
Proof Principles of CSP –
CSP-Prover in Practice

Yoshinao Isobe1 and Markus Roggenbach2∗

1 National Institute of Advanced Industrial Science and Technology, Japan,
y-isobe@aist.go.jp

2 University of Wales Swansea, United Kingdom,
M.Roggenbach@Swan.ac.uk

Abstract. The process algebra Csp provides a well-established formal-
ism for the modelling, analysis, and verification of concurrent systems.
Besides being a specification language, Csp provides a valuable set of
proof principles. We show in tutorial style, how these proof principles
are made available in our tool Csp-Prover. Overall, Csp-Prover turns
out to be an off-the-shelf proof tool ready for use in applications.

1 Introduction

The process algebra Csp [7, 16] provides a well-established, theoretically thor-
oughly studied, and in industry often applied formalism for the modelling and
verification of concurrent systems. Csp has been successfully applied in areas
as varied as distributed databases, parallel algorithms, train control systems [4],
fault-tolerant systems [3], and security protocols [20].

Within the spectrum of models of concurrency, semantically Csp is based
on the so-called Hoare-Languages. In the classification of [21], these are of type
‘behaviour’ (during a system’s execution, a state can only appear once), ‘inter-
leaving’ (parallel execution is expressed via non-determinism), and ‘linear time’
(Csp abstracts from the point of branching in non-deterministic choices). For
such models of concurrency, Csp provides a rich variety of equivalences and
refinements.

Fixing one syntax, Csp offers different semantical models, each of which is
dedicated to special verification tasks. The traces model T , e.g., covers safety
properties. Lifeness properties can be studied in more elaborate models. Deadlock
analysis, e.g., is best carried out in the stable-failures model F , the failures-
divergences model N allows for lifelock analysis, the stable-revivals model R
[18] has recently been designed to study responsiveness. The analysis of fairness
properties requires models based on infinite traces, see [16, 19] for further details.

The literature on process algebra, see, e.g., [2], has suggested a variety of proof
principles for process algebra in general, which, naturally, are also available in
the context of Csp. These proof principles provide a valuable tool set in order to
∗

This cooperation was supported by the EPSRC Project EP/D037212/1.

analyze, validate and verify concurrent systems. To a certain extend, the success
of process algebra in general, and especially of Csp, is based on these very
principles. The overall purpose of these techniques is to lift semantical proofs to
proofs on the syntactic level: Process algebra is famous for its rich set of algebraic
laws, which allow for the manipulation of specifications on the syntactic level.

Csp-Prover [8, 9, 11, 10] is an interactive proof tool for Csp based on the the-
orem prover Isabelle/HOL [14]. With its theorem proving approach Csp-Prover
complements the established model checker FDR [13] as a proof tool for Csp.
Csp-Prover is generic in the various Csp models. Currently, Csp-Prover fully
supports the traces model T and the stable-failures model F . Implementations
of the failures-divergences model N and the stable-revivals model R are well
under way.

In this paper we review proof principles of process algebra and show how they
can be applied in Csp-Prover. It turns out that Csp-Prover provides a suitable
platform to study and apply proof principles of Csp. However, sometimes subtle
but important changes are required in order to obtain an ‘automatized’ version
of an established proof technique, which so-far was carried out manually only.

The various Csp models are defined in terms of denotational semantics. Con-
sequently, all syntactic proof principles such as algebraic laws, fixed point induc-
tion, or the existence and uniqueness of normal forms have to be proven to be
correct with respect to a given denotational semantics. Csp-Prover provides an
encoding of these denotational semantics as well as of a wide range of already
proven to be correct syntactic proof principles. For the stable-failures model F
the implemented principles actually are complete [10]. Overall, Csp-Prover can
be used as an off-the-shelf proof tool, which easily can be extended by domain
specific theorems.

Tools similar to Csp-Prover have been suggested by Tej/Wolff [24, 23] and
Dutertre/Schneider [5, 22]. Here, Csp-Prover continues and extends the work
by Tej/Wolf. Their tool HOL-Csp is focused on the failure-divergences model
N . While Csp-Prover works with a deep encoding of the language, HOL-Csp
provides a shallow encoding of Csp in Isabelle/HOL. Consequently, in HOL-
Csp proofs principles related to the Csp syntax are not easy to realise. Schnei-
der/Dutertre base their tool on the theorem prover PVS. Their work is tailored
to the verification of security protocols. Their prover implements a restricted
version of traces model T .

The paper is organized as follows: First we give an overview on the process
algebra Csp as it is available in Csp-Prover. Then we show how to prove and how
to apply algebraic laws in Csp-Prover. Section 4 discusses recursively described
systems, for which fixed-point induction provides a powerful and often adequate
syntactical proof principle. Finally, we discuss deadlock analysis: In the context
of Csp, deadlock-freedom is often proved by means of abstraction. An alternative
is to look into specialized theorems that cover deadlock-free networks.

P ::= p(x1, . . . , xn) %% (parametrized) process name
| Skip %% successfully terminating process
| Stop %% deadlock process
| Div %% divergence
| a → P %% action prefix
| P 2 P %% external choice
| P u P %% internal choice
| ? x : A → P(x) %% prefix choice
| ! s : S • P(s) %% replicated internal choice
| if b then P else P %% conditional
| P ||| P %% interleaving
| P ‖ P %% synchronous parallel
| P |[X]| P %% generalized parallel
| P o

9 P %% sequential composition
| P \ X %% hiding
| P [[r]] %% relational renaming
| P ↓ n %% depth restriction

Fig. 1. Syntax of basic Csp processes in Csp-Prover.

