Software Testing V

Prof. Dr. Holger Schlingloff
Humboldt-Universität zu Berlin
and
Fraunhofer Institute of Computer Architecture
and Software Technology FIRST
Outline of this Lecture Series

- **2006/ 11/ 24:** Introduction, Definitions, Examples
- **2006/ 11/ 25-1:** Functional testing
- **2006/ 11/ 25-2:** Structural testing
- **2006/ 11/ 26-1:** Model-based test generation
- **2006/ 11/ 26-2:** Specification-based test generation

- Next week: Your turn!
Outline of This Lecture

• Test generation from algebraic specifications
 ▪ LOTOS specification language
 - Abstract data types, terms, denotations
 - Process algebra, composition of processes
 ▪ Test generation from LOTOS ADTs
 - Testing hypotheses
 - Test suite refinement
Test Generation

• **State of the art:** Test generation from
 - executable code (coverage tools)
 - scripting languages, e.g. TTCN-3
 - graphical models, e.g. StateCharts

• **Research problems:** Test generation from
 - UML interaction diagrams
 - algebraic and logic specification languages
 - natural language
Specification Based Testing

• **(formal) Specification** = (formal) description of the intended behaviour of the SUT
 - *formal* = syntax & semantics & algorithms
 - in a certain sense, FORTRAN and C are formal specification languages
 - specification need not be executable

• **Specification transformation**
 - refinement and abstraction are relations between different specifications
 - conformance is a relation between a test suite and a specification or implementation
 - relation between test suites?
Example Language: Lotos

- **Algebraic specification language**
 - *Language of Temporal Ordering Specification*
 - defined and used in telecommunications
 - standardised (ISO 8807, 1989)
 - much theory, some practical examples
 - supports object-oriented design
 - extension / variants (e.g. CSP-CASL)

- **Syntax**
 - abstract data type
 - process algebraic behavior description

- **Semantics**
 - term algebra, equalities impose equivalence partitioning, initial semantics
 - traces, failures, divergence semantics for process part

- **Algorithms**
 - correctness proofs, model checking
 - transformational development
 - test case generation

LOTOS Syntax

- Abstract data type
 - data type identifier(s)
 - functions / operations with type
 - defining equations

- Process algebraic behaviour description
 - recursive process definitions
 - parallelism and synchronisation / communication
Example: ADT Stack

```adam
Example: ADT Stack

**type** Stack is Boolean
  **formalsorts** Element
**sorts** Stack
  **opns**
  empty : Stack - > Bool
  emptyStack : - > Stack
  push : Element, Stack - > Stack
  peek : Stack - > Element
  pop : Stack - > Stack
  **eqns**
  forall e: Element, s: Stack
  ofsort Bool
    empty(emptyStack) = true;
    empty(push(e,s)) = false;
  ofsort Element
    peek(push(e,s)) = e;
  ofsort Stack
    pop(push(e,s)) = s;
**endtype** (* Stack *)
```

Exercise:

-opn search
Semantics of Terms

- Term algebra: all well-typed expressions
- Free algebra („Herbrand-Universum“): no equations, each term is its own denotation
- Equations induce an equivalence partitioning
- Several possibilities for the semantics
 - initial semantics: smallest equivalence partitioning of the free algebra (everything is unequal unless you can show that it’s equal)
 - loose semantics: some partitioning which respects the equations
Instantiation

- Stack corresponds to an abstract class
- Concrete class:

 type NatStack is
 GenericStack actualizedby NaturalNumber
 using sortnames
 Nat for Element
 NatStack for Stack
 endtype (* NatStack *)
Further LOTOS Possibilities

- Conditional equations
- Parametrised Types (abstracte classes)
- Overloading of functions (polymorphism)
 - e.g. equality
 - `ofsort` for marking the type
- Renaming and subtyping
 - `type B is A renamedby sortnames ... for ...`
Process Part

