
The Stable Revivals Model in CSP-Prover

D. Gift Samuel1 Markus Roggenbach1

Swansea University, United Kingdom

Yoshinao Isobe1,2

Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Abstract

The stable revivals model R provides a new semantic framework for the process algebra Csp. The model
R has recently been added to the realm of established Csp models. Within the Csp context, it enhances
the analysis of systems with regards to properties such as responsiveness and stuckness. These properties
are essential in component based system design. In this paper we report on the implementation of different
variants of the model R within Csp-Prover. Based on Isabelle/HOL, Csp-Prover is an interactive proof tool
for Csp refinement, which is generic in the underlying Csp model. On the practical side, our encoding of
the model R provides semi-automatic proof support for reasoning on responsiveness and stuckness. On the
theoretical side, our implementation also yields a machine verification of the model R’s soundness as well
as of its expected properties.

Keywords: CSP, Isabelle/HOL, Stable Revivals Model.

1 Introduction

The process algebra Csp [6,15,20,1] provides a well-established, theoretically thor-
oughly studied, and in industry often applied formalism for the modelling and veri-
fication of concurrent systems. Csp has been successfully applied in areas as varied
as distributed databases, parallel algorithms, train control systems, fault-tolerant
systems and security protocols.

Fixing one syntax, Csp offers different semantic models, each of which is dedi-
cated to special verification tasks. The traces model T , e.g., covers safety properties.
Liveness properties can be studied in more elaborate models. Deadlock analysis, e.g.,
is best carried out in the stable-failures model F , the failures-divergences model N

1 This cooperation was supported by the EPSRC Project EP/D037212/1.
2 This work was supported by KAKENHI 20500023.

Electronic Notes in Theoretical Computer Science 250 (2009) 119–134

1571-0661/$ – see front matter Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.021

http://www.elsevier.com/locate/entcs

allows for livelock analysis. The analysis of fairness properties requires models based
on infinite traces, see [15,1] for further details.

Recently, the Csp realm of models has been extended by the newly designed
stable-revivals model R [17]. On the practical side, the model R is appropriate
to study responsiveness [18,19], which is a property significant in the context of
component-based system design. From a theoretical point of view, the model R
turns out to be fully abstract with respect to detecting when some system of pro-
cesses can fail to make progress despite one or more of them having unfinished
business with other(s). However, this comes at the price that certain algebraic
properties fail to hold in the new model, among them the law �−�-distributivity
(P � Q) � R = (P � R) � (Q � R) is the most prominent example.

Csp-Prover [7,11,8,9,10] is an interactive theorem prover for Csp based on Is-
abelle/HOL [13]. With its theorem proving approach Csp-Prover complements the
established model checker FDR [5] as a proof tool for Csp. Csp-Prover is generic
in the various Csp models. Currently, it fully supports the traces model T and the
stable-failures model F .

Csp-Prover provides a deep encoding of Csp, and, consequently, also allows for
meta theorems on the semantics to be implemented. Mistakes found, e.g., in the
typing of one semantical function of the predecessor of the model N [23], or in
the algebraic laws for the model F [8] demonstrates that presentations of similar
models and axiom schemes will only be ‘complete’ once they have been accompanied
by mechanised theorem proving [16].

In this paper, we report on the encoding the model R in Csp-Prover. Overall,
our implementation validates the design as given in [17]. However, we suggest
to adapt two semantic clauses and make a proposal of how to extend the model
R – against the original intention to keep it as a model characterized by finite
observations only – also to infinite alphabets.

In the remaining section, we briefly review related work. In [23], Tej and Wolff
presented a Cpo based, shallow encoding of the failures divergence model N in
Isabelle/HOL [13]. Camilleri mechanised the traces model T [2] and later a variation
of the failures-divergence model N [3] in HOL. Dutertre and Schneider [4] formalised
the traces model T in PVS [14] in order to reason about authentication protocols.
Wei and Heather [24] extended this formalisation in order to reason about the stable
failures model of Csp in PVS. Recently, Kammueller [12] formalised the Csp failures
divergence model N in Isabelle/HOL. To the best of our knowledge, however, this
is the first paper reporting on theorem proving for the model R.

This paper is organised as follows: Section 2 introduces Csp-Prover, its syntax,
and the underlying theorem prover Isabelle/HOL. Section 3 describes our imple-
mentation: we discuss three variants of the model R and study their properties
w.r.t. completeness of the domains as well as type correctness and continuity of the
operators. In Section 4, we report on our results concerning algebraic laws.

A status report on this project was published in [22], [21] includes the full
technical details.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134120

Fig. 1. Architecture of the model R in Csp-Prover

2 Background

In this section, first we give an overview of Csp-Prover, then summarise the syntax
of the input language of Csp-Prover, CspTP, and finally discuss how to work with
the interactive theorem prover Isabelle/HOL.

