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Summary. Csp-Prover provides a deep encoding of the process al-
gebra Csp in the interactive theorem prover Isabelle. Here, we extend
Csp-Prover by a framework for the deadlock-analysis of networks. As a
typical example we study systolic arrays and prove in Csp-Prover that
Kung’s classical algorithm for matrix-multiplication is deadlock-free.

1 Introduction
Among the various frameworks for the description and modeling of reactive sys-

tems, process algebra plays a prominent rôle. It has turned out to be suitable for
requirement specifications, design specifications, and also for formal refinement
proofs [3]. In this context, the process algebra Csp [8, 18] has been successfully
applied in various areas such as train control systems [6], software for the Inter-
national Space Station [4, 5], or verification of security protocols [20].

Csp-Prover [9, 10] provides a deep encoding of the process algebra Csp within
the interactive theorem prover Isabelle [16]. Its approach of interactive theorem
proving complements proofs by (finite) model checking in FDR [13]. The strength
of Csp-Prover is to be found in the analysis of large or even infinite state systems
as well as in its ability to deal with parametrised systems such as systolic arrays.

Deadlocks are certainly the best known and also most feared failures exhibited
by concurrent systems. For parallel algorithms such as systolic arrays, the proof
of deadlock-freedom is as fundamental as the proof of termination for sequential
algorithms. Systolic arrays, see e.g. [17], often deal with loosely specified data
such as matrices over rings. Furthermore, they scale up with the size of the prob-
lem, e.g. Kung’s systolic array for the multiplication of n × n matrices requires
n2 processing elements. For these reasons it is impossible to treat such systems
solely within the classical model checking approach that requires systems to be
finite state.

Proofs of deadlock-freedom in Csp-Prover alone [10] (e.g. that the interaction
of certain components of the electronic payment system ep2, a new international
standard for electronic payment systems, is deadlock-free) were based on the facts
that (i) there are Csp processes that are deadlock-free by construction and (ii)
that Csp’s stable-failures refinement is deadlock-preserving.

In this paper we show how to extend Csp-Prover with Deadlock-Freedom Proof
Package (abbreviated to Dfp) which provides a proof technique1 suggested by
Roscoe & Dathi [19] in order to analyse networks. For example, Dfp contains a
theorem for localizing the proof of deadlock freedom of a whole systolic array to
the analysis of each element with its neighbors. We apply Csp-Prover with Dfp
to verify that Kung’s algorithm for matrix multiplication [12] is deadlock-free.
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2 CSP and CSP-Prover
Syntax and semantics of the process algebra Csp [8,18] are defined relative to a

given set of communications. Its basic processes are built from primitive processes
such as SKIP (successful termination) or STOP (deadlock). Csp includes communi-
cation primitives for sending and receiving values over a (perfect, non-lossy) com-
munication channel, distinguishes between internal and external choice between
two processes, and offers a variety of parallel operators, sequential composition of
processes, as well as various other features such as renaming and hiding. Recursive
processes are either defined by process equations or by so-called µ-recursion.

Csp is a language with many semantics, different in their style as well as in
their ability to distinguish between various forms of reactive behaviour. There
are operational, denotational and algebraic approaches, ranging from the simple
finite traces model T to such complex semantics as the infinite traces model with
failures/divergences U . For theorem proving the denotational semantics are espe-
cially interesting. Here, we concentrate on the stable-failures model F , which is
the Csp semantics best suited for deadlock-analysis.

