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Abstract
Graphical user interfaces (GUIs) are a major source of bugs
in real-world software systems that are notoriously difficult
to prevent through traditional type systems or automated
testing. Although there have been major achievements in
verified software, work on verifying GUI applications is un-
derdeveloped relative to their ubiquity and societal impor-
tance. In this paper, we present a library for the development
of verified, state-dependent GUI applications in the depen-
dently typed programming language Agda. The library uses
Agda’s expressive type system to ensure that the GUI, its
controller, and the underlying model are all consistent, signif-
icantly reducing the scope for GUI-related bugs. We provide
a means to specify and prove correctness properties of GUI
applications in terms of user interactions and state transi-
tions. Critically, GUI applications and correctness properties
are not restricted to finite state machines; they may involve
both infinitely many states and the execution of arbitrary
interactive programs.

To demonstrate the practical application of our library to
develop verified GUI applications in a safety-critical domain,
we present a case study developed in cooperation with the
Medical University of Vienna. The case study implements
a healthcare process for prescribing anticoagulants, which
is highly error-prone when followed manually. Our imple-
mentation generates GUIs from an abstract description of a
data-aware business process, making our approach easy to
reuse and adapt to other safety-critical processes. We prove
medically relevant safety properties about the executable
GUI application, such as that given certain inputs, certain
states must or must not be reached. The specification of such
properties is defined in terms of a GUI application simula-
tor, which conceptually simulates all possible sequences of
interactions performed by the user.
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1 Introduction
Graphical user interfaces (GUIs) are ubiquitous in modern
software and form an integral part of many safety-critical
systems. Due to the widespread use of interface builders and
user-interface markup languages to define GUI layouts and
transitions, GUIs are also a major practical application of
code generation from declarative specifications. The role of
declarative GUI specifications in GUI application develop-
ment has a clear benefit: it provides an abstraction boundary
between the user interface and the business logic. This allows
user experience designers to work independently from soft-
ware engineers, to develop GUIs at a higher level of abstrac-
tion, and to quickly mock-up and experiment with different
GUIs independently of the rest of the application [70].

1.1 Challenges of Declarative GUIs
A supposed benefit of declarative programming is that it
leads to more correct and more maintainable software. Un-
fortunately, this promise is not realized by the GUI speci-
fication languages currently in use. In practice, GUIs are a
major source of bugs. For example, the GUI for the Mozilla
project is specified using the declarative XML User-Interface
Language (XUL),1 but a study of the Mozilla project found
that the GUI is still the source of 50.1% of reported bugs
and responsible for 45.6% of crashes [69]. Additionally, other
researchers have noted the difficulty in maintaining consis-
tency between GUI specifications, the underlying business
logic [70], and the corresponding test suites [25].
Besides typical maintenance challenges associated with

mixing generated and handwritten code [77], GUI applica-
tions pose special challenges to ensuring software quality.
The most significant is that traditional software testing of
GUIs is notoriously difficult [48, 51], and that traditional mea-
sures of test quality, such as code coverage, are not useful in
the context of GUIs [50]. The core challenge to testing GUIs
is that automated tests must simulate user interactions, but
1https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL
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the range of interactions is huge and the simulated actions
tend to be brittle with respect to minor changes in the GUI
specification such as swapping the placement of two buttons.

Since many GUI applications are safety critical, there is a
need for stronger correctness guarantees related to GUIs than
software testing can provide. Others have studied the formal
verification of GUI applications using model checking [49].
However, such approaches verify only an abstracted model
of the GUI rather than the software itself.

1.2 A Library for Directly Verified GUIs
To address the need for strong correctness guarantees in
safety-critical situations, we have developed a library for
building directly verified GUI applications in Agda [6]. Agda
is a dependently typed programming language and interac-
tive theorem prover. Our library is unique in that the same
declarative GUI specification that is used to generate the GUI
and bindings to the business logic, is also a first-class value
that can be used in Agda types and proofs. This enables us
to statically guarantee basic consistency properties between
the GUI and the business logic for all GUI applications built
in our library. It also enables us to define and prove sophisti-
cated properties about the behavior of GUI applications in
terms of their specifications.