2.1 Csp-Prover

Csp-Prover [7,11,8,9,10] is a proof tool for Csp based on the generic theorem prover
Isabelle/HOL. Csp-Prover has a generic architecture, see Fig. 1. To this end, it
includes a rich re-usable part, which is independent of the Csp model to be imple-
mented. The re-usable part provides proof infrastructure such as standard opera-
tions and elementary theorems on traces and event sets; fixed point theories such as
Tarski’s fixed point theorem and the standard fixed point induction rule based on
Complete Partial Orders (Cpo) and Banach’s fixed point theorem and the metric
fixed point induction rule based on Complete Metric Spaces (Cms); and the Csp

syntax. This re-usable part can then be instantiated with a specific Csp model.
The instantiation of Csp-Prover with a Csp model, say the model R, requires the
following steps, see Fig. 1:

(i) to define the semantic domain (the box ‘Domain for R’),

(ii) to prove that this domain is a Cpo (part of the dashed arrow from ‘Domain
for R’ to ‘Theory on CPO’),

(iii) to define the semantic functions (the box ‘Semantics for R’),

(iv) to prove that these functions are type correct (the box ‘Semantics for R’),

(v) to prove that these functions are continuous (part of the dashed arrow from
‘Domain for R’ to ‘Theory on CPO’), and

(vi) to provide proof infrastructure for the model, i.e., prove algebraic laws and

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 121

develop tactics specific to this model (the box ‘Proof Infrastructure for R’).

2.2 The input language of Csp-Prover

Csp-Prover offers a rich set of Csp operators, where the language CspTP serves as
semantical core, i.e., semantic clauses are given only for operators in this language.
As usual, operators such as synchronous parallel, interleaving, sending and receiving
values over channels are implemented as syntactic sugar.

Relatively to an arbitrary alphabet of communications Σ and a set of process-
names Π, the language CspTP, see Fig. 2, offers the usual set of Csp operators
such as the basic processes Skip, Stop, and Div , action prefix, the binary choice
operators, the call to a named process $N etc. CspTP extends the set of standard
operators by

• a replicated internal choice operator !! c : C • P(c). This operator provides a
’tamed’ version of Csp’s general internal choice �S , which makes an internal
choice over an arbitrary set of processes S . CspTP restricts this set S to be an
indexed set of the form {P(c) | c ∈ C} where the index set C is either C ⊆ P(Σ)
or C ⊆ Nat (i.e.C ∈ Choice(Σ) = P(P(Σ)) � P(Nat)).

• a depth restriction operator P ↓ n, where P ↓ n behaves exactly like P until
exactly n events have occurred.

These two extensions allow one to express recursive process definitions by process
terms only. Based on this insight, [8] presents a complete axiomatic semantics for
CspTP w.r.t. the stable failures model F . We use Proc(Π,Σ) for representing the set
of processes defined by Fig. 2.

P ::= Skip %% successful terminating process
| Stop %% deadlock process
| Div %% divergence
| a → P %% action prefix
| ? x : X → P(x) %% prefix choice
| P � P %% external choice
| P � P %% internal choice
| !! c : C • P(c) %% replicated internal choice
| if b then P else P %% conditional
| P |[X]| P %% generalised parallel
| P \ X %% hiding
| P [[r]] %% relational renaming
| P o

9 P %% sequential composition
| P ↓ n %% depth restriction
| $N %% process name

X ⊆ Σ, C ∈ Choice(Σ), b is a condition, r ⊆ (Σ × Σ), n ∈ Nat , and N ∈ Π.

Fig. 2. Syntax of basic Csp processes in Csp-Prover.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134122

For the purpose of implementing the stable revivals model R, we extend our
core language CspTP by the Csp interrupt operator P � Q and the Csp timeout
operator P � Q as both these operators play prominent roles within the model R.

2.3 Isabelle/HOL

Isabelle/HOL [13] is a widely used, interactive theorem prover for Higher Order
Logic. It provides a large range of built-in data types like bool, int, nat, etc.
More complex types are provided via type constructors such as list, the type of
lists, set, the type of sets, or pair, encoding the Cartesian product. This given
type system can be extended in various ways, e.g., by a new datatype. Csp-Prover
uses this construct, for example, in order to create the polymorphic type ’a event:

datatype ’a event = Ev ’a | Tick

Here, ’a is a type variable. Assuming that ’a represents the alphabet of communi-
cations Σ, the new type ’a event represents its extension Σ� by the termination
signal �.

Type definitions are yet another technique to extend Isabelle/HOL’s type sys-
tem. They define a sub-type of an existing type. In Csp-Prover this is used, e.g.,
in order to define the traces over an alphabet:

typedef ’a trace = "{l::(’a event list). Tick ~: set (butlast l)}

The above code creates the type ’a trace as a subtype ’a event list: it includes
all lists over events, where the event tick does not appear but in the last position –
butlast l removes the last element from a list, the function set forms the set of
all elements appearing in a list.

New function symbols are declared using the keyword consts. Their meaning
can then be defined, e.g., using the keyword defs, which declares them to be a
definitional extension of the existing theory. The command constdef combines
these two mechanisms, which in Csp-Prover is, e.g., used in order to encode Csp

healthiness conditions:

constdef
HC T1 :: "’a trace set => bool"
HC T1 def : "HC T1 T == (T ~= {} & prefix closed T)"

The above code declares a check function HC T1 for the traces condition T1. The
function HC T1 returns ‘true’ if its parameter T is non-empty and prefix closed.