Given a set of communications A, the domain of the stable failures model F
is a set of pairs (T ,F ) satisfying certain healthiness conditions (p. 208 in [18]),
where T ⊆ A∗� and F ⊆ A∗� × P(A�)2. In such a pair (T ,F ), T is the set
of traces a process can execute, while the elements (s,X ) ∈ F describe sets of
communications X which a process can fail to engage in after executing the trace
s. For example, the semantic clauses of F for the Csp action prefix a → P is
given as follows:

traces(a → P) = {〈〉} ∪ {〈a〉 � s | s ∈ traces(P)}
failures(a → P) = {(〈〉,X ) | a �∈ X } ∪ {(〈a〉 � s ,X ) | (s ,X ) ∈ failures(P)}

which means a → P can perform only a and thereafter behaves like P .
The domain F can be turned into both a complete partial order and a complete

metric space. This allows to analyse Csp’s recursive process equations by the fix-
point theorems of Tarski and Banach, respectively. Both these fixpoint theorems
give rise to powerful fixpoint induction techniques.

Csp-Prover [9,10] provides a faithful implementation of the stable failures model
F of [18] based on the higher order logic HOL [15] with complex numbers of the
interactive theorem prover Isabelle [16]. To extend an existing logic such as HOL-
Complex, Isabelle offers mechanisms to define new types, functions, predicates etc.
It is possible to establish new theorems which are entered as goals. A goal can be
manipulated by proof commands referring to a set of predefined inference rules
producing new goals. Such rules can be combined to form proof tactics. A proof
is completed if by application of rules and tactics the only open goal is the truth
value True. Successfully proven theorems can be stored and used later as new
rules. Theorems, together with definitions and proof commands needed for their
proofs, can be stored in theory files. Isabelle organises such files in a database, to
which other theory files may refer.

Fig. 1 shows the generic architecture of Csp-Prover instantiated with the stable
failures model F . On top of the logic HOL-Complex there is a large, model-
independent, reusable part. This contains Banach’s fixpoint theorem and the met-
ric fixpoint induction rule based on complete metric spaces as well as Tarski’s

2A� := A∪{�}, A∗� := A∗∪{s � 〈�〉 | s ∈ A∗}. � /∈ A is a special event denoting successful
termination.
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Fig.1 The theory map of CSP-Prover instantiated with the stable-failures model F.

fixpoint theorem and the standard fixpoint induction rule based on complete par-
tial orders. Furthermore, infinite product constructions are provided as lifting
theorems which are required for infinite state systems. Another contribution of
the model-independent part is the definition of the Csp syntax as a recursive
type. This means that the syntax is deeply encoded. Therefore, Csp-Prover sup-
ports structural induction on processes. The model-dependent, instantiated part of
Csp-Prover is shown here for the stable failures model F . It defines the domain F
together with proofs in Isabelle which establish that F indeed is a complete metric
space as well as a complete partial order. Furthermore, it defines the semantic
clauses of F . Finally, model-dependent proof infrastructure is provided, such as
step laws as well as distributive laws holding in F , or the tactic csp hnf tac that
translates Csp expressions into Head Normal Form. As these laws and tactics are
proven in Isabelle they are guaranteed to be sound with respect to F .

3 Proving deadlock-freedom of CSP networks
A deadlock is a state which refuses to engage in any event. Thus, given a set of

communications A, a process P is said to be deadlock-free iff: ∀ s ∈ A∗. (s,A�) /∈
failures(P), i.e. after every possible trace s there will always be at least one event
the process P cannot refuse to engage in.

A network is a special way of defining a process in Csp [19]. Formally, a network
V is a finite set of pairs {(Pi ,Xi ) | i ∈ I }, where I is a nonempty, finite index
set, Pi is a Csp process, and Xi ⊆ A is the set of communications which Pi can
engage in, for all i ∈ I . The process defined by such a network V is

PAR(V ) := ‖i∈I (Pi ,Xi )
where ‖i∈I (Pi ,Xi) is the replicated alphabetized parallel operator of Csp. Each
process Pi can perform a ∈ Xi . Pi and Pj can communicate with a ∈ Xi ∩Xj . As
the semantics of ‖i∈I is independent of the order of its arguments, it is sufficient
to define networks as sets.