2 The process algebra CSP in CSP-Prover

Fig. 1 shows the basic Csp processes available in Csp-Prover. These processes
are defined relatively to an alphabet of actions Σ and a set of process names.
A process can be a (parametrized) process name or one of the primitive pro-
cesses Skip, Stop, and Div . Actions can prefix a process. The choice between
processes can be external or internal. Both choice operators are also available
in a generalized version: the prefix choice operator allows the environment to
choose between actions in a subset A of the alphabet Σ; in the replicated in-
ternal choice, the process chooses an index s from a set S of selectors, where
this set of selectors S is either a set of natural numbers or a set of subsets of
the alphabet Σ. The further progress of a process can depend on a condition.
Various parallel operators are available, differing in their synchronization condi-
tion: with interleaving the processes run independent of each other; synchronous
parallel forces the processes to run in lock-step; the general parallel operator
synchronizes the processes in the subset X of the alphabet Σ. There is hiding
and renaming. Finally, it is possible to restrict a process to its first n actions.
Replicated internal choice is described in [10], otherwise see [16] for a detailed
discussion of these operators.

In the setting of Csp-Prover, basic processes are terms of the type

(’a,’b) proc

where ’a is an Isabelle type variable to be instantiated with the type of process
names, and, similarly, ’b is an Isabelle type variable to be instantiated with the
alphabet of actions. For example, the basic processes a → Skip and ?x : {a, b} →
P(x) can be typed-checked in Isabelle by declaring them as a term:

term "a -> SKIP"

term "? x:{a,b} -> P(x)"

Isabelle gives both terms the type (’a,’b) proc.
A Csp specification consists of a set of equations of the form

p(x1, . . . , xk) = P

where p(x1, . . . , xk) is a process name with parameters x1, . . . , xk and P is a
basic process. A typical example is the following Csp specification of a buffer
with capacity one:

Empty = left?x → Full(x)
Full(x) = right !x → Empty

Such a system of equations can be seen as a mapping from process names to
basic processes. This is the way, how Csp-Prover encodes these equations, see
Fig. 2. Our Csp specification myBuffer is declared as a function of type

myNames => (myNames, myAlphabet) proc

(line 8), the equations are encoded using the Isabelle command primrec (line 10
& line 11). The operator $ is a type constructor which converts process names
into basic processes.

Note that the specification in Fig. 2 describes a generic buffer. The type data
is not further specified and can be instantiated with respect to the particular
needs of an application. Semantically, data stands for an arbitrary set of values.
Observe further that the equation in line 11 takes a variable x of type data as a
parameter. This means that in the case that data is instantiated with an infinite
set, the buffer specification essentially consists of infinitely many equations. Csp-
Prover provides the means to analyze both generic Csp specifications as well as
Csp specifications consisting of infinitely many equations.

The Csp-Prover User Guide, available at [8] discusses the full concrete syntax
available.

3 Algebraic Laws

Algebraic laws are at the core of process algebra. They form the basic building
block for all advanced techniques of process algebraic reasoning over concurrent
systems. In this section we show how to prove algebraic laws and how to apply
them in Csp-Prover.

In the context of Csp, algebraic laws come in two flavours, namely as laws
on equality and as laws on refinement. Here, we consider laws on equality only.
Laws on refinement can be treated in the same way as laws on equality. This
has its reason in the following equivalence, which in general holds in the various
Csp models:

P v Q ⇔ P = P u Q

I.e., refinement can be expressed in terms of equality. In this sense, refinement
can be considered as syntactic sugar, although in practice refinement surely is

1 (* data *)

2 typedecl data

3 datatype myAlphabet = left data | right data

4 datatype myNames = Empty | Full data

5
6 (* process *)

7 consts
8 myBuffer :: "myNames => (myNames, myAlphabet) proc"

9 primrec
10 "myBuffer (Empty) = left ? x -> $(Full x)"

11 "myBuffer (Full x) = right ! x -> $(Empty)"

Fig. 2. A script for the process Buffer in Csp-Prover

a notion of its own right. For this reason, Csp-Prover also offers specific proof
procedures for refinement.

The manual verification of process algebraic laws with respect to a given
non-algebraic semantics is an important but error prone and complex task. Er-
rors found in algebraic laws years after their publication demonstrates the need
for mechanised theorem proving. The latest example in the Csp context is the
correction of two step laws, which, published in 1998, were shown to be incorrect
in 2006, see [10]. With the exception of the stable failures model F , for most Csp
models it is an open question if they have a complete axiomatic semantics. Thus,
the proof practice might require the proof of new, yet not considered algebraic
laws. Section 3.1 presents – in the stable failures model F – a typical proof of a
process algebraic law in Csp-Prover and explains the basic techniques involved.

Many tasks in analyzing concurrent systems with process algebra can be
carried out solely by applying algebraic laws. Csp-Prover offers a rich collec-
tion of such laws, which have already proven to be correct. In Section 3.2, we
demonstrate – this time in the traces model T – how Csp-Prover allows one
to algebraically reason about systems in a natural and intuitive way. It turns
out that after structuring the proof into reasonably small subproblems, Csp-
Prover’s tactics can automatically discharge the arising proof obligations. Due
to the sheer number – about 80 laws are required to completely capture the
stable failures model [10] – as well as of the complexity of these algebraic laws
– the 2−step law studied in Section 3.1 below is of ‘medium’ complexity only –
Csp and, we believe, process algebra in general require an automated reasoning
approach.