Primitive recursion is another mechanism to define the meaning of a function in
Isabelle/HOL. This mechanism requires the domain of the function to be defined
with the Isabelle/HOL datatype construct. Given Csp-Prover’s type for processes:

datatype
(’p,’a) proc
= STOP | SKIP | DIV | ...

which takes a type ’p for process names and a type ’a for the alphabet of communi-
cations as its parameters, the semantic functions of the traces model T are defined

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 123

inductively over the process syntax:

const
traces :: "(’p,’a) proc => (’p => ’a domT) => ’a domT"

primrec
"traces(STOP) = (%M. {<>}t)"
"traces(SKIP) = (%M. {<>, <Tick>}t)" ...

Here, the first parameter of the function traces is the basic Csp process formed
along the extended grammar given in Fig. 2, the second parameter gives the in-
terpretation of the process names. In the semantic clauses, this second parameter
appears as the lambda abstraction %M. Note that both clauses presented above are
independent of the process interpretation. The function { }t maps the given sets
into the traces domain.

Types, their operations, and theorems can be grouped into axiomatic type
classes. Csp-Prover uses this abstraction mechanism e.g. in order to collect the
standard results on complete partial orders. Instantiation makes these results then
available for a specific settings:

instance domT :: (type) cpo
apply (intro classes)
apply (simp add: hasLUB def)
apply (rule tac x="UnionT X" in exI)
apply (simp add: directed def UnionT isLUB)
done

In the code above, Csp-Prover’s type class cpo is instantiated with the domain
domT for the Csp traces model. This instantiation generates proof obligations,
which essentially are discharged by referring to the theorem UnionT isLUB which
states that the set theoretic union provides the least upper bound in the traces
domain.

3 Implementation

The model R appeared first in [19]. The main source for our paper is [17], which is
the revision of a 2005 draft. In this section, we give variations of the stable revivals
model, encode them in Csp-Prover, and discuss type correctness and continuity of
semantic operators.

3.1 The domain of the model

Given a set Σ of communications, the stable revivals model denotes a Csp process
P by a triple (T ,D ,R), where

• T ⊆ Σ∗� consists of all P ’s finite traces.
• D ⊆ Σ∗ consists of all traces after which P can possibly deadlock. Since a

successfully terminated trace (a trace ending with �) can not lead to a deadlock,
� does not appear in the deadlock traces.

• R ⊆ Σ∗×P(Σ)× Σ consists of all revivals of P . A revival is a triple in which the
first element is a trace of the process P , the second element is the refusal set in

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134124

a stable state after the given trace and the third element is a non-tick event that
the process P can accept in the stable state after the trace. The third element is
called “reviving event”. In a stable state of revival, the process does not engage
in � or any internal events. A revival (s,X , a) states that process P can perform
trace s, stably refuse X , and accept the event a.

As usual in Csp, not all such triples are included in the semantical domain of
the model. Only a ‘healthy’ subset is selected. Given a triple (T ,D ,R) over an
alphabet Σ, [17] lists the following healthiness conditions:

T1 T is nonempty and prefix-closed.

D1 D ⊆ T .

R1 (s,X , a) ∈ R ⇒ s � 〈a〉 ∈ T , i.e. every trace implied by a revival is required to
be in T .

R2 (s,X , a) ∈ R ∧ Y ⊆ X ⇒ (s,Y , a) ∈ R, i.e. if there is a revival that can stably
refuse X , then all subsets Y of X can also be refused.

R3 (s,X , a) ∈ R ∧ b ∈ Σ ⇒ ((s,X , b) ∈ R ∨ (s,X ∪ {b}, a) ∈ R), i.e. if a state
has a revival, then every event b of the alphabet must appear in the refusal set
of a revival or must be an accepted event.

RRS (s,X , a) ∈ R ⇒ a /∈ X , i.e. the accepted event a is not allowed to appear in
the refusal set X .

We also consider the condition:

R3′ ((s,X , a) ∈ R ∧ Y ⊆ Σ ∧ ∀ b ∈ Y : (s,X , b) /∈ R) ⇒ (s,X ∪ Y , a) ∈ R,
i.e. any set of events that is not accepted when X is refused must also be refused.
This condition results from our attempts to come up with a type correct model
over arbitrary alphabets.

Varying the included healthiness conditions, we define three different domains
domRfin

Σ , domRarb
Σ , and domRm

Σ as subsets of

Σ∗� × Σ∗ × (Σ∗ × P(Σ) × Σ)

The triples (T ,D ,R) of

domRfin
Σ satisfy the healthiness conditions T1, D1, R1, R2, R3 and RRS. Fur-

thermore, Σ is required to be finite. This is the definition of the domain as given
in [17].

domRarb
Σ satisfy the healthiness conditions T1, D1, R1, R2, R3 and RRS. Σ,

however can be an arbitrary set.

domRm
Σ satisfy the healthiness conditions T1, D1, R1, R2, R3′ and RRS. We

call domRm
Σ the modified domain.

In general, these domains relate as follows:

domRarb
Σ ⊃ domRm

Σ .

