
Safety and Line Capacity in Railways
– An approach in Timed CSP

Yoshinao Isobe1, Faron Moller2,
Hoang Nga Nguyen2, and Markus Roggenbach2∗

1 AIST, Japan
2 Swansea University, UK

Abstract. Railways need to be safe and, at the same time, should offer
high capacity. While the notion of safety is well understood in the railway
domain, the meaning of capacity is understood only on an intuitive and
informal level. In this study, we show how to define and analyse capac-
ity in a rigorous way. Our modelling approach builds on an established
modelling technique in the process algebra Csp for safety alone, provides
an integrated view on safety as well as capacity, and offers proof support
in terms of (untimed) model checking.

1 Introduction

Overcoming the constraints on railway capacity caused by nodes (stations and
junctions) on the rail network is one of the most pressing challenges to the rail
industry. In 2007, the UK governmental White Paper “Delivering a Sustain-
able Railway” [9] stated: “Rail’s biggest contribution to tackling global warming
comes from increasing its capacity.” High capacity, however, is but one design
aim within the railway domain. Railways are safety-critical systems. Their mal-
function could lead to death or serious injury to people, loss or severe damage
to equipment, or environmental harm. This work, carried out in cooperation
with our industrial partner Invensys Rail, aims to develop an integrated view of
rail networks within which capacity can be investigated and enhanced without
compromising safety.

The process algebra Csp [11, 18] has successfully been applied to modelling,
analysing and verifying railways for safety aspects, see e.g. [20, 21]. Solely con-
cerned with safety, these approaches have ignored any aspect of time. However,
the capacity of a rail network node is highly dependent on time: moving a point
or moving a train through a node takes time, and sighting and braking dis-
tance are both functions of time. Thus, rather than using Csp, we apply Timed
Csp [19, 17] in order to achieve an integrated view on safety and capacity. While,
e.g., [20, 21] model safety within Csp, to the best of our knowledge we are the
first to consider railway capacity within Timed Csp or any other similar formal-
ism. One of the benefits of using (Timed) Csp is its naturalness; it takes little
∗

This work was supported by RSSB/EPSRC under the grant EP/I010807/1.

2 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

effort to explain our formal models to our industrial partners who have assisted
us throughout the process in ensuring that our models remain faithful to their
engineering designs.

Of the various capacity notions within the railway domain, we deal here with
so-called theoretical line capacity. “Theoretical capacity” denotes the capacity
(i.e., throughput) that in principal can be scheduled (as opposed to the capacity
actually used). By “line capacity” we refer to a situation in which all trains
are of the same characteristic (e.g., all trains have the same braking behaviour
and the same maximal speed) and take the same path through a network. It
remains future work to capture the more complex notion of “network capacity”
(the number of trains that can operate on a rail network in a given time period).

The literature on railway capacity classifies the various approaches into an-
alytical, optimisation and simulation methods. Analytical methods, e.g., [3, 7],
model the railway infrastructure by means of mathematical expressions where a
preliminary solution can be easily determined. This measures theoretical capac-
ity and helps to identify bottlenecks. In contrast to this, optimisation methods,
e.g., [4, 16], utilise theoretical capacity by providing optimal time tables. Finally,
simulation methods, see [6] for a survey, imitate the operation of the real world
railway network over time. They present the dynamic behaviour of the network
as moving from state to state with respect to well-defined rules. Our approach
is closest to simulation methods. We differ from them as we take all possible
system runs into account and therefore obtain a more concise result concerning
capacity. Taking into account the whole behaviour of the system allows us also
to consider safety. Overall, this leads to an integrated method.

Concerning safety, we build on the work of [21]. In general, other approaches
outside of the Csp world, e.g., [10, 13] verify the safety of interlocking programs
with logical approaches and SAT-based model checking as the underlying proof
technique.

Our paper is organized as follows. In Section 2, we discuss basic railway
concepts in terms of a realistic double junction example provided as a real-
world challenge by our industrial partner Invensys Rail, and use this example to
motivate the question of capacity. In Section 3, we review the approach advocated
by Winter [21] to modelling safety in the railway domain using Csp. In Section 4,
the language Timed Csp and the idea of timed traces is introduced. In Section 5,
we describe how to extend Winter’s approach in order to capture the timing of
events on a railway. Given such a timed behaviour, we ask in Section 6 what
capacity it has by defining capacity as a function on timed traces which we then
encode as a Timed Csp refinement. In Section 7 we apply these results to our
original example, before concluding with an outline of future work in Section 8.

This paper is a significantly improved variant of [12], which was presented
in an informal workshop setting without proper proceedings. We would like to
thank Simon Chadwick and Dominic Taylor from Invensys Rail for their encour-
aging support and continuous invaluable feedback.