Comparing the complexity of the two proof approaches demonstrated, namely
first carrying out a proof on the denotational semantics of Csp and then arguing
on a system using process algebraic laws only, the proof on the syntactic level
turns out to be much simpler although it deals with the more involved equation.

3.1 Correctness proofs of algebraic laws

As an example of a semantical proof we consider the law ‘2−step’ concerning
the external choice operator:

(? x : A → P(x)) 2 (? x : B → Q(x)) = ? x : (A ∪ B) →
(if (x ∈ A ∩ B) then P(x) u Q(x) else if (x ∈ A) then P(x) else Q(x)).

This law studies the behaviour of a process, which is obtained by combining the
two processes (? x : A → P(x)) and (? x : B → Q(x)) with the external choice
operator. The rhs of 2−step captures which actions are possible in the first
step, and – depending on this first step – how the combined process behaves
further. First, the combined process makes all actions x ∈ (A ∪ B) available
to the environment. After the environment has chosen which x the combined
process should perform, the behaviour of the combined process depends on the
set to which this x belongs: if x is in the intersection of A and B , then the
environment has actually made no choice between the two possible branches,
and the originally external choice becomes an internal choice between P(x) and
Q(x); if x belongs to A but not to B , then P(x) is executed; if x belongs to B
but not to A, then Q(x) is executed. In Csp, laws such as 2−step are known as
‘step laws’. These step laws capture essential algebraic properties of the various
operators: There is a step law for every Csp operator; the step laws hold in all
(main) Csp models.

In the following, we will use Csp-Prover to prove that 2−step holds in the
stable failures model F . The denotational semantics of F maps process expres-
sions via functions traces and failures to pairs

(T ,F), where T ⊆ Σ∗X and F ⊆ Σ∗X × P(ΣX).

Here, Σ is the alphabet of actions from the syntax definition of Csp 3.
To prove the law 2−step, we need to show: for all choices of Σ, for all choices

of A ⊆ Σ and B ⊆ Σ, and for all interpretations of the basic processes P(x) and
Q(x) in the semantic domain of F we have:

traces(Ext(A,P,B,Q)) = traces(Step(A,P,B,Q)) (#1)
failures(Ext(A,P,B,Q)) = failures(Step(A,P,B,Q)) (#2)

where Ext(A,P,B,Q) (Step(A,P,B,Q)) denotes the lhs (rhs) of the equation 2−step.
In the following, we consider the proof of (#2) only:

In a manual proof, we first have to compute the sets failures(Ext(A,P,B,Q))
and failures(Step(A,P,B,Q)) by applying the semantic clauses of the model F .

3 ΣX = Σ ∪ {X}, Σ∗X = Σ∗ ∪ Σ∗ a 〈X〉, where X is a special symbol denoting
successful termination, see [16] for a detailed discussion of F .

1 lemma cspF Ext choice step:
2 "(? x:A -> P(x)) [+] (? x:B -> Q(x)) =F[M,M]
3 ? x:(A Un B) -> (IF (x : A Int B) THEN P(x) |~| Q(x)
4 ELSE IF (x : A) THEN P(x) ELSE Q(x))"
5 apply (simp add: cspF cspT semantics)
6 apply (simp add: cspT Ext choice step)
7 apply (rule order antisym, auto)
8 (* ⊆ *)
9 apply (simp add: in traces in failures)

10 apply (auto)
11 (* ⊇ *)
12 apply (simp add: in traces in failures)
13 apply (elim disjE conjE exE, force+)
14 apply (case tac "a : B", simp all add: in failures)
15 apply (case tac "a : A", simp all add: in failures)
16 done

Fig. 3. A proof script for step law of the external choice

After some simplifications we obtain:

failures(Ext(A,P,B,Q)) =
{(〈〉,X) | A ∩X = ∅} ∪ {(〈〉,X) | B ∩X = ∅}∪
{(〈a〉a t ,X) | a ∈ A ∧ (t ,X) ∈ failures(P(a))}∪
{(〈a〉a t ,X) | a ∈ B ∧ (t ,X) ∈ failures(Q(a))} (#3)

failures(Step(A,P,B,Q)) =
{(〈〉,X) | (A ∪ B) ∩X = ∅}∪
{(〈a〉a t ,X) | a ∈ A ∪ B ∧

if (a ∈ A ∩ B) then (t ,X) ∈ failures(P(a)) ∪ failures(Q(a))
else if (a ∈ A) then (t ,X) ∈ failures(P(a))
else (t ,X) ∈ failures(Q(a))} (#4)

Using standard arguments on sets, one can show that the sets (#3) and (#4)
are indeed equal and that therefore the step law 2−step holds in F .

In contrast to this approach, Fig. 3 shows a proof-script in Csp-Prover for
this step-law. First, we state 2−step to be our proof goal (line 1). The command
in line 5 splits the main goal into two subgoals corresponding to the equations
(#1) and (#2) above. The first subgoal (#1) is discharged at the line 6. Here,
we use the lemma cspT_Ext_choice_step which belongs to the traces model T .
Now we deal with the second subgoal, the equation (#2). We prove this equality
of sets by two subset relations, which we obtain as new subgoals at the line 7:

∀(t ,X) ∈ failures(Ext(A,P,B,Q)). (t ,X) ∈ failures(Step(A,P,B,Q)) (#5)
∀(t ,X) ∈ failures(Step(A,P,B,Q)). (t ,X) ∈ failures(Ext(A,P,B,Q)) (#6)

The subgoal (#5) is proved in the lines 9 and 10, the subgoal (#6) is proved
in lines 12–15. For both subgoals, the sets of failures4 of the both processes, i.e.
(#3) and (#4), are automatically derived in Csp-Prover, see the lines 9 and 12.
This is a powerful technique. Deriving the denotations of processes according to
4 The model F requires the trace sets in order to derive the failures of the external

choice between processes.

the semantical clauses of a Csp model is a tedious but error prone and complex
task – note that the sets (#3) and (#4) are simplified versions of the sets derived
from the semantical clauses. The commands in line 10 and in the lines 13–15
finally check that (#3) and (#4) are equal.