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 125

As R3′ implies R3, domRm
Σ is a subset of domRarb

Σ . There exists alphabets, for
which this set inclusions is proper. Let, e.g., Σ = Nat ∪ {a, b}. Then

Dex = (DT ,DD ,DR) = ({〈〉, 〈a〉, 〈b〉}, {}, {(〈〉,X , a), (〈〉,X , b) | X ⊆fin Nat})

is an element of domRarb
Σ but not of domRm

Σ . Clearly, R3 holds for a, b ∈ Σ. Let n ∈
Nat . Then (〈〉, {n}, a) ∈ RD , as {n} is a finite set. Concerning R3′, instantiate in its
premise (s,X , a) = (〈〉, ∅, a) ∈ DR and Y = Nat . Then ∀n ∈ Nat : (〈〉,X ,n) /∈ DR.

However, (〈〉, ∅ ∪ Nat , a) �∈ DR. Thus, Dex �∈ domRm
Σ .

We strengthen condition R3 to R3′ in order to obtain a type-correct semantics
for the renaming operator over arbitrary alphabets. Presumably, including R3′ also
leads to a surjective semantic mapping from the set of processes Proc(Π,Σ) to the
domain domRm

Σ , i.e. the model R with infinite alphabet Σ is expressive. [17] shows in
Theorem 5.3 that there is a process for each member of domRfin

Σ with finite alphabet.
However, if infinite alphabets are allowed, domRarb

Σ includes meaningless members
to which no process is mapped, where the above example Dex = (DT ,DD ,DR) is
such a member of domRarb

Σ .
In accordance to [17], in all three domains we take componentwise subset inclu-

sion as the ordering relation.

3.2 Encoding the domains of the model R

In this subsection, we prove that all three domains presented above are pointed
Cpos. To this end, we prove that the individual components of the models are
pointed Cpos. Technically, this is achieved by proving the models to be instances of
axiomatic classes defined in Csp-Prover. We demonstrate our technique on selected
examples.

First, we create a new type to represent the domain of the model. The domain
of the model R is encoded using the domain of the model T . We create types
to represent the deadlock and revivals component of the model separately. The
command types creates a type synonym called ’a revival to store a trace, a
set of events and an event. The type of the revivals component is created by the
following command in Isabelle/HOL:

types ’a revival = "(’a trace * ’a event set * ’a event) "
typedef ’a setR = "{ X ::(’a revivals set).

HC RT(R) & HC RF(R) & HC R2(R) & HC R3(R) }"

The power-set of the domain of the revivals component without healthiness
conditions is represented as the type ’a revivals set. We restrict the type ’a
revivals set with healthiness conditions relevant for the revivals component only.
HC R2(R) and HC R3(R) encode healthiness conditions R2 and R3, respectively,
introduced in Section 3.1, and HC RT(R) and HC RF(R) require that the s and X
of a revival (s,X , a) do not contain � and that a is different from �.

In order to turn setR into a partially ordered set, we declare the type setR to

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134126

be an instance of the axiomatic type classes ord and order:

instance setR :: (type) ord
by (intro classes)
defs (overloaded)
subsetR def : "F <= E == Rep setR (F) <= Rep setR (E)"
psubsetR def : "F < E == Rep setR (F) < Rep setR (E)"
instance setR :: (type) order

We prove that setR is closed under union as stated in the following lemma:

lemma setR Union in setR: "(Union (Rep setR ‘ Fs)) : setR"

This lemma is then used in proving setR to be a Cpo.
Similarly we can create a type ’a setD to represent the deadlock component,

and prove that it is a pointed Cpo.
In the next step, we implement the domain Domain R based on the theories

Domain T, set R, and set D for the individual components of the model R. The
type of domain of the model R, ’a domR, is created using the type of the traces,
deadlocks and revivals component. The remaining healthiness conditions, which
connect the different components, are encoded in the type definition of the domain:

types ’a domTsetDsetR = "(’a domT * ’a setD * ’a setR)"
typedef ’a domR = "{ X ::(’a domTsetDsetR). HC D1(X) & HC R1(X) }"

Here, HC D1(R) and HC R1(R) represent the healthiness conditions D1 and R1,
respectively. Using a lemma from the reusable part of Csp-Prover, we can lift the
property ‘pointed cpo’ from the components domT, setD, and setR to their product
domTsetDsetR. Next, we show that least upper bounds preserve the healthiness
conditions D1 and R1. Finally, we prove that the product space of domR is also a
pointed Cpo, again with a lemma given in the reusable part of Csp-Prover.

Using this approach, we have verified in Isabelle/HOL that the domains domRarb
Σ

and domRm
Σ form pointed cpos. As the type domRarb

Σ is a super type of domRfin
Σ ,

on the meta level we can conclude that also domRfin
Σ is a pointed cpo.

3.3 Semantic clauses

In this section we define two sets of semantic clauses for the stable revivals model:
the set Semorig follows [17]; relatively to this, the set Sem changes two deadlock-
clauses in order to obtain Csp standard laws – see Section 4 for the details.