- Extension of ADT’s by behavioral descriptions
- Base component: action
 - internal action: invisible to the outside
 - observable action: value appears at the connection point (gate)
 - $g!e$: sending of expression e via gate g
 - $g?x:s[c]$: receiving a new value of type s for variable x at gate g if condition c holds
 - intuitively: the connection points transmit values of the corresponding abstract data type
Process Definitions

• Processes are used to denote behaviour
 - **process** $P [...] = ...$

• Three main possibilities for composition of processes
 - sequentialisation: $(P >> Q)$ or $(a; P)$ (a is an action)
 - alternatives: $([c_1]-> P \ [] \ [c_2]-> Q)$
 - parallelism: $(P / [g_1, ..., g_n]/ Q)$
 $(P // Q)$ and $(P /// Q)$ are abbreviations for synchronisation on all or no gate

• Recursive process definitions
 - **stop** as regular end (no action executable)
 - **exit** as return from a process definition
 - other syntactical sugaring
Communication, Synchronisation, Coordination

- $(P \parallel [g] \parallel Q)$ may
 - either perform an action from P or Q which does not concern g, or
 - perform a common action on gate g, if it is executable both for P and for Q

 - **Communication:** $g!e$ and $g?x:s[c]
 Transmitting the value e to x, if c holds
 - **Synchronisation:** $g!e_1$ and $g!e_2
 If $e_1 = e_2 = e$, then e appears at g
 - **Coordination:** $g?x_1:s[c_1]$ and $g?x_2:s[c_2]
 At g some value e, appears which satisfies c_1 and c_2
Semantics of Processes

- If two parallel processes cannot synchronize, deadlock results
 - $g!5 \parallel [g] \parallel g?x:\text{Nat} [x>7]$
 - $g_1!5 \parallel [g_1, g_2] \parallel g_2?x:\text{Nat}$

- Event (g,e): executing an action $g!e$ or $g?x$ where $x=e$

- Traces(P): set of all sequences of observable events of a process

- Trace-, failure-, divergence-semantics
Examples for Processes

process Boss [in] : noexit =
choice item : Nat_Sort [] in!item >> Boss [in] endproc

process ToDo [in, out] (liste: Stack) : noexit =
(in?item; ToDo[in,out](push(item,liste))
 []
 [not empty(liste)] -> out!peek(liste); ToDo[in,out](pop(liste))
)
 endproc

process Slave [out] : noexit =
out? x; i >> Slave [out]
 endproc

System specification: Boss [[in]] ToDo [[out]] Slave
Further Language Constructs

- In the process part, you can use
 - parameterised processes
 \[
 \text{process } P[g_1,g_2](p_1:s_1, p_2:s_2) : \text{exit} = \ldots \text{ endproc}
 \]
 - local variable definitions
 \[
 \text{let name : sorte = expr in } \ldots
 \]
 - generalised sequences, alternatives, parallelism
 \[
 \text{expr}_1 >> \text{accept pardef in expr}_2
 \]
 \[
 \text{choice } g \text{ in } [a_1, a_2, a_3] [] B [g]
 \]
 \[
 \text{par } g \text{ in } [a_1, a_2, a_3] \parallel B [g]
 \]
 - disabling, hiding, locale processes, ...
 \[
 P[> Q, \text{hide } g \text{ in } P, \text{where process} P = \ldots
 \]
 - a module concept
 \[
 \text{library importierte Datentypen endlib}
 \]
LOTOS System Specification

specification S [a, b, c, d] : noexit

library predefined Data types **endlib**

type ExampleType is
 sorts ExampleSorts
 opns ExampleOperations: ExampleSorts - > ExampleSorts
 endtype

behaviour
 (P [a, b, c] ||[b]|| Q [b, d])

where
 process P[a, b, c] ... **endproc**
 process Q[b, d] ... **endproc**

endspec
A Larger Example (part 1)

specification Example1 : exit

library Boolean, OctetString, NaturalNumber

type Message is
 Octet, NaturalNumber, Boolean

sorts
 Message

opns
 ε : -> Message
 . . . : Octet, Message-> Message
 Pack : Message, Message -> Message
 Size : Message -> Nat

eqns
 forall m1, m2: Message, o1: Octet
 ofsort Message
 Pack(ε, m1) = m1;
 Pack(b.m1, m2) = b.Pack(m1, m2);
 ofsort Nat
 Size(ε) = 0;
 Size(o1.m1) = Succ(Size(m1));

datatype
A Larger Example (part 2)

Assume we are given a program which claims to implement this specification. How can we test it?