3.2 Proofs based on algebraic laws

Given a set of algebraic laws such as 2−step, how can we use these laws in
Csp-Prover in order to reason about a Csp specification? Let us consider an
example out of the context of testing from formal specifications, see [12]. Given
the Csp specification of a system, and given a test in the form of a sequence
of actions, shall we expect an implementation of this specification, the so-called
system under test, to engage in this sequence of actions? More concrete, let the
system be a simple calculator which reads values x and y from a keyboard and
then shows on its display the sum x + y of these values:

Calculator = ?x : Button → ?y : Button → Display !(x + y) → Skip

Consider as a test the process which represents the sequence of pressing the
button for zero, pressing the button for one, and then expecting the display to
show a one:

Test = Button!0 → Button!1 → Display !1 → Stop

In order to prove that Test is a sequence that any correct implementation of
Calculator has to execute, we need to discharge several proof obligations, see
[12] for the details. Here, we consider just one of the equations that need to be
established in this context:

(((Calculator ‖ Test) [[MyRenaming]]) |[{a}]| Count3) \ {a} =T OK → Stop

Here, MyRenaming = {(x , a) | x ∈ Σ} and Count3 = a → a → a → OK →
Stop. This equation can be shown to be correct using the following lemmas:

1. Calculator ‖ Test =T Test (* parallel one *)
The Calculator and the Test agree on the three actions prescribed by Test.

2. Test [[MyRenaming]] =T a → a → a → STOP (* renaming *)
All these actions are renamed into a.

3. a → a → a → STOP |[{a}]| Count3 =T Count3 (* parallel two *)
Count3 verifies that there are three agreed actions and communicates OK .

4. Count3 \ {a} =T OK → Stop (* hiding *)
After hiding all the a ′s, the action OK remains the only one visible.

Fig. 4 shows how this proof idea can be formalized in Csp-Prover, where we
assume – for the moment – that the above equations have already been proven.
The tactic cspT simp with tac takes care of the rewriting process. This tactic
has as parameters the name of the lemma to be applied, e.g., "parallel one",
and the number of the proof goal to which the lemma shall be applied – in

our case always the first goal. Using the four lemmas stated above, the proof
script rewrites the lhs of the original equation till it is syntactically identical to
the rhs, at which point the equation trivially holds. Note how this proof script
corresponds directly to the natural line of argument shown above.

1 theorem
2 "(((Calculator || Test) [[MyRenaming]]) |[{a}]| Count3) -- {a} =T Ok -> STOP"
3 apply(tactic { * cspT simp with tac "parallel one" 1 * })
4 apply(tactic { * cspT simp with tac "renaming" 1 * })
5 apply(tactic { * cspT simp with tac "parallel two" 1 * })
6 apply(tactic { * cspT simp with tac "hiding" 1 * })
7 done

Fig. 4. Discharging a proof obligation from formal testing

It remains to prove the four lemmas used in our theorem. These four lemmas
can be proven following a systematic approach, which we demonstrate for the
hiding lemma, see Fig. 5. Csp-Prover’s tactic cspT hsf tac is usually able to
prove simple equations. Adding a + to a proof command triggers its repeated
execution till it fails. In order to prove the hiding lemma, we consider three basic
cases: the communication is a, the communication is OK , and hiding is to be
applied on the process Stop. Note that in hide a we use the process name P as
a variable, which later can be instantiated with an arbitrary process.

1 lemma hide a: "(a -> P) -- {a} =T P -- {a}"
2 apply (tactic { * cspT hsf tac 1* })+
3 done
4
5 lemma hide OK: "(OK -> P) -- {a} =T OK -> (P -- {a})"
6 apply (tactic { * cspT hsf tac 1 * })
7 done
8
9 lemma hide STOP: "STOP -- {a} =T STOP"

10 apply (tactic { * cspT hsf tac 1 * })
11 done
12
13 lemma hiding: "(a -> a -> a -> OK -> STOP) -- {a} =T OK -> STOP"
14 apply(tactic { * cspT simp with tac "hide a" 1 * })+
15 apply(tactic { * cspT simp with tac "hide OK" 1 * })
16 apply(auto)
17 apply(tactic { * cspT simp with tac "hide STOP" 1 * })
18 done

Fig. 5. Some typical lemmas

For the situation that the available tactics fail to prove an equation Csp-
Prover also offers proof commands that allow the user to take more detailed
control of the rewriting process: Equations can be decomposed into their left
and right hand side; equations can be glued together again; basic processes can
be decomposed into their parts; specific algebraic laws can be chosen for the

rewriting process. These techniques allows the user to choose exactly the point
at which an algebraic law shall be applied.

4 Fixed point analysis

In general, Csp specifications are recursive definitions. Take for instance the Csp
specification

X = (a → X) 2 X

which shall define the behaviour of a process X . Possible interpretations of X
are, for instance, the processes Qa and Qab : 5

Qa = (a → Qa)
Qab = (a → Qab) 2 (b → Qab)

Thus, the two standard questions on recursively defined objects apply to Csp
specifications: Does there exist a solution? If there exists a solution, is this so-
lution uniquely determined? In the context of analysing systems, also a third
question arises: What proof principles can be applied to the solution?