Process denotations in the stable revivals model are given with the help of three
component functions, namely traces, deadlocks, and revivals. As discussed in Sec-
tion 2.3, Csp-Prover defines the semantics of the Csp operators relatively to an
interpretation M of the process names. The semantic clauses Semorig are literally
taken from [17], however extended to our input language as follows:

• For the replicated internal choice we adapt the clauses given for general internal
choice 3 :

3 [17] only defines the revivals component of the general internal choice operator. In the traces component,
for simplicity we follow the – admittedly questionable – Csp-Prover tradition to add the set {〈〉} which

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 127

tracesM (!! c : C • P(c)) =
⋃ {tracesM (P(c)) | c ∈ C} ∪ {〈〉}

deadlocksM (!! c : C • P(c)) =
⋃ {deadlocksM (P(c)) | c ∈ C}

revivalsM (!! c : C • P(c)) =
⋃ {revivalsM (P(c)) | c ∈ C}

• For the depth restriction operator we define 4 :
tracesM (P ↓ n) = {s ∈ tracesM (P) | �s ≤ n}

deadlocksM (P ↓ n) = {s ∈ deadlocksM (P) | �s < n}
revivalsM (P ↓ n) = {(s,X , a) ∈ revivalsM (P) | �s < n}

The set Sem makes the following changes in the semantic clauses:

• For the prefix choice operator, the original deadlock component is:
deadlocksorig

M (? x : A → P(x)) = {〈x 〉 � t ′ | t ′ ∈ deadlocksorig
M (P(x)), x ∈ A}

Here we add the empty trace for the case that the choice set A is empty 5 :
deadlocksM (? x : A → P(x)) = {〈x 〉 � t ′ | t ′ ∈ deadlocksM (P(x)), x ∈ A}

∪ {〈〉 | A = {} }
I.e. prefix choice over the empty trace yields an immediate deadlock, for example,

deadlocksorig
M (? x : ∅ → Skip) = ∅,

deadlocksM (? x : ∅ → Skip) = {〈〉}
• For relational renaming, the original deadlock component is:

deadlockorig
M (P [[R]]) = { s ′ | ∃ s . sR∗s ′ ∧ s ∈ deadlocksorig

M (P)}
Here we take instead all those traces s ′, whose origin s has a failure that leads to
a deadlock after renaming:
deadlockM (P [[R]]) = { s ′ | ∃ s . sR∗s ′ ∧ (s,R−1(Σ�)) ∈ failuresM (P)}
[17] defines this function failuresM (P) with help of tracesM (P), failuresM (P), and
revivalsM (P) as follows:

failuresM (P) = {(s,X) | X ⊆ Σ� ∧ s ∈ deadlocksM (P)}
∪ {(s,X), (s,X ∪ {�}) | (s,X , a) ∈ revivalsM (P)}
∪ {(s,X) | s � 〈�〉 ∈ tracesM (P) ∧ X ⊆ Σ}
∪ {(s � 〈�〉,X) | s � 〈�〉 ∈ tracesM (P) ∧ X ⊆ Σ�}

The modified clause deadlockM (P [[R]]) has the effect that the renaming relation
can lead to deadlock traces, namely in the case that the domain of renaming
relations is a proper subset of the alphabet 6 . Take for example the alphabet
Σ = {a} with the empty renaming relation ∅. The process a → Skip does not
lead to any deadlock, consequently, after renaming the original deadlock clause
does not yield a trace leading to a deadlock:

deadlocksorig
M ((a → Skip)[[∅]]) = {s ′ | ∃ s. s∅∗s ′ ∧ s ∈ ∅} = ∅

In our example, R−1(Σ�) = ∅−1({a,�}) = {�}. Consequently, our modified

extends the operator also to the empty choice set. Our definition of the deadlock component to be the
union of all individual deadlock components follows the line of thought in the clause for binary internal
choice, which [17] defines as deadlocksM (P � Q) = deadlocksM (P) ∪ deadlocksM (Q).
4 The traces component is as given in [15].
5 This change has been approved by B. Roscoe.
6 Some authors assume for Csp the static condition that the domain of a renaming relation R has to cover
the full process alphabet of P – we give here a semantics that does not rely on this condition.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134128

clause yields the result:

deadlocksM ((a → Skip)[[∅]]) = {s ′ | ∃ s. s∅∗s ′ ∧ (s, {�}) ∈ {(〈〉, {�}), . . .}} = {〈〉}
With these sets of semantic clauses and given an interpretation of process names

M , the meaning of each process P ∈ Proc(Π,Σ) is defined by

[[P]]R(M) = (tracesM (P), deadlockM (P), revivalsM (P)).

3.4 Implementation of the semantic clauses and proof of type correctness

The Isabelle/HOL encoding of the semantic clauses appears to be straight forward.
One would like to define the component functions traces, deadlocks, and revivals
separately, where the traces component shall be inherited from the implementation
of the traces model T in Csp-Prover. However, this is not possible, as the seman-
tic clause of the generalized parallel operator makes the deadlock clauses and the
revivals clause mutually dependent.

Thus, we define in a first phase deadlocks and revivals simultaneously as one
function:

DeadlockRevivals :: "(’p,’a) proc => (’p => ’a domR) => (’a setD * ’a setR)"

From this function we separate in a second phase the individual definition of the
revivals and deadlocks:

consts
deadlocks :: "(’p,’a) proc => (’p => ’a domR) => ’a setD"
revivals :: "(’p,’a) proc => (’p => ’a domR) => ’a setR"

defs
deadlocks def: "deadlocks (P) M == ((fst ((DeadlockRevivals(P) M))))"
revivals def: "revivals (P) M == ((snd ((DeadlockRevivals(P) M))))"

and establish the original semantic clauses as lemmas. Overall, this approach makes
proofs easier and keeps the encoding readable.