Safety and Line Capacity in Railways 3

2 Railway terminology and the double junction example

We explain typical railway concepts in terms of the track plan shown in Figure 1.
Engineers from Invensys Rail proposed this plan of a realistic double junction
for our study as it exhibits typical challenges for safety and capacity. Their plan
consisted of the elements in normal font; we added the components in boldface
in order to facilitated the analysis and verification of railway protocols working
over this junction. The double junction connects a side line with a main line.
Concerning safety, its challenges include avoiding train collisions and preventing
derailments. Concerning capacity, one is interested in optimising single paths
through the junction as well as in reducing the time that one path blocks another.

The track plan depicted in Figure 1 consists of various elements. There are a
number of individual tracks, which in the plan are named with two characters,
e.g., AA; there are two points, namely point 101 and point 102; and finally there
is the diamond crossing BW. A point may be in one of two positions: normal
or reverse. If point 101 is in normal position, a train can pass from track AB to
track AD; if it is in reverse position, a train can pass from track AB to track
BW. The diamond crossing BW can be passed in two ways: it connects the
tracks BV and BX, and it also connects the tracks AC and CM. The double
junction is designed in such a way that trains can travel through it along four
paths. There are two paths on the main line, paths −−→AB and −−→

DC . Path −−→
AE leaves

the main line and enters the side line on track CM. Finally, path −→
FC leaves the

side line after track DR and enters the main line on track BY. On the main
line, trains can travel at a speed of 120mph, whereas on the side line (i.e., on
tracks CM, CL, DR, and DP) there is a speed restriction of 70mph. There is a
further speed restriction of 40mph on the points 101 and 102 when they are in
reverse position. These speed restrictions, which are as provided as a realistic
scenario by Invensys Rail, are not shown on the track plan. There are six signals
in the original plan, labelled 2, 3, 4, 5, 16 and 17, which show either proceed or
stop. Train drivers are only allowed to enter a track, say AB, when its protecting
signal, in our example signal 3, shows proceed; otherwise, the train driver has
to stop and to wait until the signal changes to proceed.

Railway signals are controlled by an interlocking system which aims to guar-
antee safety. In general, train movements are considered safe if there is no risk of
collision (through allowing two trains on the same track at the same time) nor
any risk of derailment (through allowing a point to move while there is a train
passing over the point, or by allowing a train to pass too fast over a point). In
our study, we concentrate on capacity and consider only the collision-freedom
aspect of safety.

An interlocking system gathers inputs from the physical railway, such as
train locations with respect to tracks, and sends out commands to control signal
aspects and point positions. To this end, it implements so-called control tables
which dictate its behaviour. The control table for our double junction example
appears in the lower left corner of Figure 1 and restricts the behaviour of the
railway according to current UK regulations. For each signal, there is one row
describing the condition under which the signal can show proceed. There are

4 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

Fig. 1. The track plan of the double junction.

two rows for signal 3: one for when the train stays on the main line (Route 3A)
and one for when the train moves to the side line (Route 3B). Signal 3 for the
main line can only show proceed when point 101 is in normal position and tracks
AB, AC, AD and AE all are clear. The track AE is called an overlap. This rule
ensures that the driver will always be able to stop the train before entering the
track following AE, even if signal 5 is seen too late (e.g., just as the train is
passing it). Besides the condition shown in the control table, signal 3 for the
side line can only show proceed if an approaching train on track AA is slow
enough. This is controlled by measuring the time that the train occupies track
AA (approach control). This forces the train to slow down to 40mph even before
it reaches signal 3. We refer to this version of control as Scenario 1.

Scenario 2 makes the assumption that all trains are equipped with an Auto-
matic Train Protection (ATP) system [14]. ATP ensures that trains brake when
needed and reduce their speed as required. Thanks to ATP, trains are guaranteed
to stop at or before signal 5. Therefore the overlap AE can be removed from the
clear part of the control table of signal 3. ATP guarantees that trains slow down
in time to 40mph when passing a point. Thus, approach control is not needed.
For Scenario 2, we remove all overlaps from the control table and work without
approach control. Under current UK regulations, Scenario 2 is not allowed.

In the railway domain, capacity is regarded as an elusive concept which is
not easy to define and measure. In general, it can be described as below:

“Capacity determines the maximum number of trains that would be
able to operate on a given railway infrastructure, during a specific time
interval, given the operational conditions.” [5].

Returning to our double junction example, the general view in the railway
industry – shared by our industrial partner Invensys Rail – is the following. Re-
moving overlaps such as track AE from control tables and removing approach
control increases capacity. Our scientific questions are: can safety still be guar-
anteed? And how can the expected effect be measured? Based on the answers

Safety and Line Capacity in Railways 5

to these questions, the political question would be: does the resulting capacity
increase justify changes to regulations?