Source:
Test Generation from ADTs

• Given ADT $Spec = (\Sigma, Eq)$
 - implementation Imp is correct wrt. $Spec$ if all axioms are satisfied for all terms
 - term-generated models
 - test case for universally quantified formula is one particular instance

• Test case: ground instance of axiom
 - e.g. $\text{pop}(\text{push}(\text{"a"}, \text{emptyStack})) = \text{emptyStack}$
 - Problem: how to choose terms?

• Test verdict: evaluation of instance
 - may be arbitrarily hard, even undecidable
 - problems: non-primitive data types, partial functions

Procedure for Test Generation

- **Exhaustive test suite:** if all tests in the suite pass, then the implementation is correct
- Testing hypotheses
 - regularity
 - uniformity
 - observational context
- **Complete** test suite wrt. test hypothesis
- Test suite **refinement**
 - stronger hypotheses
 - more errors detected
Exhaustive Test Suites

- **Test suite** T: set of ground formulas
 - Assumption: each object is term generated
 - Example: $s(s(s(z))) = p(s(z), s(s(z)))$

- **Test oracle** $O \subseteq T$ (bzw. $O: T \rightarrow \{\text{true, false}\}$)
 - determines for each test case whether it passes or fails (follows from the axioms or not)
 - e.g. $s(s(s(z))) = p(s(z), s(s(z))) \rightarrow \text{true}$
 - in general this problem is undecidable!

- **Exhaustive test suite**: a set of test cases, such that the following holds: if all test cases pass, then the implementation is correct
 - in general infinite
 - how to find an approximation?
Testing Context

- **Testing context TC**: \((T, O, H)\)
 - test suite \(T\) (set of ground terms)
 - test oracle \(O \subseteq T\) (or \(O : T \rightarrow \{\text{true}, \text{false}\}\))
 - testing hypothesis \(H\) for the implementation

\[H \land O = T \rightarrow \text{Correct(Imp,Spec)} \]

- **Minimal testing hypothesis**: "empty assumption"
 - the set of all derivable ground formulas, or the set of all ground instances of equalities is a complete test suite

- **Maximal testing hypothesis**: "Imp is correct"
 - empty set is a complete test suite
Testing Hypotheses

- Regularity hypothesis
 - “The SUT contains no irregularities”

- Uniformity hypothesis
 - “the SUT acts uniform on its data”

- Observability hypothesis
 - “the SUT data can be identified by finite observations”
Regularity Hypothesis

• Assume a complexity measure for formulas

• **Regularity hypothesis:** If some statement A holds for all formulas up to a certain size δ, then A holds for all formulas

• Allows to restrict attention to those test cases smaller than δ
 - e.g. $p(x,y)=p(y,x)$ for $|x|<3$, $|y|<3$
Uniformity Hypothesis

- Assume a property of expressions
- **Uniformity hypothesis**: If any statement holds for all formulas containing expressions with this property, then it holds for all formulas

- Generalisation of the regularity hypothesis
- Allows to restrict test cases to certain variable patterns

- Application: partitioning of domains
- extrem case: collapsing a domain to a single representative
 - cf. abstraction of variables in the previous lecture
Observability Hypothesis (1)

• Equality of primitive data types (boolean, integer,...) is observable
• How to observe equality of compound (non-primitive) data types?
 ▪ special equality function in Imp?
 ➔ transfers the problem
 ▪ component-wise comparison: replace \(x = y \) by \(C_1(x) = C_1(y) \), \(C_2(x) = C_2(y) \), ...