Given an interpretation M of the process names, the range of the semantic
function [[·]]R(M) given in the previous section is clearly a subset of Σ∗� × Σ∗ ×
(Σ∗ × P(Σ) × Σ). It is, however, unclear, whether the semantic clauses are type
correct, i.e., whether they produce healthy elements only provided their arguments
are healthy. The modified domain presented in Section 3.1 is motivated by the fact
that renaming fails to be type correct in the case of an infinite alphabet.

We proved the type correctness of renaming provided that the renaming relation
R is finite over the domains domRarb

Σ in both version of semantic clauses. However,
type correctness fails over the domains domRarb

Σ when the relation R is allowed
to be infinite. The cause for this problem lies in the revival component, which is
determined as follows:

revivalsM (P [[R]]) = {(s ′,X , a ′) | ∃ s, a . sR∗s ′ ∧ a R a ′ ∧
(s,R−1(X), a) ∈ revivalsM (P)}

Let now Σ = Nat ∪ {a, b}, let N be a process name, let M (N) = Dex denote the
element Dex from Section 3.1, let Rel ⊆ Σ×Σ be the renaming relation with Rel =
{(a, a)} ∪ {(n, b) | n ∈ Nat}, i.e., a is renamed into a, all natural numbers n are

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 129

renamed into b, and b is not in the domain of Rel . Then D ′ = revivals($N [[Rel]]) =
{(〈〉, ∅, a)}. Healthiness condition R3 does not hold for D ′: as (〈〉, ∅, a) ∈ D ′ and
b ∈ Σ we need to have (〈〉, ∅, b) ∈ D ′ or (〈〉, {b}, a) ∈ D ′, which both is not the case.
Condition R3′ eliminates elements like Dex from the domain. Using Isabelle/HOL,
we could established: over the domain domRm

Σ renaming is type correct.
Summarising we can state: using Isabelle/HOL we have established that, pro-

vided renaming is finite, the two sets of semantical clauses Semorig and Sem are
type correct over domRarb

Σ . On the meta level we can conclude from this that they
are also type correct over domRfin

Σ . We have also proven using Isabelle/HOL that
over domRm

Σ both sets of clauses Semorig and Sem are type correct without any
restrictions.

3.5 Recursive Processes and continuity

CspTP provides a special function PNfunΠ : Π → Proc(Π,Σ), which is called a
process-name function, in order to describe recursive equations:

PNfunΠ A = a → $B
PNfunΠ B = (b → $A) � (c → Skip)

Here, the set of Π can be infinite, i.e., also infinite state processes can be expressed.
The interpretation M has to satisfy the equation 7 : for all N ∈ Π,

[[$N]]R(M) = [[PNfunΠ(N)]]R(M)

Since [[$N]]R(M) = M (N), this can be rewritten to the following form:

M = [[PNfunΠ]]fun
R (M)

where [[PNfunΠ]]fun
R (M) = (λN . [[PNfunΠ(N)]]R(M)). Consequently, M is a fixed

point of the function [[PNfunΠ]]fun
R .

We have encoded the cpo approach for the stable revivals model R, where the
ideal interpretation, written MRΠ, is given as follows:

MRΠ = LFP([[PNfunΠ]]fun
R)

where LFP represents the least fixed point. Finally, the semantics [[P]]R of each
process P is defined as follows: [[P]]R = [[P]]R(MRΠ). Consequently,

[[$N]]R = [[$N]]R(MRΠ) = [[PNfunΠ(N)]]R(MRΠ) = [[PNfunΠ(N)]]R.

In the rest of this section, we prove that the least fixed point of [[PNfunΠ]]fun
R

always exists for any process-name function PNfunΠ using Tarski’s fixed point the-
orem. In order to apply the Tarski’s theorem, we have to prove that the product
space of domain Π → domRm

Σ is Cpo and the function [[PNfunΠ]]fun
R is continuous.

We have already discussed the Cpo property in Section 3.2. Thus, we explain the
continuity here.

7 The semantics of P with the interpretation M : Π → domRm
Σ is defined by

[[P]]R(M) = (traces(fst(M))(P), deadlockM (P), revivalsM (P)).

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134130

The reusable part of Csp-Prover has the following lemma to prove that every
component function is continuous if and only if the composition is continuous:

[[f]]fun
R is continuous ⇔ ∀ p ∈ Π. (λM . [[f (p)]]R(M)) is continuous.

Therefore, at first, we show that the component function (λM . [[P]]R(M)) is contin-
uous for each process P ∈ Proc(Π,Σ).

Lemma 3.1 Let P ∈ Proc(Π,Σ). Then, (λM . [[P]]R(M)) : (Π → domRm
Σ) → domRm

Σ

is continuous.

Proof. We use a fact that the pair function (λ x . (f (x), g(x))) is continuous if their
components f , g are continuous. Thus, this lemma can be proven by showing that
all (λM . traces(fst(M))(P)), (λM . deadlockM (P)), and (λM . revivalsM (P)) are con-
tinuous. Here, we only show the continuity of (λM . revivalsM (P)), in other words,
we show that

⊔{revivalsM (P) | M ∈ Δ} = revivals(F
Δ)(P) by structural induction

on P , for each directed set Δ.