A network is called triple disjoint iff Xi ∩ Xj ∩ Xk = ∅ whenever i , j and k
are distinct, i.e. all communications in the network are point to point. We call a
network busy iff all of its component processes Pi are deadlock free. The state of
a network is a pair σ = (s, (Yi )i∈I ) such that (s � Xi ,Yi ) ∈ failures(Pi )\Xi

3 for
all i ∈ I , i.e. the process Pi refuses Yi after engaging in the trace s reduced to its

3F\X := {(s, Y ) ∈ F | Y ⊆ X }. Note that Pi cannot engage in a /∈ Xi in ‖i∈I (Pi ,Xi).
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individual set of communications Xi . Let Λ ⊆ A be a set of communications. An
ungranted request in a state σ with respect to Λ, written V � i

σ,Λ−→• j , is a pair of
indices (i , j ) with i �= j such that process Pi wants to communicate with process
Pj (i.e. (Xi −Yi)∩Xj �= ∅) but all communications common to Pi and Pj can be
refused (i.e. Xi ∩Xj ⊆ Yi ∪Yj ), and (Xi −Yi )∪ (Xj −Yj ) ⊆ Λ. For triple-disjoint
networks, the set Λ is often chosen to be the vocabulary, given by

⋃{Xi ∩Xj | i �=
j}, of the network. Using these notions, Roscoe and Dathi [19] prove:
Theorem 3.1 Let V = {(Pi ,Xi) | i ∈ I } be a triple disjoint, busy net-
work with vocabulary Λ. Let (D ,≤) be a partial order. Let fi : failures(Pi )\Xi →
D , i ∈ I be functions 4 with the following property: for all states σ = (s, (Yi ,Yj ))
of all two-element networks V ′ = {(Pi ,Xi ), (Pj ,Xj )} (i �= j ) that can be formed
by selecting two elements of V holds: if V ′ � i

σ,Λ−→• j , then fi (s � Xi ,Yi) > fj (s �
Xj ,Yj ). Then PAR(V ) is deadlock free. �

This theorem localizes the proof of deadlock freedom for the whole network con-
sisting of | I | processes to the analysis of the (| I | ∗ (| I | −1))/2 networks which
consist of two different processes only. Roscoe and Dathi [19] successfully apply
this kind of reasoning to a wide class of networks, including systolic arrays, a
resource allocation protocol, and the dining philosophers.

4 Systolic arrays
Systolic arrays are parallel algorithms that “typically consist of a large number

of similar processing elements which are interconnected to exchange data” where
it is characteristic that (1) interconnections are local only, (2) data moves at a
constant velocity, and (3) each of the elements performs just a certain part of the
computation required to solve the problem [17]. Well performing systolic arrays
have been formulated in areas so different as linear algebra (e.g. matrix multipli-
cation, solving systems of linear equations, computing the inverse of a matrix),
sorting, dynamic programming, and computational geometry. Applications in-
clude numerics, signal processing, and computer graphics, where systolic arrays
are often realised in VLSI or as Field Programmable Gate Arrays, see e.g. [11,22].

Usually, systolic arrays are formulated with the help of recurrences. Consider
for example the multiplication of two square matrices A and B over a ring R of
dimension n ∈ N defined as usual by

(C )i ,j = (AB)i ,j :=
∑

k∈In Ai ,kBk ,j , ∀ i , j ∈ In , In := {0, . . . ,n − 1}.
With recurrences defined as
Input equations ai ,0,k := Ai ,k ∀ i , k ∈ In

b0,j ,k := Bk ,j ∀ j , k ∈ In
Moving A,B ai ,j+1,k := ai ,j ,k ∀ i , k ∈ In , ∀ j ∈ In\{n − 1}

bi+1,j ,k := bi ,j ,k ∀ j , k ∈ In , ∀ i ∈ In\{n − 1}
Initialising C ci ,j ,0 := ai ,j ,0bi ,j ,0 ∀ i , j ∈ In
Computing C ci ,j ,k+1 := ci ,j ,k + ai ,j ,k+1bi ,j ,k+1 ∀ i , j ∈ In , ∀ k ∈ In\{n − 1}