• **Observable context:** Mapping of compound to primitive data type
• **Leibnitz‘s extensionality principle:** two object are identical if they behave equally in each observable context
Observability Hypothesis (2)

- Leibnitz’ principle can be used for testing

- Problem: “very many” possible contexts
- Fix a set of contexts for each compound data type
- **Observability hypothesis**: If any statement holds for all observable contexts, than it holds for all formulas

- special case of uniformity hypothesis
- Allows reduction to primitive comparisons

- Example: top and second stack element, hash or similar
Test Suite Refinement

• TC₂ refines TC₁ (TC₂<TC₁), if
 ▪ TC₂ has stronger hypotheses than TC₁
 \[H_2 \rightarrow H_1 \]
 ▪ TC₂ can discover at least as many faults as TC₁
 \[\text{failed}(T_1,\text{Imp}) \rightarrow \text{failed}(T_2,\text{Imp}) \]
 ▪ TC₂ has more passed tests than TC₁
 \[\text{pass}(T_2,\text{Imp}) \rightarrow \text{pass}(T_1,\text{Imp}) \]

• The set of all ground terms with empty testing hypothesis is the largest test suite in this partial order

• Test case development = Adding hypotheses to this largest test suite
Method of Refinement

- Starting with the exhaustive test suite, add
 - Regularity hypotheses for defined types
 - Uniformity hypotheses for imported types
 - Observation functions and -hypotheses for compound types
- ... until the test suite is complete and the oracle is decidable and well-defined
- Tool support possible
Example

\[
\text{exhaust}_{ax1} = \{ \text{Pack}(\varepsilon, m) = m \mid m \in T_{\text{Message}} \} \\
\text{exhaust}_{ax2} = \{ \text{Pack}(o_1.m_1, m) = o_1.\text{Pack}(m_1, m) \mid o_1 \in T_{\text{Octet}}, m_1, m \in T_{\text{Message}} \} \\
\text{exhaust}_{ax3} = \{ \text{Size}(\varepsilon) = 0 \} \\
\text{exhaust}_{ax4} = \{ \text{Size}(o_1.m) = \text{Succ}(\text{Size}(m)) \mid o_1 \in T_{\text{Octet}}, m \in T_{\text{Message}} \}
\]

- Uniformity hypothesis "all variables equal" yields 4 test cases
- "Unfolding" of \textit{Pack} yields new test cases

\[
\begin{align*}
\text{Pack}(o_1.\varepsilon, m) &= o_1.m \\
\text{Pack}(o_1.o'_1.m'_1, m) &= o_1.o'_1.\text{Pack}(m'_1, m)
\end{align*}
\]
Testing the process part

- For ADT
 - correctness of Imp wrt. Spec = all equations / formulas of Spec are satisfied by Imp

- For PA
 - correctness defined by observable behaviour
 - simulation or containment of behaviour
 - ioco
Test generation for Full Lotos

- One test suite for the data part and one for the process part
- Use of the data type properties in testing of the processes
 - Example: Splitting \leq into $<$ and $=$
 - Example: $\text{Size}(\varepsilon)=0$, $\text{Size}(\text{o.m})=\ldots$ yields four test cases for the process part $[\text{Size}(x)+\text{Size}(y)<\text{Max}] \rightarrow \ldots$
 - Calculation of limit values from the equations
Some test cases for the example

Find tests for *Compact*(7):

- control!4; ...
- control!0; ...
- inGate!H.E.L.L.O.ε; inGate!W.O.R.L.D.ε;
 outGate!H.E.L.L.O.ε!W.O.R.L.D.ε; ...
- inGate!H.E.L.ε; inGate!W.O.ε; outGate!H.E.L.W.O.ε; ...

Uniformity hypotheses and representative values for Max, newMax,
and Size(x)+Size(y)>Max
Research: systematic derivation by an algorithm