• The case of P = b → P ′. For showing the subset relation (⊆), let (s,X , a) ∈
⊔{revivalsM (P) | M ∈ Δ}, thus for some M ∈ Δ,

(s,X , a) ∈ revivalsM (b → P ′)
= {(〈〉,X , b) | b /∈ X } ∪ {(〈b〉 � s ′,X , a) | (s ′,X , a) ∈ revivalsM (P ′)}

Therefore, the following two cases are possible.
· The case of s = 〈〉 and a = b /∈ X . Hence,

(s,X , a) ∈ {(〈〉,X , b) | b /∈ X } ⊆ revivals(F
Δ)(b → P ′)

· The case of s = 〈b〉 � s ′ and (s ′,X , a) ∈ revivalsM (P ′) for some s ′. It im-
plies (s ′,X , a) ∈ ⊔{revivalsM (P ′) | M ∈ Δ}. By the induction hypothesis,
(s ′,X , a) ∈ revivals(F

Δ)(P ′). Hence,

(s,X , a) ∈ {(〈b〉 � s ′,X , a) | (s ′,X , a) ∈ revivals(F
Δ)(P ′)}

⊆ revivals(F
Δ)(b → P ′)

Consequently,
⊔{revivalsM (P) | M ∈ Δ} ⊆ revivals(F

Δ)(P).
The reverse relation (⊇) can be proven by a symmetric argument.

• The case of P = $N is proven as follows: Because the product space of the
stable revival domain (Π → domRm

Σ) is complete and Δ is directed,
⊔

Δ exists.
Furthermore, we can prove (

⊔
Δ)(N) =

⊔{M (N) | M ∈ Δ}. Hence,
⊔{revivalsM ($N) | M ∈ Δ} =

⊔{M (N) | M ∈ Δ} = (
⊔

Δ)(N)
= revivals(F

Δ)($N)
• The other cases can be proven similarly.

�

This result is easily extended over the product space of the domain domRm
Σ by

the lemma given in the reusable part of Csp-Prover.

Lemma 3.2 Let f ∈ Π → Proc(Π,Σ). Then, [[f]]fun
R : ((Π → domRm

Σ) → (Π →
domRm

Σ)) is continuous.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 131

Finally, we give a theorem to show that the ideal interpretation MRΠ exists by
applying the Tarski’s fixed point theorem, which guarantees the existence of the
least fixed point and is proven in the reusable part of Csp-Prover.

Theorem 3.3 The interpretation MRΠ = LFP([[PNfunΠ]]fun
R) exists.

Proof. By Tarski’s fixed point theorem, the function [[PNfunΠ]]fun
R has the least

fixed point
⊔{([[PNfunΠ]]fun

R)(n)(⊥) | n ∈ Nat} because [[PNfunΠ]]fun
R is continuous

by Lemma 3.2 and (Π → domRm
Σ) is a cpo with the bottom element ⊥. �

4 Validation of algebraic laws

Algebraic laws are the core of the proof infrastructure in Csp-Prover. However,
they also suit as a means of verification of the semantic clauses: the external choice
operator, for example, is supposed to be idempotent, i.e., the equation P � P =R P
shall hold in the stable revivals model. The following Isabelle/HOL code proves this
law, over all domains and in both versions semantic of the semantic clauses:

lemma cspR Ext choice idem p: "P : procR ==> P [+] P =R[M,M] P"
apply (simp add: cspR cspT semantics)
apply (intro conjI)
apply (rule order antisym)
apply (rule, simp add: in deadlocks)
apply (elim conjE exE disjE, simp all)
apply (rule, simp add: in deadlocks)
apply (rule order antisym)
apply (rule, simp add: in revivals)
apply (elim conjE exE disjE, simp all)
apply (rule, simp add: in revivals, force)
done

Besides this law (�-idem), we proved in Isabelle/HOL that the following basic laws
and step laws hold over all domains and in both versions of the semantic clauses: (�-
idem), (�-sym), (�-sym), (|[X]|-sym), (�-assoc), (�-assoc), (�-�-dist), (Stop-|[X]|),
(o
9-step), (prefix-step), and (↓-step).

Over all domains, however, the standard step law for Stop

Stop =R ? x : ∅ → P(x)

fails, as in Semorig we have 〈〉 ∈ deadlocksM (Stop) but deadlocksM (? : ∅ → P) = {}.
For the same reason also the law (�-step)

(? x : A → P(x)) � (? x : B → Q(x)) =R
? x : (A ∪ B) → if (x ∈ A ∩ B) then (P(x) � Q(x))

else if (x ∈ A) then P(x) else Q(x)

fails, take the process ? x : {a} → P(x) �? x : {} → Q(x) as a counter example.
Taking our new semantic clauses Sem, we have proven in Isabelle/HOL that

both these laws as well as all laws listed above are valid over domRarb , and domRm .
Changing the deadlock clause of the prefix choice operator, has consequences for

the step law ([[r]]-step) for renaming:

(? x : A → P(x))[[r]] =R
? x : {x | ∃ a ∈ A. (a, x) ∈ r} → (! a : {a ∈ A | (a, x) ∈ r} • (P(a)[[r]]))

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134132

Taking the new clause for the prefix choice operator with the original clause for
the renaming operator fails to hold in the deadlock component, e.g., for the process
(?x : {a} → Skip)[[∅]]. As demonstrated in Section 3.3., deadlocksorig

M (lhs) = ∅.
The rhs of this step law evaluates to ?x : ∅ → . . . , i.e., the modified deadlock clause
of the prefix choice operator includes the empty trace 〈〉. With our new semantic
clauses, however, also this law holds over domR, domRarb , and domRm – also for
renaming involving infinite relations.