For Csp, these questions are answered either in terms of order theoretic tech-
niques based upon Tarski’s fixed point theorem or in terms of metric techniques
based upon Banach’s fixed point theorem. The following tabular summarizes the
structures available for the main Csp models, see [16, 18]:

Model order theoretic structure metric structure
T complete lattice complete metric space
N for finite alphabet Σ : complete metric space

complete partial order
F complete lattice complete metric space
R complete lattice no published results

With Tarski’s fixed point theorem one can show the existence of a solution,
however, there can be several ones. Depending on the model under considera-
tion, Csp selects the smallest (respectively the largest) fixed point under the
chosen ordering relation and achieves in this way uniqueness. In contrast to this,
Banach’s fixed point theorem yields the existence of a unique solution. Conse-
quently, only order-theoretic reasoning can be applied to the specification above.
The metric approach fails.

The applicability of Tarski’s and Banach’s fixed point theorem depends on
the semantical properties of the given Csp specification. For Tarski’s theorem,
on the semantical level all functions are required to be continuous with respect to
the chosen ordering relation. In most Csp models, all the standard Csp operators
5 Replacing X on the rhs by Qa yields with help of the idempotence law P 2 P = P :

(a → Qa) 2 Qa = (a → Qa) 2 (a → Qa) = a → Qa = Qa . For Qab we obtain:
(a → Qab) 2 Qab = (a → Qab) 2 (a → Qab) 2 (b → Qab) = (a → Qab) 2 (b →
Qab) = Qab .

and their composition yield continuous functions. Banach’s theorem, however,
requires the functions on the semantical level to be contracting. Here, the process
algebraic literature has introduced the concept of ‘guardedness’ of a process
expression. In Csp, a guarded process expression yields a contracting function
on the semantical level. Thus, both semantical requirements, namely continuity
and contractiveness, can be captured on a purely syntactical level. The process
expression (a → X) 2 X fails to be guarded, the expressions a → Qa and
(a → Qab) 2 (b → Qab) are guarded.

Concerning the analysis of recursively defined objects, fixed-point-induction
offers a powerful proof method. In order to prove, e.g., in the traces model T

X =T Qa

one needs to show

Qa vT (a → Qa) 2 Qa ∧ X vT a → X (∗)

i.e., Qa needs to be refined by the process which is obtained by substituting X
by Qa on the rhs of the defining equation of X , and X needs to be refined by
the process which is obtained by substituting Qa by X on the rhs of the defining
equation of Qa . Qab is not equivalent to X , as X 6vT (a → X) 2 (b → X). The
two refinements (∗) can be proven as follows:

Qa =T Qa 2 Qa =T (a → Qa) 2 Qa , (∗1)

X =T (a → X) 2 X vT (a → X) 2 Stop =T (a → X) (∗2)

Here, we use the facts that Stop is the largest process with respect to the order
vT , and that P = Q ⇔ P v Q ∧ Q v P .

4.1 Basic fixed point analysis techniques in Csp-Prover

The above examples are complex enough to demonstrate basic techniques for
fixed point analysis in Csp-Prover. The next section on deadlock analysis will
provide more elaborate examples. Fig. 6 shows the encoding of the Csp specifica-
tions for X and Qa . PNfun is a reserved word of Csp-Prover. It is used to specify
that for each process name A the equation A = PNfun(A) holds. This function
PNfun can be used for each type of process names by the option overloaded, as
shown in lines 8 and 14.

Fig. 7 shows the proof script for Qa vT X and X vT Qa (i.e. X =T Qa).
First, we declare that the cpo approach is to be used in this proof (line 4)6.
The refinement lemmas at lines 10 and 19 give the goals (∗) to Csp-Prover. It is
necessary to explicitly specify the type of $X – otherwise $X has no information
on the type Event. If this typing is left out, the goal becomes more general and is
6 cpo - complete partial order. In contrast to this, it is possible to use to set FPmode

to the value CMSmode; cms - complete metric space, i.e., one works with Banach’s
theorem.

1 theory xq = CSP T:
2 datatype Event = a | b
3
4 (* unguarded process *)
5 datatype ungPN = X
6 consts ungfun :: "ungPN => (ungPN, Event) proc"
7 primrec "ungfun X = a -> $X [+] $X"
8 defs (overloaded) ungfun def [simp]: "PNfun == ungfun"
9

10 (* guarded process *)
11 datatype gPN = Qa
12 consts gfun :: "gPN => (gPN, Event) proc"
13 primrec "gfun Qa = a -> $Qa"
14 defs (overloaded) gfun def [simp]: "PNfun == gfun"
15 end

Fig. 6. Encoding of recursive Csp specifications

not valid any more. The proof strategy used in lines 11–13 is exactly the same as
the one in (∗1) explained above. First, fixed point induction is applied to the rhs
(line 11). The function fx explicitly states for each process name A on the rhs,
which process on the lhs is expected to be refined by A. The command in line 12
instantiates the process name Qa . After this command, the subgoal $Qa <=T a
-> $Qa [+] $Qa is displayed. This can be proven by the unwinding (lines 13)
as stated above (∗1). The reverse direction X vT Qa can be proven in a similar
way (lines 15–22).

While, for mathematical reasons, fixed point induction of type cpo can be
applied only for unfolding the rhs as demonstrated in Fig. 7, metric fixed point
induction can also be applied on the lhs. In the proof practice this is of ma-
jor advantage. In a refinement goal spec v impl , the process impl often has a
concurrent structure like (P1 |[X]| P2) \ Y , which cannot be unfolded.

