.g. \(\text{Int} \rightarrow \{-\text{maxint}, \ldots, -1\}, \{0\}, \{1, \ldots, \text{maxint}\} \)
 - elimination of variables (unit domain)

 ▪ states in the quotient automaton are equivalence classes of states in the original automaton

 ▪ this is a coarsening of the specification, the set of executions becomes larger
Quotients of Timed Automata

• With timed automata
 ▪ abstraction of clock variables: the language of the untimed automaton strictly encompasses the language of the respective timed automaton
 ▪ maybe too coarse (why did we introduce time after all?)

 ![Diagram showing two states: one with a transition labeled 'x:=0' and another with 'x>10'.]

• Two quotient constructions have been proposed
 ▪ Region equivalence
 ▪ Zone equivalence
Regions

- Finite partitioning of the state space

Definition region equivalence:
Let c_{max} be the largest constant occurring in the automaton.

$v \cong_R u$ iff
- the integral part of all clock valuations is equal or both $>c_{\text{max}}$.
- the fractional part is both $=0$ or both >0.
- if $x < c_{\text{max}}$ and $y < c_{\text{max}}$ are clocks, then $(x \leq y \text{ in } v \iff x \leq y \text{ in } u)$

A region (equivalence class)
Zones

- Finite set of inequalities
- All possible <-relations between all clock variables

Definition:

\[w \cong_Z w' \text{ iff } \]

\[\begin{align*} w \text{ and } w' & \text{ satisfy the same inequalities} \\
 x_i < c, \ x_i = c, \ x_i - x_j < c, \ x_i - x_j = c \end{align*} \]

where \(x_i, x_j \) are clocks and \(c \leq c_{\text{max}} \) is some constant

- It is sufficient to check this condition for linear combinations of variables (\(c = k_1 c_1 + \ldots + k_n c_n \))
Finiteness of the State Space

• The relations \cong have a finite index
 - i.e. there are only finitely many reachable regions / zones
 - i.e. the region/zone graph is finite

• Proof idea (regions)
 - follows from the definition of $\cong_\mathbb{R}$: there are only finitely many integral parts $\leq c_{\text{max}}$ and finitely many comparisons of fractional parts

• Proof idea (zones)
 - with finitely many rational numbers there are only finitely many linear combinations smaller than a given bound
 - each timed automaton contains only finitely many constants
 - thus there are only finitely many conditions of the mentioned form
Construction of the Region Graph

- Theorem: the region graph satisfies the same safety properties as the original timed automaton.
 - Thus, a complete test suite for the region graph will uncover all safety errors in the timed automaton.
Example

• #Regions depends on #Locations, #Constants, #Clocks
• i.A. exponential in the number of clocks and the number and size of constants (PSPACE-complete)
UppAal, Kronos, Rabbit...

- Tools for the construction of the region graph
 - animated simulation
 - temporal verification
 - test generation (UppAal)

- different internal representations
 - sets of inequalities
 - binary decision diagrams (BDDs)
 - difference bound matrices (DBMs)

--- Presentation UPPAAL? ---