3 Modelling railways for safety in CSP

The process algebra Csp [11, 18] is an established formalism for describing con-
current systems. While there is still ongoing research on foundations, Csp has
many applications, e.g., in train controllers, in avionics, and in security protocols.
We describe here only the basic constructs of Csp that we shall exploit.

Csp describes reactive systems in terms of abstract, discrete events such as
“train 12 enters track 1”. The events of a system are collected together in an
alphabet of communications Σ. All such communications are atomic. In Csp
terminology, a reactive system is referred to as a process. The most basic process
is Stop, which represents the system that does not do anything. Another basic
process is Skip, which represents the system that performs the termination event
X (pronounced as tick) and then behaves like Stop. Given an event a and a
process P , the Csp process (a → P) represents the system that engages in the
event a and then behaves like P . Csp provides two operators which allow a
choice between processes: the process (P u Q) is the internal choice operation
which represents a system which will behave as either P or Q with the choice
made nondeterministically by the system; while the process (P 2 Q) is the
external choice operation in which the choice between behaving as either P
or Q is made by the environment. Csp provides various operators to combine
two processes P and Q in parallel, but the only such operator of interest to
us is (P |[X]|Q) which requires the processes P and Q to cooperate on the
events in the set X . Finally, the process (P \ X) behaves like P but makes the
events of X invisible to the environment. Semantically, Csp describes a process
P by the set of all its traces T [[P]], i.e., all finite sequences of events that the
process can perform. A process SPEC is refined by a process IMP , written as
SPEC vT IMP , iff T [[IMP]] ⊆ T [[SPEC]]. This refinement preserves safety: if
a forbidden sequence of events s is excluded from SPEC , then s cannot be a
trace of IMP if SPEC vT IMP . In practice, one usually works with CspM ,
a machine-readable version of Csp which also includes concepts of functional
programming which handle data.

Winter [21] describes how to model railway systems in Csp for proving safety.
We illustrate Winter’s approach by modelling the double junction shown in Fig-
ure 1. Here we include the bold elements: without signal 1 trains could collide
on track AA. The first step is to formalise the track plan as a graph:

datatype TrackIDs = AA | AB | AC | AD | AE | ...

datatype SignalIDs = S2 | S3A | S3B | S4 | S5 | S16 | S17 | ...

datatype PointIDs = P101 | P102

next(AA) = {AB} next(AB) = {AC} next(AC) = {AD,BW} ...

Then, trains are modelled as processes. Here, it is necessary to change Win-
ter’s definitions, as tracks can be shorter than trains (track AE is 50m long, In-
vensys suggested to work with a train length of 200m). We associate every track

6 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

t (and train id) with its length, denoted as tracklength(t) (and trainlength(id))
and define a process, namely RearBehaves, which refrains rear moves if the front
track is shorter than the train length. Then, a train process is characterized by
its identifier id , by the position of its front and by a list of rearmoves as follows:

TrainBehave(id,front,rearmoves) =

if (front==Exit and null(rearmoves)) then TrainBehave(id,entry(id),<>)

else ([] n1 : next(front) @ moveff.front.n1 ->

RearBehaves(trackLength(n1),id,n1,

rearmoves^<(moverr.front.n1,trainLength(id))>))

Next, control tables are modelled. We give here only the basic idea as pre-
sented in [21]. The signalling in the double junction requires a slightly more
involved approach. When the front of a train enters the protected area, the
signal state becomes Red indicating “halt”. Similarly, when the rear of a train
leaves the protected area, the signal state becomes Green indicating “proceed”.

SignalBehave(id.aspect) =

(aspect == Green & [] n : next(signalhome(id)) @

moveff.signalhome(id).n -> SignalBehave(id.Red))

[] (aspect == Red & [] n : next(signalend(id)) @

moverr.signalend(id).n -> SignalBehave(id.Green))

Finally, the whole train system comprises trains and signals which interact
through a set of synchronized events:

TrainSystem = Trains [| union(

Union({{ moveff.signalhome(id).n |

n<- next(signalhome(id)) } | id <- SignalIDs }),

Union({{ moverr.signalend(id).n |

n<- next(signalend(id)) } | id <- SignalIDs }))

|] Signals

We formalise the property NoCollision following Winter [21]. The difference
is that we exclude the entry and exit tracks from the safety analysis:

P(F,R) =

([] on:union(F,R) @

(not(member(next(on),union(F,R))) or member(next(on),Exits) &

(moveff.on.next(on) ->

P(union(diff(F,{on}),union({next(on)},Entries)),R)))

[]

(moverr.on.next(on) ->

P(F,union(F,union(diff(R,{on}),union({next(on)},Entries))))))

SafeMove = P(Entries,Entries)

NoCollision = SafeMove ||| CHAOS(diff(Events,{|moveff,moverr|}))

A railway is safe iff it can perform only safe moves. This can equivalently be
formulated in Csp as the refinement statement over the traces of the respective
processes: NoCollision vT TrainSystem.