The price to pay for metric fixed point induction, however, is that it requires
process expression to be guarded. To this end, Csp-Prover provides a predicate
guardedfun to check if a process expression fun is guarded. In our example, the
application guardedfun ungfun leads to False, where ungfun is the function
defined at line 7 in Fig. 6. This demonstrates how Csp-Prover prevents the use
of metric fixed point induction for the proof goal X =T Qa .

5 Deadlock analysis

Deadlocks are certainly the best known and also most feared failures exhibited
by concurrent systems. In the analysis of concurrent systems, proof of deadlock-
freedom is as fundamental as termination proofs are in the context of sequential
systems.

In Csp, deadlock is represented by the process Stop. A process is deadlock-
free, if it never reaches a state equivalent to Stop. On the semantical level, this
intuition is captured as follows: A process P is defined to be deadlock-free if and
only if

∀ s ∈ Σ∗ • (s, ΣX) /∈ failures(P).

1 theory xq refine cpo = xq:
2
3 (* CPO apporach *)
4 defs FPmode def [simp]: "FPmode == CPOmode"
5
6 (* Qa vT X *)
7 consts fx :: "ungPN => (gPN, Event) proc"
8 primrec "fx (X) = $Qa"
9

10 lemma x refine qa cpo: "$Qa <=T ($X::(ungPN, Event) proc)"
11 apply (rule cspT fp induct right[of "fx"], auto)
12 apply (induct tac p, auto)
13 by (tactic {* cspT unwind tac 1 *})
14
15 (* X vT Qa *)
16 consts fa :: "gPN => (ungPN, Event) proc"
17 primrec "fa (Qa) = $X"
18
19 lemma qa refine x cpo: "$X <=T ($Qa::(gPN, Event) proc)"
20 apply (rule cspT fp induct right[of "fa"], auto)
21 apply (induct tac p, auto)
22 by (tactic {* cspT unwind tac 1 *})
23
24 end

Fig. 7. A proof script for refinement over recursive process

After executing a trace s, the process P is not allowed to refuse the set of
possible communications ΣX = Σ ∪ {X}, namely those from the alphabet Σ
and the termination symbol X.

This definition on the semantical level has a purely syntactical counterpart:
Roscoe [16] presents the theorem that P is deadlock-free if and only if

DFX vF P ,

where the process DFX is defined as DFX = (! x : Σ → DFX) u SKIP and
vF stands for refinement in the stable failures model F . As the stable failures
model F has a complete axiomatic semantics [10], the above theorem yields that
Csp has a complete calculus for checking deadlock-freedom. In Section 5.1 we
demonstrate how to apply this calculus in Csp-Prover with an example taken
from an industrial case study.

While the refinement approach completely abstracts from the structure of the
concurrent system to be analyzed, other techniques have been suggested which
are tailored specifically to a certain class of systems. Roscoe and Dathi [17], for
instance, present the following theorem on a specific class of networks V : Let V
consist of a finite number of processes {P1, . . . ,Pn}; if for all pairs of processes
Pi and Pj with i 6= j and for all states σ of the network V holds that

Pi
σ−→• Pj ⇒ fi(σ) > fj (σ) (∗)

then the network V is deadlock free – see [17] for the full details of this theorem.
The above formula reads: whenever the network is in a state σ such that Pi

has an ungranted request to Pj (written Pi
σ−→ • Pj), i.e., the system is in a

potential deadlock situation, then the progress fi(σ) which Pi has made in state
σ is bigger than the progress fj (σ) which Pj has made in state σ. Essentially, the
theorem applies an argument on the exclusion of circular waiting to the network.
The functions fk , 1 ≤ k ≤ n, are a so-called variant of the network V , which
needs to be established for each network individually.

This technique is of purely semantical nature: the state to be considered in
condition (∗) includes as one of its components the failures of the network to be
analyzed. In this sense, the application of this theorem is more involved than the
abstraction technique. Its advantage, however, lies in its capability to analyze
whole families of systems. In [11] we give a proof of deadlock freedom for a whole
family of systolic arrays. It is an open research question, if syntactic methods
such as the refinement approach discussed above are capable of proving deadlock
freedom for whole families of systems.

5.1 Proofs by abstraction

1 (* data part *)
2 typedecl init d typedecl request d typedecl response d typedecl exit d
3 datatype Data = Init init d | Exit exit d | Request request d | Response response d
4 datatype Event = c Data
5
6 (* process part *)
7 datatype ACName = Terminal | TerminalConfigManagement
8 | Acquirer | AcConfigManagement
9 consts ACfun :: "(ACName, Event) proc"

10 primrec
11 "ACfun (Terminal) = c !? init:(range Init) -> $TerminalConfigManagement"
12 "ACfun (TerminalConfigManagement) =
13 c ? x -> IF (x:range Request)
14 THEN c !? response:(range Response) -> $TerminalConfigManagement
15 ELSE IF (x:range Exit) THEN SKIP ELSE STOP"
16 "ACfun (Acquirer) = c ? x:(range Init) -> $AcConfigManagement"
17 "ACfun (AcConfigManagement) =
18 c !? exit:(range Exit) -> SKIP |~|
19 c !? request:(range Request)
20 -> c ? response:(range Response) -> $AcConfigManagement"
21 defs (overloaded) Set ACfun def [simp]: "PNfun == ACfun"
22
23 constdefs AC :: "(ACName, Event) proc"
24 "AC == ($Acquirer |[range c]| $Terminal)"

Fig. 8. EP2 Specification at the Abstract Component Description Level.