As expected, we also could prove in Isabelle/HOL (over all domains and with
both semantic variants) by giving a counter example that internal choice does not
distribute over external choice: (P � Q) � R �=R (P � R) � (Q � R).

5 Conclusion

In this paper, we have presented an implementation of different variants of the stable
revivals model R using the proof infrastructure provided by Csp-Prover. Overall,
our implementation provides a mechanical verification in Isabelle/HOL that the
design of R as given in [17] has the desired properties, namely that the operators
are type correct and continuous. In order to obtain certain algebraic laws, however,
we suggest to modify two semantical clauses. We also extend the model R to
infinite alphabets of communications: Here, we suggest to restrict the semantical
domain by a stricter healthiness condition which ensures type correctness for infinite
renamings.

As future work, we intend to verify further process algebraic laws, especially
concerning the parallel operator. We further plan to apply our implementation to
practical applications such as the on-line shopping example given in [19].

Acknowledgement

We would like to thank Bill Roscoe for his valuable feedback on our implementation,
as well as Erwin R. Catesbeiana (jr) for advice on the verification of component
based systems.

References

[1] A.E. Abdallah, C.B. Jones, and J.W. Sanders, editors. CSP: The First 25 Years, LNCS 3525. Springer,
2005.

[2] A. J. Camilleri. Mechanizing CSP trace theory in higher order logic. IEEE Transactions on Software
Engineering, 16(9):993–1004, 1990.

[3] A. J. Camilleri. A higher order logic mechanization of the CSP failure-divergence semantics. In Higher
Order Workshop. Springer, 1991.

[4] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In
TPHOL’97. Springer, 1997.

[5] Failures-divergence refinement. User Manual, Obtainable from http://www.fsel.com/fdr2_manual.
html.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134 133

http://www.fsel.com/fdr2_manual.html
http://www.fsel.com/fdr2_manual.html

[7] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In TACAS 2005, LNCS
3440, pages 108–123. Springer, 2005.

[8] Y. Isobe and M. Roggenbach. A complete axiomatic semantics for the CSP stable-failures model. In
CONCUR 06, LNCS 4137, pages 158–172, 2006.

[9] Y. Isobe and M. Roggenbach. CSP-Prover – a proof tool for the verification of scalable concurrent
systems. JSSST (Japan Society for Software Science and Technology) Computer Software, 25, 2008.

[10] Y. Isobe and M. Roggenbach. Proof principles of CSP – CSP-Prover in practice. In LDIC 2007.
Springer, 2008.

[11] Y. Isobe, M. Roggenbach, and S. Gruner. Extending CSP-Prover by deadlock-analysis: Towards the
verification of systolic arrays. In FOSE 2005, Japanese Lecture Notes Series 31. Kindai-kagaku-sha,
2005.

[12] F. Kammueller. CSP revisited. Technical Report 364/07, Department of Computer Science, University
of Kaiserslautern, 2007.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic.
LNCS 2283. Springer, 2002.

[14] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In CADE-11. Springer,
1992.

[15] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[16] A.W. Roscoe. Private conversation with M. Roggenbach, 2006.

[17] A. W. Roscoe. Revivals, stuckness and the hierarchy of CSP Models. Revision of the 2005 draft,
December 2007.

[18] A. W. Roscoe, J. N. Reed, and J. E. Sinclair. Responsiveness of interoperating components. Formal
Aspects of Computing, 16:394–411, 2004.

[19] A. W. Roscoe, J. N Reed, and J. E Sinclair. Machine-verifiable responsiveness. In Proceedings of
AVOCS 2005, 2005.

[20] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and Analysis of Security
Protocols: the CSP Approach. Addison-Wesley, 2001.

[21] D. G. Samuel. Implementing the stable revivals model. Master’s thesis, Swansea University, 2008.

[22] D. G. Samuel, Y. Isobe, and M. Roggenbach. Reasoning on Responsiveness – Extending CSP-Prover
by the Model R. In NWPT’07/FLACOS’07, Reseach Report 366. Oslo University, 2007.

[23] H. Tej and B. Wolff. A corrected failure divergence model for CSP in Isabelle/HOL. In FME ’97.
Springer, 1997.

[24] K. Wei and J. Heather. Embedding the Stable Failures Model of Csp in PVS. In International
Conference on Integrated Formal Methods, LNCS 3771. Springer, 2005.

D.G. Samuel et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 119–134134

	Introduction
	Background
	Csp-Prover
	The input language of Csp-Prover
	Isabelle/HOL

	Implementation
	The domain of the model
	Encoding the domains of the model R
	Semantic clauses
	Implementation of the semantic clauses and proof of type correctness
	Recursive Processes and continuity

	Validation of algebraic laws
	Conclusion
	Acknowledgement
	References