Safety and Line Capacity in Railways 7

4 Timed CSP and timed traces

Timed Csp [19] conservatively extends the process algebra Csp with timing
primitives, modelling the passage of time with reference to a single, conceptually
global clock. Syntactically, the core extension of Csp to Timed Csp is modest.
There are only three new operators, including timeout after d time units: (P .d

Q). Based on these, Timed Csp adds many operators as syntactic sugar. Most
prominent are (Wait d) = (Stop .d Skip) – the process, which waits for d time
units before it terminates – and a delayed event prefix (a d→ P) = (a → (Stop .d

P)) which performs a and then behaves as P after a delay of d time units.
Semantically, processes in Timed Csp perform timed events (r , e) ∈ R≥0×Σ :

r is the time at which event e occurs. Events are instantaneous, i.e., they do
not take any time. The execution of a system leads to a timed trace. We write 〈〉
for the empty trace and t = 〈(r1, e1), . . . , (rn , en)〉 for a finite observation with
∀ j > i ≥ 1 : ri ≤ rj and ∀n > i ≥ 1 : ei 6= X. Given a non-empty timed trace
t , the time stamp of its first visible event is given by begintime(t) = r1; that
of its last visible event is given by endtime(t) = rn ; and its duration is given
by duration(t) = endtime(t) − begintime(t). We define duration(〈〉) = 0. #t
denotes the number of timed events occurring within a timed trace t . Given a
set of events A, t � A denotes the projection of t onto A, i.e., the subsequence of
timed events from t which consists only of events from A. Using these notations,
t ↓ A = #(t � A) is the number of timed events from A in t . Given two timed
traces t1 and t2, t1at2 denotes their concatenation; if the time stamps do not
match, this concatenation is undefined.

We denote the set of all timed traces by TT , and write TR[[P]] ⊆ TT for the
set of all timed traces of a Timed-CSP process P . Given two Timed Csp processes
IMP and SPEC , we say that SPEC refines to IMP , denoted by SPEC vTT

IMP , iff TR[[SPEC]] ⊇ TR[[IMP]].
For the case that SPEC is independent of time, i.e., SPEC does not include

any timed operator, and IMP is an integer-wait Timed Csp process, Roscoe [18]
provides the following proof technique: SPEC vTT IMP over Timed Csp is
equivalent to time(SPEC) vT time(IMP) over (untimed) Csp. The latter proof
obligation can be discharged using standard CSP tools such as the model checker
FDR [1]. The function time adds a special event called tock to the alphabet of
the processes in order to indicate the passage of time, e.g., time(Wait 0) = SKIP
and time(Wait (n+1)) = tock → time(Wait n). For the external choice operator,
we use Schneider’s construction [19]: time((?x : A → P) 2 (?y : B → Q)) =
time(?x : A → P) 2 time(?y : B → Q) 2 tock → time((?x : A → P) 2 (?y :
B → Q)) which provides a correct translation if A∩B = ∅; this can be seen, e.g.,
by comparison with the semantics of 2tock (see [19]). The automatic verification
of real-time systems with FDR is competitive with other approaches [15].

We use the timed refusal trace semantics of Timed Csp as defined in [17],
which guarantees a semantics for recursion even if the processes involved fail to
be timed-guarded (see [19]). The timed traces of a process P can be extracted
straightforwardly from the timed refusal traces of P [17].

8 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

5 Modelling timed behaviours of railway system

In the following, we make two assumptions concerning time in railways. Firstly,
we assume signalling to be instantaneous. In the real world, the cycle time of
an interlocking is in the region of two seconds. This time is (nearly) negligible
compared to the time a train needs to move from one track to another, so for
the current study we disregard this delay rather than require the interlocking to
await confirmation that the signal has been changed. Slightly more critical is our
second assumption; for this study we assume that trains accelerate and brake
immediately. The consequence is that we overestimate capacity (as trains move
faster than in reality). The second assumption is clearly an over simplification
to be remedied in future work.

In order to model time, we enrich Winter’s model [21] of a track plan. To
this end, we record the time it takes to travel a distance l at a speed limit s in
a table delay(l , s). The second change to the untimed model is that trains get
one more parameter: besides their identity id and the position front , rearmoves,
they also have the speed allowed on track front . The following Timed Csp code
summarizes the essential part of these changes; all other processes remain as
described in Section 3.

TrainBehave(id,front,rearmoves,curspeed) =

if (front==Exit and null(rearmoves))

then TrainBehave(id,entry(id),<>,0)

else ([] n1 : next(front) @

moveff.front.n1?speed ->

if (tracklength(n1)>trainlength(id))

then Wait(delay(trainlength(id),speed))

else Wait(delay(tracklength(n1),speed));

RearBehaves(tracklength(n1),id,n1,

rearmoves^<(moverr.front.n1,trainlength(id))>),speed)

6 Modelling railway capacity

We now develop a semantic concept of capacity based on timed traces, and
characterise a railway’s capacity via time-wise refinement in Timed Csp.