A major contribution of this paper is a demonstration that
our declarative, directly verified approach to GUI applica-
tion development can be applied to a realistic problem in
a safety-critical domain. Specifically, after briefly introduc-
ing our library in Section 3, we present an extended case
study developed in cooperation with the Medical University
of Vienna. The case study implements a healthcare process
concerning the prescription of blood thinners used in the
emergency room of the Vienna General Hospital.

1.3 Domain: GUI Applications in Healthcare
Medication errors are a serious problem in healthcare, per-
haps even the third leading cause of death in the US [47].
The newest blood-thinning drugs called NOACs (novel oral
anticoagulants) are especially problematic. They are widely
prescribed but studies have found that as many as 11–16% of
NOAC prescriptions are medication errors [32, 79]. Prescrib-
ing NOACs is difficult because they have complex exclusion
and dosage criteria, leading to human errors.

Health information technology (HIT) systems can reduce
medication errors [61]. However, the HIT system itself can
introduce a new class of errors related to software bugs. Ma-
grabi et al. [45] provide a detailed overview of HIT-related
errors. One noteworthy example is that Trinity Health Sys-
tem (at the time, operating 46 hospitals in the US) reported
an error where its GUI application would post doctors’ or-
ders to the wrong medical charts [45]. There is evidence that
HIT errors are widespread and that many of these errors are
specifically related to GUIs. The Pennsylvania Patient Safety
Authority [43] reported 889 medication errors attributed to

HIT systems within six months. Graber et al. [24] reported
248 malpractice claims attributed to HIT systems. Finally,
a review of FDA data in 2011 [56] found 120 error reports
related to HIT systems; 50.2% of these errors were related to
the user interface, while 20.8% were related to calculation
errors or other software bugs.
Potential software errors and liability issues are a likely

reason that medication prescriptions are still usually per-
formed manually, even though this is also error prone for
some medications, such as NOACs.

In our case study, we use our library to build a GUI appli-
cation that implements part of a realistic healthcare process
for prescribing NOACs. First, we develop a declarative speci-
fication of the process in collaboration with a doctor at Vi-
enna General Hospital. Next we develop a verified program
that implements this process as an executable GUI applica-
tion. The application is statically guaranteed to be consistent
with the process specification. Finally, we define and prove
additional medically relevant properties about the process
and the GUI application. Our case study demonstrates how
formal verification can be used to rule out many of the er-
rors that plague safety-critical HIT systems. Notably, our
approach enables directly verifying the healthcare process
itself, the business logic that realizes that process, and the
executable GUI program all within a single framework.

1.4 Role of Dependent Types
Our case study also illustrates the advantages of declarative
specifications as first-class values. In our library, GUI speci-
fications are values of a coinductive data type.2 This means
we can write arbitrary functions to query and modify GUI
specifications. Thus, in implementing the NOAC prescription
process, we do not define each stage of the GUI application
directly, but instead generate them from the process specifi-
cation (which is itself an inductive value). The required GUI
specifications are generated and used as dependently typed
inputs to the rest of the application generation code, ensur-
ing that the GUIs are consistent with the controllers that
realize the parent process specification. This demonstrates
that first-class declarative specifications support both reuse
and correctness. Once we have a data type for specifying
healthcare processes and functions for translating them into
GUI applications, we can more easily generate GUI appli-
cations for other healthcare processes and immediately get
the same strong consistency guarantees demonstrated in our
case study.
Dependent types are also central to proving medically

relevant properties about healthcare processes and their real-
ization as executable GUI applications. Of course, by exploit-
ing the Curry-Howard correspondence we can define the
properties that we want to prove as types and prove them by

2We use a coinductive rather than inductive data type because we allow
potentially infinite sequences of interactions.
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constructing values of those types. But the utility of depen-
dent types runs deeper in the context of healthcare processes.
Healthcare processes are complex and need to consider pa-
tient data generated at one step in future steps (e.g. blood test
results). Thus, correctness constraints must also take into ac-
count data generated at intermediate steps. Dependent types
are well-suited to describing such data-dependent specifi-
cations and proof conditions, and are more expressive than
other verification methods that have been applied to health-
care processes. For example, Montali et al. [54] allow only
propositional linear temporal logic (LTL) formulas. Depen-
dent types support defining and verifying conditions over
numeric values, such as age or renal value. This corresponds
to LTL with natural number values, which is equivalent to
first-order logic and therefore undecidable [23] Undecidabil-
ity is not a problem in our setting since proof objects are
provided by the programmer.