we obtain ∀ i , j ∈ In . ci ,j ,n−1 = (C )i ,j . Allocating (1) the n computations de-
scribed by the recurrences ci ,j ,k for k = 0, ...,n − 1 to one processing element pei ,j

for i , j ∈ In , and (2) interpreting the moving equations as communications, we
obtain the systolic algorithm introduced by Kung [12] for matrix multiplication
on an orthogonal and quadratic array of processing elements. Fig. 2 shows the
allocation of the computing recurrences to processing elements for n = 3. For

4F is defined as: (s,X ) ∈ F :⇔ X = max{Y | (s, Y ) ∈ F}.
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Fig.2 Allocations of recurrences to processing elements

each processing element peij it collects the indices i , j , k for those computations
ci ,j ,k that this specific pe shall perform. The arrows indicate how the matrices A
and B flow through the network. The matrix A moves over the connections hori
from left to the right, the matrix B flows over the connections vert from top to
bottom. Other systolic algorithms for matrix multiplication work, e.g., with an
orthogonal rectangular or with a hexagonal interconnection network.

We formalize the behaviour of the single processing elements (pe(i , j ) r) of
Kung’s matrix multiplication algorithm in Csp. Their behaviour is defined by
recursive process equations for a function f :

f (pe(i , j ) r) = (vert(i , j )?a → hori(i , j )?b → (f (pe ′(i , j ) r a b))) �
(hori(i , j )?b → vert(i , j )?a → (f (pe ′(i , j ) r a b)))

f (pe ′(i , j ) r a b) = ((vert(i + 1, j )!a → SKIP) ||| (hori(i , j + 1)!b → SKIP)) o
9

(f (pe(i , j )(r + a ∗ b)))

Here, vert and hori are arrays of Csp channels. Any channel, take for instance
hori(i , j ), can transport arbitrary ring elements r . The processing element pe in
position (i , j ) initially holds an intermediate value r ∈ R for the matrix C . It then
receives values a and b from its upper vertical and left horizontal connection in
either order. Then it behaves like the process pe ′(i , j ) which first sends the values
a and b over its lower vertical and right horizontal connection and then updates
the value held in pe(i , j ) to (r + a ∗ b). As f is a (higher order) process itself, the
existence and uniqueness of a solution of the above recursive process definition
follows by Banach’s fixpoint theorem.

While the derivation of Kung’s algorithm might be convincing enough to claim
that it always will produce a correct result, it is by no means obvious if its precise
formulation in the framework provided by Csp is deadlock free for all dimensions
n. Define sets of communications Com(i , j ), for every i , j ∈ In , as

Com(i , j ) := {vert(i , j ) r , vert(i + 1, j ) r , hori(i , j ) r , hori(i , j + 1) r | r ∈ R}.
With these notions we can define the Csp network describing Kung’s systolic array
for matrix multiplication as Vmul := {(f (pe(i , j ), 0),Com(i , j )) | i ∈ In ∧ j ∈ In}.

In the rest of the paper we will show how to verify that the network Vmul is
deadlock-free for all dimensions n. Note the high degree of parametrisation of this
claim: The first parameter is the ring R over which the matrix multiplication is de-
fined. The second parameter is the dimension of the matrices that determines the
number of processing elements involved. It is this high degree of parametrisation
which makes interactive theorem proving the appropriate technique.
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DFP3:  Proof rules for proving deadlock freedom (Theorem 3.1)

CSP-Prover (extened with replicated alphabetised parallel)
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Fig.3 The structure of the package DFP.

