Lambda Definability

October 23, 2007
Goals

Most information taken from "Lambda Calculi with Types" by Henk Barendregt.

Two Goals:

1. All computable functions are λ-definable.
2. Undecidability of λ-Calculus.
Church numerals

Definition.

1. \(F^n(M) \) with \(n \in \mathbb{N} \) (the set of natural numbers) and \(F, M \in \Lambda \), is defined inductively as follows:

\[
F^0(M) \equiv M; \\
F^{n+1}M \equiv F(F^n(M)).
\]

2. The *Church numerals* \(c_0, c_1, c_2, \ldots \) are defined by

\[c_n \equiv \lambda f. x. f^n(x). \]
Functions represented in Church’s numerals

Functions plus, times and exponentiation on \mathbb{N} can be represented in the λ-calculus using Church’s numerals.

Definition.

\[
A_+ \equiv \lambda xypq. xp(ypq);
\]
\[
A_* \equiv \lambda xyz . x(yz);
\]
\[
A_{\text{exp}} \equiv \lambda xy . yx.
\]

We have for all $n, m \in \mathbb{N}$

1. $A_+ c_n c_m = c_{n+m}$.
2. $A_* c_n c_m = c_{n*m}$.
3. $A_{\text{exp}} c_n c_m = c_{n^m}$, $(m \geq 1)$.
Functions represented in Church’s numerals

Proof.

\[A_+ c_n c_m \equiv (\lambda ypq.xp(ypq))c_n c_m \]
\[= \lambda pq.c_n p(c_mpq) \]
\[= \lambda pq.c_n p(p^m q) \]
\[= \lambda pq.p^n(p^m q) \]
\[= \lambda pq.p^{n+m} q \]
\[\alpha \equiv \lambda fx.f^{n+m} x \]
\[\equiv c_{n+m} \]
Boolean functions represented in λ – calculus

Boolean truth values and a conditional can be represented in the λ – calculus.

Definition (Booleans, conditional).

1. $\text{true} \equiv \lambda xy. x$, $\text{false} \equiv \lambda xy. y$.
2. $\text{if } B \text{ then } P \text{ else } Q \equiv BPQ$

Indeed, $\text{true}PQ = P$ and $\text{false}PQ = Q$.
Boolean functions represented in λ – calculus

Boolean truth values and a conditional can be represented in the λ – calculus.

Definition (Booleans, conditional).

1. **true** $\equiv \lambda xy. x$, **false** $\equiv \lambda xy. y$.
2. **if** B **then** P **else** Q $\equiv BPQ$

Indeed, **true**PQ $=$ P and **false**PQ $=$ Q.

Definition (Pairing). For $M, N \in \Lambda$ write

$$[M, N] \equiv \lambda z. zMN. \quad (\equiv \lambda z. \text{if } z \text{ then } M \text{ else } N)$$

Then

$$[M, N]\text{true} = M$$

$$[M, N]\text{false} = N$$
and hence \([M, N]\) can serve as an ordered pair. We use this pairing construction for defining primitive recursion later.

Definition.

1. A numeric function is a map \(f : \mathbb{N}^k \to \mathbb{N}\) for some \(k\).
2. A numeric function \(f\) with \(p\) arguments is called \(\lambda\)-definable if one has for some combinator \(F\)

\[
Fc_{n_1}...c_{n_k} = c_f(n_1,...,n_k) \quad (1)
\]

for all \((n_1, ..., n_k) \in \mathbb{N}\). If (1) holds, then \(f\) is said to be \(\lambda\) — *defined* by \(F\).
representable ⇔ computable

In the following we prove that every computable function can be represented by a λ-term.

Definition.
A function is computable iff it can be computed by a Turing machine.

Remark.
According to the Church-Turing thesis this notion of computability coincide with the informal notion of computability.

Theorem.
A function $f: \mathbb{N}^k \to \mathbb{N}$ is computable iff it is representable by a λ-term.
representable \Rightarrow computable

Proof. "representable \Rightarrow computable":
Lemma (consequence of the Church-Rosser Theorem).

\[M = c_k, M = c_{k'} \Rightarrow k = k' \]

Assume M represented by f:
We have inputs n_1, \ldots, n_k.
Do: check all terms N, $Mc_{n_1} \cdots c_{n_k} = N$.
Stop: if $N = c_m$.
Output: m

Proposition. given n_1, \ldots, n_k.