In the following, we give an example of how to prove deadlock-freedom in
Csp-Prover via abstraction. To this end, we will show for a process AC that it is
a refinement of a more abstract process Abs in the stable failures model F . For
this process Abs we prove $DFtick v Abs, where $DFtick is the Csp-Prover’s
representation of the process DFX defined above. As refinement is transitive,
this establishes deadlock freedom for AC. It should be noted that Csp-Prover

1 datatype AbsName = Abstract | Loop
2 consts Absfun :: "(AbsName, Event) procDF"
3 primrec
4 "Absfun (Abstract) = c !? x -> $Loop"
5 "Absfun (Loop) = c !? x -> (SKIP |~| c !? x -> $Loop)"
6 defs (overloaded) Set Absfun def [simp]: "PNfun == Absfun"
7
8 constdefs Abs :: "(AbsName, Event) proc"
9 "Abs == $Abstract"

Fig. 9. An abstraction of the process shown in Fig. 8.

also includes the proof of the above syntactical characterization of deadlock
freedom.

Our example for this section is taken from an industrial case study on the
verification of EP2 [1], which is a new standard of electronic payment systems.
In [6], major parts of the EP2 system have been formalised in Csp-Casl [15].
For a system as complex as EP2, tool support is required in order to prove
deadlock freedom for the interaction between the various components.

Translating the data part of the specifications given in [6] into adequate
Isabelle code, we obtain specifications in the input format of Csp-Prover. Fig.
8 shows the nucleus7 of the initialisation procedure of the EP2 Terminal. The
Terminal starts the initialisation (line 11), where c!?x : X→ P represents that
one of data in X is nondeterministically sent on c, and waits then for data sent
by the Acquirer. If this data is of type Request, the Terminal answers with a
value of type Response (line 14). Another possibility is that the Acquirer wants
to exit the initialisation (line 15). Any other type of communication sent by the
Acquirer will lead to a deadlock represented by the process STOP (line 15). On
the other end of the communication, after receiving an initialisation request (line
16) the Acquirer internally decides if it wants to exit the process (line 18) or
interact with the Terminal by sending a request followed by a response of the
Terminal (line 19). The system AC to be analysed here consists of the parallel
composition of the Terminal and the Acquirer synchronised on the channel c
(line 24).

Using Csp-Prover, we can show in the stable-failure model F that the above
described process AC is a refinement of the process Abs of Fig. 9. This proof gives
another nice example on how to apply proof procedures to recursively defined
processes in Csp-Prover. Note that Abs is a purely sequential process which can
successfully terminate after any even number of communications through the
channel c. Which specific data is sent on c can be ignored here.

Fig. 10 shows the complete script to prove the refinement relation Abs vF
AC (line 15) in Csp-Prover. First, it is declared that the CMS approach is applied
for the analysis of fixed points in this verification (line 2). Then we check that all
processes are guarded. This check is fully automated routine (lines 5–6). Next,

7 For the purpose of this paper, the specification text has been simplified. The complete
formalisation and proof can be found in [8].

1 (* the CMS approach is used for analysing Fixed Points *)
2 defs FPmode def [simp]: "FPmode == CMSmode"
3
4 (* check the guards *)
5 lemma guardedfun AC Abd[simp]: "guardedfun ACfun" "guardedfun Absfun"
6 by (simp add: guardedfun def, rule allI, induct tac p, simp all)+
7
8 (* expected correspondence of process-names in Abs to AC *)
9 consts Abs to AC :: "AbsName => (ACName, Event) proc"

10 primrec
11 "Abs to AC (Abstract) = ($Acquirer |[range c]| $Terminal)"
12 "Abs to AC (Loop) = ($AcConfigManagement |[range c]| $TerminalConfigManagement)"
13
14 (* the main theorem *)
15 theorem ep2 Abs AC: "Abs <=F AC"
16 apply (unfold Abs def AC def)
17 apply (rule cspF fp induct left[of "Abs to AC"], auto)
18 apply (induct tac p, auto)
19 apply ((tactic * cspF hsf tac 1 *)+,
20 (rule | rule cspF decompo ref |
21 rule cspF Int choice left1, auto |
22 rule cspF Int choice left2, rule cspF decompo ref, auto)?,
23 (auto simp add: image iff inj on def)?)+
24 done

Fig. 10. The complete proof script for Abs vF AC.

a mapping is defined from the process-names of Abs to process expressions in AC
(line 9-12)8. After these preparations, Abs vF AC is given as a goal (line 15).
Using the above mapping, the proof obligations on the recursive process Abs
are unfolded into a base case and step cases by cspF fp induct left. This is
the fixed point induction rule for unfolding the left-hand side (line 17). Since a
step case is produced for each of the process names of Abs, the step cases are
instantiated by induction on AbsName (line 18). Finally, the theorem is proven by
Csp-Prover’s tactic csp hsf tac (line 19) which sequentialises any expression,
csp decompo ref which decomposes Csp-operators (line 20) by considering the
refinement, for example,

Y ⊆ X ∧ (∀ x ∈ Y .P(s) vF Q(s)) =⇒ ! x : X • P(s) vF ! x : Y •Q(s),

csp Int choice left1 which selects the first P from P u Q in the left-hand
side (line 21), and Isabelle’s tactic auto (line 23).