5 Implementation of a DFP package on top of CSP-Prover
Csp-Prover provides an open framework that allows one to analyse and verify

Csp-processes. In order to extend Csp-Prover by syntactic constructions and ver-
ification techniques specific to a certain problem class, new Isabelle theories have
to be defined. In the case of deadlock analysis of networks such as our example
Vmul above we first need to define syntax and semantics of networks (package
Dfp1), then to give characterisations for deadlock (package Dfp2), and finally to
provide semi-automatic techniques for deadlock analysis (package Dfp3), see Fig.
3 for the structure of the whole Deadlock-Freedom Proof Package.

The mechanisms to define Csp networks as described in Sect. 3 are provided in
the Isabelle theory Dfp1:

types (’i,’a) Network = "(’i set * (’i => (’a proc * ’a set)))"
consts PAR :: "(’i,’a) Network => ’a proc"
defs PAR def : "PAR V == [||] i:(fst V) ((snd V) i)"
syntax "@Network" :: "(’a proc * ’a set) => pttrn => ’i set

=> (’i,’a) Network" ("{ | : }net")
translations "{ PX | i:I }net" == "(I, (λi. PX))"

The Isabelle keyword types defines type synonyms. An (’i,’a) Network is a
pair consisting of an index set and map from indices to pairs, which consist of a
process and a set of communications. Here, ’i and ’a are type parameters for
the index set and the set of communications, resp. set is the Isabelle type for
sets, while proc is Csp-Prover’s type for Csp-processes. consts declares function
types which are then defined by defs. We use this mechanism here in order to
define the process of a network, c.f. Sect. 3. Given a network V, its process (PAR
V) is obtained by applying the replicated alphabetised parallel operator [||] to
its two components. These are obtained by the projection functions fst and snd,
resp. syntax and translations can be used to introduce syntactic sugar. With
the above definitions, for example, the network (I, (λi. (i -> SKIP, {i}))
can be formulated simply as { (i -> SKIP, {i}) | i:I }net.

Dfp2 collects characterisations of deadlock as well as general infrastructure. A
typical example is the following lemma: A network {(P i,X i)| i:I}net is in
a deadlock after some trace t if

⋃
i∈I(Y i) =

⋃
i∈I(X i) for some Y such that

for all i∈I, (t�(X i), Y i)∈ failures(P i)\(X i). To formulate this lemma, it
is convenient to complement the syntactical network {(P i,X i) | i:I}net by
a semantical network {(F i,X i) | i:I}Fnet. Here, (F i,X i) are pairs con-
sisting of an indexed failure set and an indexed set of communications. Given a
syntactic net {(P i,X i) | i:I}net, the simplest semantical network that we
can associate with it is {(failures(P i)\(X i), X i) | i:I}Fnet. This makes
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sense as a process (P i) never can engage in events that are not contained in its
communications X i. But failures(P i) contains many failures useless from the
perspective of this kind of deadlock analysis: if (s,Y)∈ failures(P i) and Y’⊆Y,
then also (s,Y’)∈ failures(P i). This makes it difficult to find and define the
functions fi of the above stated Theorem 3.1. To this end, Roscoe and Dathi work
with the maximum failures(P i)\(X i). However, it is hard to automatically prove
that a certain set of failures is indeed the maximum. This difficulty arises in the
context of non-determinism. Also, the potential infinity of the set failures(P i)
plays here a rôle. Therefore, we re-formulate the theory developed by Roscoe and
Dathi at this point. We take those failures (F i) into the semantical network as-
sociated with a syntactical network {(P i,X i)| i:I}net, for which the relation
(F i) ⊆∃ failures(P i)\(X i) holds for all i∈I. Here, we define F ⊆∃ E by

(*) F ⊆ E ∧ ∀(s,Y)∈E. ∃Z. (s,Z)∈F ∧ Y⊆Z
Note that failures(P)\X ⊆∃ failures(P)\X and failures(P)\X ⊆∃ failures(P)\X,
which are extreme cases to satisfy the condition (*).