6.1 Capacity semantically

In this section, we present a formal definition of railway capacity which is compli-
ant with the quotation given in Section 2 and compatible with existing analytical
methods, for example [3]. Informally speaking, we want to count the number of
trains appearing and operating within the railway. This number depends on two
parameters: namely, (i) when we start counting and (ii) how long we observe.
Thus, we speak of an observation window characterised by a starting time and
a duration. There are two kinds of trains that we can observe in such a window:
those trains which are already present at the starting time of the window, and
those trains, which appear in the window while it is open.

Safety and Line Capacity in Railways 9

Initially, we assume that there are no trains in the railway. As trains enter,
travel through and leave a railway, their movements are recorded in a timed
trace. Relative to a given track plan, we define Entering and Leaving as the sets
of timed events which indicate the entering and leaving of trains, respectively.
In our example, moveff .Entry1.AA is an element of Entering , the set Leaving
includes, e.g., the element moverr .AE .Exit .

Let s be a timed trace of a railway model. The number of trains in the
railway after s is given by the number of trains entering the railway reduced by
the number of trains leaving the railway:

storage(s) = s ↓ Entering − s ↓ Leaving

The number of trains entering the railway during s is given by

increase(s) = s ↓ Entering

Relative to the duration δ of an observation window, we define the capacity of
a Train System TS by

capacity(TS , δ) = max
{

storage(s1) + increase(s2) :
s1as2 ∈ TR[[TS]] and duration(s2) ≤ δ

}
.

Each decomposition s1as2 ∈ TR[[TS]] of a timed trace yields a value to be con-
sidered for capacity. We determine how many trains are in the system after the
set-up phase s1 and how many trains enter the system during the observation
window s2, and maximise the sum storage(s1)+increase(s2) over all timed traces
s1as2 ∈ TR[[TS]] in which duration(s2) ≤ δ. The following result shows that this
definition of capacity nicely fits with refinement:

Theorem 1 (Capacity and Refinement). If TS2 vTT TS1 then ∀ δ ≥ 0 :
capacity(TS1, δ) ≤ capacity(TS1, δ).

For our purposes the decomposition of a timed trace into a set-up phase and
an observation window gives a good insight into a railway system (see especially
the paragraph on simulation later in Section 7). However, we note in passing that
a notion of capacity for a Train System TS which is independent of observation
duration, giving a long-term rate of “trains per unit time”, could be defined by

lim
δ→∞

capacity(TS , δ)
δ

.

6.2 Capturing storage and increase in Timed Csp

In this section, we provide a construction in Timed Csp which turns capacity
into an observable event. To this end, we run the process TrainSystem in a
two-layered environment. The first layer consists of an observer process, while
the second layer controls the whole set-up. The observer process synchronises

10 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

with TrainSystem over events indicating the entering and leaving of trains with
respect to the railway. The controller process synchronises with the observer
process on the duration of the observation window and the observed capacity.
The observer process works in two phases: the process Storage (see below) realises
the function storage (see above); after a startObs signal from the control layer,
control goes over to the second phase in which the process Increase (see below)
realises the function increase (see above).

The process Storage counts the entering trains and reduces this number by
one for every leaving train:

Storage(n) = ([] n1 : next(Entry) @ moveff.Entry.n1?_ -> Storage(n+1))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit -> Storage(n-1))

[] startObs?delta -> Increase(n,0,delta)

In addition, the process listens on the channel startObs. When it receives a
value delta, it passes control to the process Increase(n, 0, delta). Here, n is the
number of trains which are on the railway already, 0 is the duration since the
observation started, and delta is the size of the observation windows.

The process Increase counts the entering trains as long as the observation
window is open. When the window is closed, it informs the controller on the
channel infocap on the observed capacity. After this, it goes to an idle state
EndCapObserver . The process Increase is defined as follows:

Increase(n,d,delta) =

d<=delta & ([] n1 : next(Entry) @ moveff.Entry.n1?_ @ u ->

if d+u<=delta then Increase(n+1,d+u,delta)

else Infocap(n))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit @ u ->

if d+u<=delta then Increase(n,d+u,delta)

else Infocap(n))

Infocap(n) = infocap.n -> EndCapObserver

[] ([] n1 : next(Entry) @ moveff.Entry.n1?_ -> Infocap(n))

[] ([] n1 : pre(Exit) @ moverr.n1.Exit -> Infocap(n))

EndCapObserver = ([] n1:next(Entry)@moveff.Entry.n1?_ -> EndCapObserver)

[] ([] n1:pre(Exit)@moverr.n1.Exit -> EndCapObserver)