It remains to show that AC is deadlock-free. Fig. 11 shows the complete
script to prove the refinement relation $DFtick vF Abs (line 8) in Csp-Prover.
In this proof, cspF fp induct right, which is the fixed point induction rule
for unfolding the right-hand side, is applied (line 10). Since we use the CMS
approach in this example, we can apply the fixed point induction to the both
sides. Note that in the CPO approach cspF fp induct right is available only
for unfolding right-hand sides. The proof strategy used in Fig. 11 is similar to
the case of Abs v AC.
8 It is hard to automatically derive such correspondences. However, Csp-Prover can

assist users to derive them.

1 (* expected correspondence of process-names in Abs to DF *)
2 consts Abs to DF :: "AbsName => (DFtickName, Event) proc"
3 primrec
4 "Abs to DF (Abstract) = ($DFtick)"
5 "Abs to DF (Loop) = ($DFtick)"
6
7 (* the main theorem *)
8 theorem ep2 DF Abs: "$DFtick <=F Abs"
9 apply (unfold Abs def)

10 apply (rule cspF fp induct right[of "Abs to DF"], auto)
11 apply (induct tac p, auto)
12 apply ((tactic {* cspF hsf tac 1 *}, rule cspF Int choice left1,
13 rule cspF decompo ref, auto) |
14 (tactic {* cspF hsf tac 1 *}, rule cspF Int choice left2, simp))+
15 done

Fig. 11. The complete proof script for $DFtick vF Abs.

1 theorem AC isDeadlockFree: "AC isDeadlockFree"
2 apply (simp add: DeadlockFree DFtick ref)
3 apply (rule cspF trans[of Abs])
4 apply (rule ep2 DF Abs, rule ep2 Abs AC)
5 done

Fig. 12. The complete proof script for the deadlock-freedom of AC.

Finally, we give a script for showing that AC is deadlock-free in Fig. 12. The
main goal is rewritten to $DFtick v AC by DeadlockFree DFtick ref, which is
the encoded syntactical characterization of deadlock-freedom (line 2). We finally
establish our proof goal by combining $DFtick v Aba and Abs v AC, which have
been proved in Figs. 10 and 11, respectively.

6 Summary and Future work

In this paper, we have reviewed a number of proof principles of the process
algebra Csp, have discussed their merits and limitations, and have shown by the
means of practical examples how these techniques can be applied in the analysis
of concurrent systems using Csp-Prover. It turned out that mechanized theorem
proving is needed for both, the verification and the application of proof principles
in Csp and process algebra in general.

Future work will include the implementation of further Csp models in Csp-
Prover, the integration of FDR and Csp-Prover, as well as the application of
Csp-Prover in further case studies.

Acknowledgement The authors would like to thank Liam O’Reilly and Temes-
ghen Kahsai for help with some of the proof scripts, and Erwin R. Catesbeiana
Jr for contributing deep insights into the nature of fixed point induction.

References

1. eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.
2. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.

Elsevier Science Inc., New York, NY, USA, 2001.
3. B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock analysis of a

fault-tolerant system. In AMAST’98, LNCS 1548, pages 124–139. Springer, 1998.
4. B. Buth and M. Schrönen. Model-checking the architectural design of a fail-safe

communication system for railway interlocking systems. In FM’99, LNCS 1709.
Springer, 1999.

5. B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authenti-
cation protocols. In TPHOL 1997, LNCS 1275, pages 121–136. Springer, 1997.

6. A. Gimblett, M. Roggenbach, and H. Schlingloff. Towards a formal specification
of an electronic payment system in Csp-Casl. In WADT 2004, LNCS 3423, pages
61–78. Springer, 2005.

7. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
8. Y. Isobe and M. Roggenbach. Webpage on Csp-Prover.

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
9. Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In

TACAS 2005, LNCS 3440. Springer, 2005.
10. Y. Isobe and M. Roggenbach. A complete axiomatic semantics for the CSP stable

failures model. In CONCUR 2006, LNCS. Springer, 2006.
11. Y. Isobe, M. Roggenbach, and S. Gruner. Extending CSP-Prover by deadlock-

analysis: Towards the verification of systolic arrays. In FOSE 2005, Japanese
Lecture Notes Series 31. Kindai-kagaku-sha, 2005.

12. T. Kahsai, M. Roggenbach, and B.-H. Schlingloff. Specification-based testing for
refinement. In Proceedings of SEFM 2007. IEEE Computer Society, 2007.

13. F. S. E. Limited. Failures-divergence refinement: FDR2. http://www.fsel.com/.
14. T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283. Springer,

2002.
15. M. Roggenbach. Csp-Casl: a new integration of process algebra and algebraic

specification. Theor. Comput. Sci., 354(1):42–71, 2006.
16. A. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
17. A. W. Roscoe and N. Dathi. The pursuit of deadlock freedom. Information and

Computation, 75(3):289–327, 1987.
18. B. Roscoe. Revivals, stuckness and responsiveness, 2005. Unpublished draft.
19. B. Roscoe. Seeing beyond divergence. In Communicating Sequential Processes, the

first 25 years, LNCS 3525. Springer, 2005.
20. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and

Analysis of Security Protocols: the CSP Approach. Addison-Wesley, 2001.
21. V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency. Theoretical

Computer Science, 170(1–2):297–348, 1996.
22. S. Schneider. Verifying authentication protocol implementations. In FMOODS

2002, volume 209 of IFIP Conference Proceedings, pages 5–24. Kluwer, 2002.
23. H. Tej. HOL-CSP: Mechanised Formal Development of Concurrent Processes. BISS

Monograph Vol. 19. Logos Verlag Berlin, 2003.
24. H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.

In FME’97, LNCS 1313, pages 318–337. Springer, 1997.