Based on these notions, in Dfp3 we prove a modified Theorem 3.1 in Csp-
Prover, where the weaker condition (*) rather than the maximum one is applied:

theorem Rule1 Roscoe Dathi 1987:
"[|VF = {(F i, X i) | i:I}Fnet; V = {(P i, X i) | i:I}net;

VF isFailureOf V; I �= {}; finite I;
triple disjoint VF; BusyNetwork VF ;
∃f::(’i => ’a failure => (’pi::order)). ∀i:I. ∀j:I. i �= j -->
{(F k, X k) | k:{i,j}}Fnet >> i --[(t,Y),(VocabularyOf VF)]-->o j
--> f j (t rest-tr (X j), Y j) < f i (t rest-tr (X i), Y i)) |]

==> DeadlockFree (PAR V)"

If one applies this theorem to a network, the main proof obligations are (1) to find
a function f and (2) to prove the inequality <. Here, some experience is required
to find such function, but Csp-Prover can assist the proofs.5

To discharge the proof obligation VF isFailureOf V, i.e. to show for each i∈I
that (F i) ⊆∃ failures(P i)\(X i), where (X i) is the set of communications
in which the process (P i) can engage in, the package Dfp1 provides a set of
assisting lemmas. For instance, if a process (P i) is of the the form (? x:X ->
Pf x) (external prefix choice), the following result can be applied:

lemma subex Ext pre choice:
"[| ∀ a:X. Ff a ⊆∃ failures(Pf a) ;
F = {([]t, A-Ev‘X)}∪{([Ev a]t @t s, Y)|a s Y. (s,Y):Ff a ∧ a:X} |]

==> F ⊆∃ failures(? x:X -> Pf x)\A"
i.e. there is a certain set of failures F below the failures of (P i) with respect to
⊆∃, which is constructed based on the failures of the simpler processes (Pf x).

The package Dfp1 contains also lemmas for (replicated) internal choice. There is
no need to support further syntactic patterns as Csp-Prover’s tactic csp hnf tac
fully automatically translates Csp expressions into Head Normal Form (external
prefix choice or (replicated) internal choice). Thus, (F i) ⊆∃ failures(P i)\(X i)
can be proven by structural induction over (P i).

6 Application
In this section we demonstrate how Csp-Prover extended by the Dfp package

can be used to prove deadlock freedom of Kung’s matrix multiplication algorithm

5We will extend the package with additional rules to find such a function.
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by applying the theorem Rule1 Roscoe Dathi 1987. Although the definitions
as well as the proof details are specific to the Kung’s algorithm, their style carries
over to the other systolic arrays and provides a blueprint for further proofs.

Step 1: The processing elements pe(i,j) and the network are defined:
recdef Def "{}"
"Def(X,(pe(i,j) r)) = (vert(i,j)?x -> hori(i,j)?y -> (X(pe’(i,j) r x y)))[+]

(hori(i,j)?y -> vert(i,j)?x -> (X(pe’(i,j) r x y)))"
"Def(X,(pe’(i,j) r x y)) = ((vert(i+1,j)!x -> SKIP)|||(hori(i,j+1)!y -> SKIP));;

(X(pe(i,j)(r + x * y)))"
recdef Com "{}"
"Com(i,j) = {a.∃x. (a = vert(i,j) x) ∨ (a = vert(i+1,j) x)

∨ (a = hori(i,j) x) ∨ (a = hori(i,j+1) x)}"
defs Fun def : "Fun == curry Def"

Fix def : "Fix p == (FIX Fun) p"
Vmul def: "Vmul N == {(Fix(pe(i,j) 0),Com(i,j)) | (i,j):{(i,j). i<N∧j<N}}net"

curry is a function for transforming non-curried functions to curried ones. (FIX
Fun) denotes the fixpoint of Fun. The Isabelle’s keyword recdef allows to define
recursive processes in a similar way to the conventional definition of CSP6 (c.f.
pe in Sect. 4). In this case, the recursive process for (pe(i,j) r) is given by
Fix(pe(i,j) r), and the network is defined as shown at the bottom line.