The process Controller decides when the observation window starts, and
later receives the value of the observed capacity through the channel infocap.
This process is defined as follows:

Controller(delta) = startObs.delta -> infocap?n -> Stop

The overall set-up is given by the process TrainSystemWithCapacity :

TrainSystemWithCapacity =

(TrainSystem

[|union(

{ moveff.Entry.n._ | n <- next(Entry) },

{ moverr.n.Exit | n <- pre(Exit) })|]

Storage(0)) [| {|startObs, infocap|} |] Controller(delta)

Safety and Line Capacity in Railways 11

We define that a process Q does not block a process P with alphabet ΣP

over a synchronization set X if (TR[[P]] = TR[[P |[X]|Q]]) � ΣP . We establish the
following result for the coupling of TrainSystem and Storage in the definition of
the process TrainSystemWithCapacity :

Theorem 2. Storage(0) does not block TrainSystem.

Proof (Sketch). In Storage(0), every event in {moveff .Entry .n. | n ∈ next(Entry)}∪
{moverr .n.Exit | n ∈ pre(Exit)} is always ready to engage.

This insight provides the following result.

Theorem 3. The following are equivalent:

– capacity(TrainSystem, δ) = n.
– n ′ ≤ n iff there exists a timed trace t ∈ TR[[TrainSystemWithCapacity]]

such that (r , infocap.n ′) ∈ t for some r ∈ R.

Proof (Sketch). The following two correspondences hold between the timed traces
of the process TrainSystem and the process TrainSystemWithCapacity :

– If t1 = s1as2 ∈ TR[[TrainSystem]] then t ′1 = s1a〈(begintime(s2), startObs.δ)〉a

s2a〈(endtime(s2), infocap.n)〉 ∈ TR[[TrainSystemWithCapacity]].
– If t2 = s1a〈(r1, startObs.δ)〉as2as3a〈(r , infocap.n)〉 ∈
TR[[TrainSystemWithCapacity]] then t ′2 = s1as2 ∈ TR[[TrainSystem]].

6.3 Capacity via refinement

We formulate a process which allows at most n trains operating within an ob-
servation window of duration delta. Here, we use only events of the interface
between the observer process and the controller process:

CapacityFrom(n,delta)=|~|n’:{0..n}@ startObs.delta -> infocap.n’ -> Stop

With regards to this process, we have the following result:

Theorem 4. Given a length δ of observation, capacity(TrainSystem, δ) = n iff

– for all k ≥ n holds:
CapacityFrom(k , δ) vTT TrainSystemWithCapacity \ MoveEvents, and

– for all 0 ≤ l < n holds:
CapacityFrom(l , δ) 6vTT TrainSystemWithCapacity \ MoveEvents,

where MoveEvents = {moveff .x .y . , moverr .x .y | x , y ∈ Tracks}

Proof (Sketch). By Theorem 3 and the definition of CapacityFrom(n, δ).

12 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

7 Studying safety and capacity in the context of the
double junction

In this section, we study safety and capacity in one model formulated in Timed
Csp. To this end, we consider each of the paths −−→AB, −−→DC , −−→AE and −→

FC shown in
Figure 1 in isolation. It remains future work to study the double junction as a
whole. For each of the four paths, we encode Scenarios 1 and 2 from Section 2. It
turns out that both scenarios are safe and that capacity increases when signalling
is changed from Scenario 1 to Scenario 2.

For the model of each path, we determine the minimal amounts of time a
train travels from one end to the other of each track. Here, we use data suggested
by our industrial partner Invensys Rail about the lengths of trains and tracks.
We take the length of trains to be 200m, the length of tracks where there is
either a point or a diamond crossing to be 50m, the length of overlap tracks to
be 200m, the length of other tracks to be 1500m, and the track lengths on path
−−→
AE to be summarised in the following table:

Track AA AB AC BW CM CL
Length 1500m 200m 50m 50m 1500m 200m

The minimal amounts of time to travel such distances in different speed limits
can be easily calculated. For example, it takes at least 4s for a train to travel
on AA at a speed of 120mph. These constants are incorporated into the Timed
Csp models as presented in Section 5. These result in processes TrainSystemp,s ,
where p ranges over {−−→AB,−−→AE,−−→DC ,−→FC} and s ∈ {1, 2}.

These models are collision-free iff NoCollision vTT TrainSystemp,s . Since the
processes TrainSystemp,s contain only integer-wait operators and NoCollision
does not include any timed operator, we utilise FDR to prove the refinements
time(NoCollision) vT time(TrainSystemp,s). FDR shows that all these refine-
ments hold. Thus, all paths are safe in both scenarios.

In order to deal with capacity, we simulate both scenarios with our Timed
Csp Simulator tool [8]. This is possible as the processes TrainSystemp,s involve
only rational numbers for time. To this end, we apply the automatic simulation
available in the Timed Csp Simulator, which randomly chooses between events
and prioritises events over the evolution of time. Simulating TrainSystemp,s in
the Timed Csp Simulator yields one of its timed traces.