1. Algorithm terminates with some output m.
2. $f(n_1, \ldots, n_k) = m$.

Lambda Definability
representable ⇒ computable

Proof.

1. Since M is represented by f, we have:

$$Mc_{n_1}...c_{n_k} = cf(n_1,...,n_k)$$

Hence, there is a number m such that:

$$Mc_{n_1}...c_{n_k} = c_m$$

Therefore, the algorithm terminate.

2.

$$
\begin{align*}
Mc_{n_1}...c_{n_k} &= c_m \\
Mc_{n_1}...c_{n_k} &= cf(n_1,...,n_k)
\end{align*}
\Rightarrow f(n_1, ..., n_k) = m$$
computable \Rightarrow \text{representable}

\textbf{Proof}. ”computable \Rightarrow \text{representable”}.

\textbf{Definition}. The μ-recursive functions are total functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of total functions that includes the initial functions and is closed under composition, primitive recursion and minimalization.

\textbf{Proposition}. A function is computable iff it is μ-recursive.

\textbf{Definition}. μ-recursive functions are precisely the functions that can be computed by Turing machines.

Therefore, in order to show that all computable functions are λ-representable. It suffices to show that the initial function are λ-representable and the λ-representable functions are closed under composition, primitive recursion, and minimalization.
The initial functions are λ-definable

Lemma. The initial functions are λ-definable.

Proof. The initial functions are the numeric functions U^i_r, S^+, Z defined by:

\[
U^i_r(x_1, ..., x_r) = x_i, \quad (1 \leq i \leq r)
\]
\[
S^+(n) = n + 1
\]
\[
Z(n) = 0
\]

(Be careful! the function names is different from the representation term name) Define the terms as following:

\[
U^i_r \equiv \lambda x_1 \cdots x_r.x_i
\]
\[
S^+ \equiv \lambda xyz.y(xyz)
\]
\[
Z \equiv \lambda x.c_0
\]
The initial functions are λ-definable

We easily see

$$U_r^i(c_{n_1} \ldots c_{n_r}) \equiv (\lambda x_1 \cdots x_r.x_i)(c_{n_1} \ldots c_{n_r});$$
$$= c_{n_i}$$

$$S^+ c_n \equiv (\lambda xyz.y(xyz))c_n$$
$$= \lambda yz.y(c_n yz)$$
$$= \lambda yz.y(y^n z)$$
$$= \lambda yz.y^{n+1} z$$
$$= c_{n+1}$$

$$Z c_n \equiv (\lambda x.c_0)c_n$$
$$= c_0$$
The λ-definable functions are closed under composition

Definition. Composition, also called substitution takes a function $g(n_1,\ldots,n_m)$ and functions $h_i(n_1,\ldots,n_k)$ for each i with $1 \leq i \leq m$. and returns the function $f : \mathbb{N}^k \rightarrow \mathbb{N}$

$$f(n_1,\ldots,n_k) = g(h_1(n_1,\ldots,n_k),\ldots,h_m(n_1,\ldots,n_k))$$

Lemma. The λ-definable functions are closed under composition.

Proof. Let g, h_1, ..., h_m be λ-defined by G, H_1, ..., H_m respectively. This means:

\[
\begin{align*}
g : \mathbb{N}^m &\rightarrow \mathbb{N} \\
gc_{n_1}\ldots c_{n_m} &= c_g(n_1,\ldots,n_m) \\
h_1 : \mathbb{N}^k &\rightarrow \mathbb{N} \\
h_1c_{n_1}\ldots c_{n_k} &= c_{h_1}(n_1,\ldots,n_k) \\
\ldots \\
h_m : \mathbb{N}^k &\rightarrow \mathbb{N} \\
h_mc_{n_1}\ldots c_{n_k} &= c_{h_m}(n_1,\ldots,n_k)
\end{align*}
\]
The λ-definable functions are closed under composition

Then

$$f(n_1, \ldots, n_k) = g(h_1(n_1, \ldots, n_k), \ldots, h_m(n_1, \ldots, n_k))$$

is λ-defined by

$$F \equiv \lambda\bar{x}. G(H_1\bar{x})\ldots(H_m\bar{x})$$

We have to show

$$Fc_{n_1} \ldots c_{n_k} = cf(n_1, \ldots, n_k)$$

$$Fc_{n_1} \ldots c_{n_k} = G(H_1c_{n_1} \ldots c_{n_k})\ldots(H_mc_{n_1} \ldots c_{n_k})$$

$$= Gc_{h_1(n_1, \ldots, n_k)} \ldots c_{h_m(n_1, \ldots, n_k)}$$

$$= cg(h_1(n_1, \ldots, n_k), \ldots, h_m(n_1, \ldots, n_k))$$

$$= cf(n_1, \ldots, n_k)$$
The λ-definable functions are closed under primitive recursion