Step 2: A semantical network VmulF of the syntactical network Vmul is defined.
defs
peFin def: "peFin == (λ(i,j) F.
{([]t, Com(i,j)-({hori(i,j+1) y |y. True}∪{vert(i+1,j) x |x. True}))}∪
{([Ev(vert(i+1,j) x)]t, Com(i,j)-{hori(i,j+1) y |y. True}) |x. True} ∪
{([Ev(hori(i,j+1) y)]t, Com(i,j)-{vert(i+1,j) x |x. True}) |y. True} ∪
{([Ev(vert(i+1,j) x),Ev(hori(i,j+1) y)]t @t s, Y) |x y s Y. (s,Y):eqFout(i,j) x y F}∪
{([Ev(hori(i,j+1) y),Ev(vert(i+1,j) x)]t @t s, Y) |x y s Y. (s,Y):eqFout(i,j) x y F})"
peFout def: "peFout == (λ(i,j) x y F.
{([]t, Com(i,j)-{hori(i,j+1) y, vert(i+1,j) x})} ∪
{([Ev(vert(i+1,j) x)]t, Com(i,j)-{hori(i,j+1) y})} ∪
{([Ev(hori(i,j+1) y)]t, Com(i,j)-{vert(i+1,j) x})} ∪
{([Ev(vert(i+1,j) x),Ev(hori(i,j+1) y)]t @t s, Y) |s Y. (s,Y):F} ∪
{([Ev(hori(i,j+1) y),Ev(vert(i+1,j) x)]t @t s, Y) |s Y. (s,Y):F})"
primrec "peF rec 0 = (λ(i,j). {})"

"peF rec (Suc n) = (λ(i,j). peFin (i,j) (peF rec n (i,j)))"
defs peF def : "peF ij ==

S {peF rec n ij |n. True}"
VmulF def: "VmulF N == {(peF(i,j), Com(i,j)) | (i,j):{(i,j). i<N∧j<N}}Fnet"

The failures set peF(i,j) is defined inductively on the number of iterations by
Isabelle’s keyword primrec. Intuitively, it means that at first all the events in
Com(i,j) are refused except hori(i,j+1) and vert(i+1,j), then events except
hori(i,j+1) are refused after vert(i+1,j) or events except vert(i+1,j) are
refused after hori(i,j+1). This represents the meanings of pe(i,j) well.

Step 3: It is proven that VmulF is a semantic network of Vmul:
lemma ex matrix isFailureOf: "(VmulF N) isFailureOf (Vmul N)"

By unfolding definitions of isFailureOf, VmulF, and Vmul, the goal can be rewrit-
ten to: "∀i<N. ∀j<N. peF(i,j)⊆∃ failures((FIX Fun) pe(i,j) 0)". Here, the
fixpoint (FIX Fun) can be equal to the replicated internal choice among iterated
compositions Fun(n)(⊥) over all n by Tarski’s fixpoint theorem, where ⊥ is a
higher order process (λx. DIV) whose meaning is the bottom element in the model
F . Therefore, the subgoal can be shown by proving the following lemma:

6In recdef, pattern matching is done only for the first argument. Therefore, a pair argument
in Def is used, then it is transformed by curry in Fun.
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lemma sub: "peF rec n (i,j) ⊆∃ failures(Fun(2∗n)(⊥) pe(i,j) r)"

Here, 2 in Fun(2∗n) means that Fun is unfolded twice a loop (i.e receiving and send-
ing), while peF rec is unfolded once. This lemma can be proven by induction on
n and lemmas (e.g. subex Ext pre choice) given in Section 5.

In fact, Step 2 and Step 3 are performed in parallel because Csp-Prover with
Dfp are very helpful not only for proving this lemma but also for defining VmulF.