We determine capacity in a three step process. First, we make estimates
on the length of the set-up phase and on the minimal length δ of an obser-
vation window. We choose these numbers in such a way that we can expect
a difference in the capacities of Scenarios 1 and 2. Next, we validate this es-
timation. Both these steps are based on simulation with the Timed Csp Sim-
ulator. Finally, given a good estimate for the length δ, Theorem 4 allows us
to determine capacity(TrainSystemp,s , δ) for each TrainSystemp,s . Here, we dis-
charge the involved proof obligations with FDR. This is possible as the process
CapacityFrom(n) does not have any timed operator and there are only integer-
waits in the process TrainSystemWithCapacity .

Safety and Line Capacity in Railways 13

Step 1: Simulation with the Timed Csp Simulator suggests that it takes a
fixed time µ from one train entering TrainSystemp,s until this train leaves.
Furthermore, it suggests that it takes a fixed time d from one train entering
TrainSystemp,s to the next train entering TrainSystemp,s . Let µ1, d1 and µ2,
d2 be the estimates from the simulation of Scenarios 1 and 2, respectively. For
the length of the observation window we select δ = d1x for some x such that
d1x = d2(x +1). For total run-times we choose µ1 +δ (µ2 +δ) for Scenario 1 (Sce-
nario 2). This “guarantees” (based on the simulation data) that the two scenar-
ios show different capacities. For the path −−→

AE, we obtain µ1 = 113s, µ2 = 105s,
d1 = 85s and d2 = 70s. Thus, we choose δ = 397s and simulate Scenario 1 for
µ1 +δ = 510s and Scenario 2 for µ2 +δ = 502s.

Step 2: Automatic simulation of Scenario 1 for µ1 +δ and of Scenario 2 for µ2 +δ
yields two timed traces. The capacity observed on these timed traces gives lower
bounds for the capacity of TrainSystemp,s . For path −−→AE, we obtain a capacity of
7 in Scenario 1 and a capacity of 8 in Scenario 2.

Step 3: Finally, we verify with FDR that these numbers are indeed the capacity.
For path −−→

AE, we obtain:
−−→
AE 6 7 8 Running time in FDR

Scenario 1 x (1, 12× 106) X (1, 14× 106) - 25s
Scenario 2 - x (1, 67× 106) X (1, 73× 106) 33s

Each row in the table provides the result for one scenario. Column n expresses if
the refinement CapacityFrom(n) vTT TrainSystemWithCapacity \ MoveEvents
holds. “X” stands for successful verification, “x” indicates that the refinement
does not hold, “-” says that this check was not carried out. We associate the
round number of states that are checked by FDR in each refinement. The last
column shows how long FDR spends for running all checks needed for determin-
ing capacity in each scenario3. The results for the other paths are obtained in
the same way as for −−→AE. We summarise these in the following table:

Path Window Capacity in Capacity in
length Scenario 1 Scenario 2

−−→
AB 379s 12 13
−−→
DC 399s 12 13
−→
FC 328s 7 8

Interpreting our results within the railway domain, we can state: under optimal
conditions, we expect one more train approximately every 6.5 minutes in Sce-
nario 2 compared with Scenario 1 without compromising safety. It takes about
2 minutes of set-up time to observe this difference.

For windows of length larger than 6.5 minutes, TrainSystemp,2 has at least
the capacity of TrainSystemp,1. This holds by Theorem 1. We observe that
TrainSystemp,1 and TrainSystemp,2 are identical but for the value x in the

3 On a machine with a 2GHz 64 bit processor with 4GByte memory running Mac OS.

14 Yoshinao Isobe, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach

Wait x processes involved. Here, x ′ ≤ x for the corresponding Wait processes,
where x is the value in TrainSystemp,1 and x ′ is the value in TrainSystemp,2.
Thus, any delay y between two timed events of a timed trace of TrainSystemp,1

can be reproduced in TrainSystemp,2 as for the corresponding Wait x ′, we have
x ′ ≤ x ≤ y .

Lessons learnt from using tools for Csp and Timed Csp for our performance
analysis in the railway domain include:

1. Obviously, one would like to study safety for the whole junction and not, as
we do above, for single paths in isolation. However, it turns out that handling
the complete junction (even in the untimed case) is beyond the proof support
given by FDR, at least for our current modelling approach.

2. Reducing proof obligations over Timed Csp to proof obligations over (un-
timed) Csp works well. Tool support for the translation (which we carry out
manually) would be welcome.

3. Concerning capacity, it might be possible to determine it by “optimal” sim-
ulation in the Timed Csp Simulator. To this end, one would have to argue
which simulation strategy leads to a timed trace showing the capacity of the
railway system.