Definition. A function f is defined by primitive recursive. From function g and h if

\[
\begin{align*}
 f(0, \vec{n}) &= g(\vec{n}) \\
 f(k + 1, \vec{n}) &= h(f(k, \vec{n}), k, n)
\end{align*}
\]

Lemma. The λ-definable functions are closed under primitive recursion.
The λ-definable functions are closed under primitive recursion

Proof. For simplicity, we assume there is no parameters \vec{n} i.e

$$f(0) = g$$

$$f(k + 1) = h(f(k), k)$$

Let f be defined as above. Assume $g \in \mathbb{N}$ and $h : \mathbb{N}^2 \to \mathbb{N}$ are λ-defined by G and H.

$$G = c_g$$

$$Hc_mc_n = c_h(m, k)$$

Hence, we have $G = c_{f(0)}$
The \(\lambda \)-definable functions are closed under primitive recursion

Consider, \(T \equiv \lambda p.[S^+(p \text{true}), H(p \text{false})(p \text{true})] \)

Then, for all \(k \) one has:

\[
T([c_k, c_{f(k)}]) = [S^+ c_k, Hc_{f(k)} c_k] \\
= [c_{k+1}, c_{h(f(k))} c_k] \\
= [c_{k+1}, c_{f(k+1)}]
\]

By induction on \(k \) it follows that.

\[
[c_k, c_{f(k)}] = T^k[c_0, c_{f(0)}] \\
c_{f(k)} = T^k[c_0, c_{f(0)}]\text{false} \\
c_{f(k)} = c_k T[c_0, c_{f(0)}]\text{false}
\]
The λ-definable functions are closed under primitive recursion

Let f be λ-defined by.

\[
F \equiv \lambda x. x T[c_0, G]\text{false}
\]

\[
Fc_k = c_k T[c_0, G]\text{false}
\]

\[
= c_f(k)
\]
The λ-definable functions are closed under minimalization

Lemma. The λ-definable functions are closed under minimalization.

Proof. Let g be such that $\forall \vec{n} \exists m g(\vec{n}, m) = 0$, f be defined by

$$f(\vec{n}) = \mu m[g(\vec{n}, m) = 0]$$

where $\vec{n} = n_1...n_k$ and g is λ-defined by G.

Definition. $\text{zero} \equiv \lambda n. n(\text{true false})\text{true}$

Then

$$\text{zero } c_0 = c_0(\text{true false})\text{true}$$
$$= \lambda f x. x(\text{true false})\text{true}$$
$$= \text{true}$$
The \(\lambda \)-definable functions are closed under minimalization

\[
\text{zero } c_{n+1} = c_{n+1} \langle \text{true false} \rangle \text{true} \\
= \lambda fx. f^{n+1}x \langle \text{true false} \rangle \text{true} \\
= \langle \text{true false} \rangle ^{n+1} \text{true} \\
= \text{true false}(\langle \text{true false} \rangle ^{n} \text{true}) \\
= \text{false}
\]

Recall the Corollary, there is a term \(H \) such that

\[
H\vec{n}y = \text{if } (\text{zero}(G\vec{n}y)) \text{ then } y \text{ else } H\vec{n}(S^{+}y)
\]

Set \(F = \lambda \vec{x}. H\vec{x}c_{0}, \ c_{\vec{n}} = c_{n_{1}} \ldots c_{n_{k}}. \)
The λ-definable functions are closed under minimalization

Then F λ-defines f:

$$Fc_{\vec{n}} = Hc_{\vec{n}}c_0$$

$$= c_0, \quad \text{if } Gc_{\vec{n}}c_0 = c_0,$$

$$= Hc_{\vec{n}}c_1 \quad \text{else;}$$

$$= c_1, \quad \text{if } Gc_{\vec{n}}c_1 = c_0,$$

$$= Hc_{\vec{n}}c_2 \quad \text{else;}$$

$$= c_2, \quad \text{if ...}$$

$$= ...$$
Undecidability of λ-Calculus

Definition.

1. **Notation.** $\nu^0 = \nu$; $\nu^{(n+1)} = \nu^{(n)'}$.