Step 4: For some function f the inequality < defined in Theorem 3.1 need to be
shown. In our example, the function (λ(i,j) (s,X).(lengtht s)+2*(i+j)) was
selected. The proof of the inequality was well assisted by Csp-Prover. Currently,
it is difficult to automatically find such a function, but there are certain patterns
to find it. It is future work to encode such patterns as rules in Dfp and to assist
finding such a function.

Step 5: Finally, it is proven that (Vmul N) is deadlock free for any size N:
theorem ex matrix DF: "∀ N. N �= 0 --> DeadlockFree (PAR (Vmul N))"

Applying the theorem Rule1 Roscoe Dathi 1987 (i.e. encoded Theorem 3.1) as
a proof rule to the goal, the assumptions of the proof rule are displayed as subgoals
(i.e. next proof obligations). The important subgoals have already been proven in
Steps 3 and 4. The others (i.e. the index set is finite, and VmulF is triple disjoint
and a busy network) are much easier than proofs in Steps 3 and 4.

We actually proved the theorem ex matrix DF on Csp-Prover with Dfp, with-
out any abstraction, which means containing value passing and computation. It
can be an infinite system because the type of value is allowed to be any instance
(e.g. nat, int, and real) of the type-class ring. This result shows the possibility
that Csp-Prover can prove the correctness of computation.

We spent 3 days in describing the proof scripts (i.e. theory files) for proving
the theorem ex matrix DF, in following the instruction (Steps 1∼5) given in this
section. Csp-Prover well assisted us to describe the script by displaying sub-
goals (e.g. lemmas) for proving main goals (e.g. theorems). The total number of
lines in the proof script is 1625. It took about 3 minutes to prove the theorem
Rule1 Roscoe Dathi 1987 by loading the proof script in Csp-Prover with Dfp
on a personal computer with 1.5GHz CPU (Pentium M). The whole proof script
can be downloaded from the web-page [9] of Csp-Prover.

7 Other approaches to verify systolic arrays
The verification of systolic arrays in general is an area less studied than the

construction (and, possibly, ad-hoc verification) of particular systolic algorithms.
Margaria et al. [14] provide a verification method for a wider class of systolic

systems. Their approach is based on a monadic second order logic over the domain
of strings. The granularity of their modelling is so fine that it reaches the level
of clock-cycles and signals. The authors report “full automation” via their proof
tool MOSEL for their case studies on linear (1-dimensional) systolic arrays.

Recent work by Steggles [21] suggests an higher-order approach too; here it
is higher-order algebra instead of higher-order logic for modelling and verifying
families of 2-dimensional systolic systems. Proofs are conducted manually, proof
automation in the term-rewriting tool ELAN is considered.

[2] develops a new mathematical framework of so-called linear guarded ring
expressions in order to describe and verify a class of systolic arrays (convolution).
Automation-related decidability results are stated by the same author in [1]: Sys-
tolic matrix multiplication is on the decidable side, whereas other systolic verifi-
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cation problems are reducible to Hilbert’s 10th Problem and thus undecidable.
The Isabelle-HOL method for verifying hardware-related properties does not

only apply to systolic systems: very recent work [7] describes the verification of
the I/O behaviour of a processor via Isabelle-HOL.

8 Conclusion and future work
We have extended Csp-Prover [9, 10] by a framework for automated deadlock-

analysis of networks. The new package Dfp automatises proofs of deadlock-
freedom to a great extend: It provides syntactic mechanisms to define Csp net-
works, a general proof rule to establish deadlock-freedom, as well as proof tactics
to automatically discharge typical proof obligations. As an application we studied
the classical example of Kung’s systolic array for matrix multiplication and proved
its deadlock-freedom with Dfp. Our work aims to the verification of scalable net-
works, of which systolic arrays are a typical example. Future work will include
proofs of the deadlock-freedom of further systolic arrays as well as of other classes
of networks. Furthermore, for systolic arrays we want also to address the question
of formal correctness proofs in Csp-Prover.
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