4. Proper time-wise refinement, as in TrainSystemp,2 vTT TrainSystemp,1, still
lacks convincing tool support. On our examples, the PAT system [2] was
running out of memory for the refinement checks.

8 Summary and Future Work

In close cooperation with railway industry, we have provided a formal definition
of line capacity based on the timed traces that one can observe in a natural,
timed model of railway systems. This definition can equivalently be characterized
as a refinement statement in Timed Csp. By adapting the safety formulation
of Winter [21], we are able to study both safety and capacity in one formal
model in Timed Csp. As the refinements for safety and capacity only require the
checking of qualitative properties, both refinement statements can be discharged
by translation into untimed Csp. This approach has the advantage that one can
re-use established tool support for Csp alone.

To illustrate our approach, we have applied it to a standard double junction
from the (UK) railway domain. For this junction, we can answer fundamental
questions from railway industry: changing control tables in the way suggested by
railway engineers yields a capacity increase without compromising safety. This
increase can be quantified: under optimal conditions, after the change there can
be one more train every six minutes in our example. Having shown the increases
that can be gained via changing signalling rules through the trusted use of ATP,
this encourages changes to be proposed to the current UK railway regulation.

The double junction example demonstrates the limitations of the current
proof support in terms of the model checker FDR. For complex examples, e.g.,
with more tracks, 3-aspect or 4-aspect signalling, long or different-length delays,

Safety and Line Capacity in Railways 15

the translational approach is inefficient. Dedicated proof support, e.g., in the
form of a Timed Csp-Prover (currently under construction) is necessary.

It remains future work to include further timing aspects into our modelling,
such as the cycle time of signalling and point movements or braking and accel-
erating curves of trains. Finally, we intend to develop our definition further, so
that it also captures the more complex notion of network capacity.

Acknowledgement: The authors would like to thank Erwin R. Catesbeiana (Jr)
for pointing out that immobility is the enemy of capacity.

References

1. FDR2. http://www.fsel.com/software.html.
2. PAT. http://www.comp.nus.edu.sg/∼pat/.
3. UIC Leaflet 405 OR. Links between Railway Infrastructure Capacity and the

Quality of Operations. International Union of Railways, 1996.
4. UIC Leaflet 406. Capacity. International Union of Railways, 2004.
5. M. Abril, F. Barber, L. Ingolotti, M. Salido, P. Tormos, and A. Lova. An assessment

of railway capacity. Transportation Research Part E: Logistics and Transportation
Review, 44(5):774–806, 2008.

6. F. Barber, M. Abril, M. Salido, L. Ingolotti, P. Tormos, and A. Lova. Survey of
automated systems for railway management. Technical Report. TU Valencia, 2007.

7. R. Burdett and E. Kozan. Techniques for absolute capacity determination in rail-
ways. Transportation Research Part B: Methodological, 40(8):616–632, 2006.

8. M. Dragon, A. Gimblett, and M. Roggenbach. A Simulator for Timed CSP. In
AVoCS’11. Technical Report. Newcastle University, 2011.

9. Department of Transport. Delivering a Sustainable Railway. White Paper CM
7176, 2007.

10. W. Fokkink and P. Hollingshead. Verification of interlockings: from control tables
to ladder logic diagrams. In Proceedings of FMICS’98, pages 171–185, 1998.

11. T. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. Y. Isobe, H. N. Nguyen, and M. Roggenbach. Towards safe capacity in the railway

domain – an experiment in Timed-CSP. In DSW’11, 2011.
13. P. James and M. Roggenbach. Automatically Verifying Railway Interlockings using

SAT-based Model Checking. In AVoCS’10. EASST, 2011.
14. D. Kerr and T. Rowbotham. Introduction To Railway Signalling. Institution of

Railway Signal Engineers, 2001.
15. M. Khattri, J. Ouaknine, and A. Roscoe. Automated translation of timed automata

to Tock-CSP. In AVoCS’10. Technical Report. Düsseldorf University, 2010.
16. A. Landex, A. Kaas, B. Schittenhelm, and J. Schneider-Tilli. Practical use of the

UIC 406 capacity leaflet by including timetable tools in the investigations. In
Proceedings of the 10th International conference on Computers in Railways, 2006.

17. J. Ouaknine and J. Worrell. Timed CSP = closed timed ε-automata. Nordic
Journal of Computing, 10:1–35, 2003.

18. B. Roscoe. Understanding Concurrent Systems. Springer, 2010.
19. S. Schneider. Concurrent and Real-time systems. Wiley, 2000.
20. A. Simpson, J. Woodcock, and J. Davies. The mechanical verification of solid-state

interlocking geographic data. In Formal Methods Pacific 97. Springer, 1997.
21. K. Winter. Model checking railway interlocking systems. Australian Computer

Science Communications, 24(1), 2002.