2. Let $<,>: \mathbb{N}^2 \to \mathbb{N}$ be a computable pairing function. If $(n_1, m_1) \neq (n_2, m_2) \Rightarrow < n_1, m_1 > \neq < n_2, m_2 >$

 \[\forall k \exists (n, m) (< n, m > = k) \quad \text{i.e.} \quad \{ < n, m > | n, m \in \mathbb{N} \} = \mathbb{N} \]

 \[< n, m > = \frac{(n + m)(n + m + 1)}{2} + n \]

3. **Notation**

 $\lceil M \rceil := C_\#(M)$
Undecidability of λ-Calculus

Definition. Let $\mathcal{A} \subseteq \Lambda$.

1. \mathcal{A} is closed under $=$ if

$$M \in \mathcal{A}, \lambda \vdash M = N \Rightarrow N \in \mathcal{A}$$

2. \mathcal{A} is non-trivial if $\mathcal{A} \neq \emptyset$ and $\mathcal{A} \neq \Lambda$

3. \mathcal{A} is decidable if $\#\mathcal{A} := \{\#M | M \in \mathcal{A}\}$ is decidable.

Theorem. Let $\mathcal{A} \subseteq \Lambda$ be non-trivial and closed under $=$. Then \mathcal{A} is not decidable.
Undecidability of λ-Calculus

Proof.

Definition.

$$B = \{ M | \neg \neg M \in A \} \quad (b)$$

Suppose A is decidable, then we have B is decidable. B decidable $\Rightarrow \#B \subseteq \mathbb{N}$ is decidable.

$$f(n) = \begin{cases}
0 & \text{if } n \in \#B \\
1 & \text{if } n \notin \#B
\end{cases}$$

is computable. By the **Representability Theorem**, there is λ term F s.t. $\forall n : Fc_n = c_{f(n)}$.
Undecidability of λ-Calculus

\[M \in B \Rightarrow \#M \in \#B \]
\[\Rightarrow f(\#M) = 0 \]
\[\Rightarrow Fc_{\#M} = c_0 \]
\[\Rightarrow F\downarrow M\downarrow = c_0 \]

\[M \notin B \Rightarrow \#M \notin B \]
\[\Rightarrow f(\#M) = 1 \]
\[\Rightarrow Fc_{\#M} = c_1 \]
\[\Rightarrow F\downarrow M\downarrow = c_1 \]
Undecidability of λ-Calculus

Let $M_0 \in \mathcal{A}$, $M_1 \notin \mathcal{A}$. We easily can find a $G \in \Lambda$ such that,

\[M \in \mathcal{B} \Rightarrow G \downarrow M \downarrow = M_1 \notin \mathcal{A} \quad (1) \]

\[M \notin \mathcal{B} \Rightarrow G \downarrow M \downarrow = M_0 \in \mathcal{A} \quad (2) \]

G can be defined as follows:

\[G = \lambda x. \text{if zero}(Fx) \text{ then } M_1 \text{ else } M_0 \]

Where $\text{zero} \equiv \lambda n. n(\text{true} \ \text{false}) \text{true}$.

Now it follows:

\[G \in \mathcal{B} \Rightarrow (1) \ G \downarrow G \downarrow = M_1 \notin \mathcal{A} \Rightarrow (b) \ G \notin \mathcal{B}, \]

\[G \notin \mathcal{B} \Rightarrow (2) \ G \downarrow G \downarrow = M_0 \in \mathcal{A} \Rightarrow (b) \ G \in \mathcal{B}, \]
Undecidability of λ-Calculus

Let us have a look an application of the above Theorem. The Set

$$\mathcal{A} := \{ M | M = \text{true} \}$$

is not decidable.

Proof.
(1) The set is non-trivial.

$$\mathcal{A} \neq \emptyset \quad \text{because,} \quad \text{true} \in \mathcal{A}$$

$$\mathcal{A} \neq \Lambda \quad \text{because,} \quad \text{false} \notin \mathcal{A}$$

$$\text{true} \neq \text{false}$$

$$\lambda xy. x \neq \lambda xy. y \quad (\text{by Church – Rosser theorem})$$
Undecidability of λ-Calculus

(2) The set is closed under $=$, Let $M \in A$ and $M = N$

\[
M \in A \Rightarrow M = \text{true} \\
M = N \Rightarrow N = \text{true}
\]

By the above Theorem we know the set $A := \{M | M = \text{true}\}$ is not decidable.