1.5 Contributions
To summarize, this paper makes the following contributions:

• A library for programming state-dependent GUI ap-
plications, which has at its core a type for defining
first-class, generic, declarative GUI specifications, and
which make essential use of dependent types. This
library goes beyond finite state machines in two ways:
it allows for infinitely many states, and it supports
arbitrary real-world interactions (i.e. arbitrary IO ac-
tions) when transitioning from one GUI state to the
next.
• A demonstration using a real-world case study that our
approach can be used to develop safety-critical GUI ap-
plications in the medical domain. This demonstration
illustrates how, using our library we can:
– Generate GUI specifications from a high-level, data-
dependent process description in a way that is guar-
anteed to be type safe and consistent with both the
process description and the business logic.

– Verify data-dependent properties of the actual ex-
ecutable GUI application, such as the reachability
and unreachability of GUI states.

– Perform all of the above within the same framework
and language, avoiding the need to define external
models of the application or translate between frame-
works, which are potential sources of errors.

Source Code. All displayed Agda code has been extracted
automatically from type-checked Agda code [5]. For readabil-
ity, we have hidden some details and show only the crucial
parts of the code. The full source code is available online.3

3https://github.com/stephanadelsb/PPDP18

2 Background
Agda and Sized Types Agda [6] is a theorem prover and
dependently typed programming language based on Martin-
Löf type theory. In Agda, propositions are represented as
types; a proposition is proved by providing a value of its type.
Agda features a type checker, a termination checker, and a
coverage checker. The termination and coverage checker
guarantee that every program in Agda is total, which is
required for the consistency of the logic.

In dependently typed languages, types can contain values
and functions can produce types. To assign a type, for ex-
ample, to a type-producing function, Agda needs a type of
types, which is called Set. In fact, Agda has infinitely many
type levels. The next level, Set1, extends the collection of
types by Set itself and types formed from it, while Set2 is the
next type level above Set1, and so on.
A dependent function type is written as (x : A) → B,

which maps an element x of type A to an element of type B,
where the type B may depend on x . Wrapping the argument
in curly brackets, such as {x : A} → B, allows us to omit
arguments when applying the function, and to rely on Agda
to infer it from typing information. We may still apply the
argument explicitly using the notation {x = a} or {a}, for
example, when Agda cannot deduce it automatically.

Agda has inductive types (introduced by data) and record
types. To represent infinite structures we use Agda’s coin-
ductive record types, equipped with size annotations [30].
The size annotations are used to show the productivity of
corecursive programs [2], which we define using copattern
matching [3].

State-Dependent IO In previouswork [1], whichwas based
on work of the second author [67], we gave a detailed in-
troduction to interactive programs and objects, and to state-
dependent interactive programs and objects in dependent
type theory. The theory of objects in dependent type the-
ory is based on the IO monad in dependent type theory,
developed by Hancock and Setzer [26–28, 68]. The theoreti-
cal basis for the IO monad was developed by Moggi [53]. It
was pioneered by Peyton-Jones and Wadler [59, 72–75] as
a paradigm for representing IO in functional programming,
especially Haskell. The idea of the IO monad is that an in-
teractive program has a set of commands to be executed in
the real world. It iteratively issues a command and chooses
its continuation depending on the response from the real
world. Formally, our interactive programs are coinductive
(i.e. infinitely deep) Peterson-Synek trees [58], except that
they also have the option to terminate and return a value.
This allows for monadic composition of programs, that is,
sequencing one program with another program, where the
second program depends on the return value of the first
program. In the state-dependent version [1], both the set of
available commands and the form of responses can depend
on a state, and commands may modify the state.

3
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For this paper, we introduce a generic IO interface for
describing the commands a program can issue and the re-
sponses the world can return.

record IOInterface : Set1 where
Command : Set
Response : Command→ Set

The interface is a record with two fields: Command and
Response. Record fields can be applied postfix using the dot
notation, for example, if p : IOInterface, then p .Command :
Set. To improve readability, throughout the paper we omit
some bureaucratic Agda keywords from record definitions,
such as field, coinductive, and open.

3 A Library for Declarative,
State-Dependent GUI programming

This section will introduce our library for state-dependent
GUI applications. In Section 3.1, we introduce the library
from the programmer’s perspective, demonstrating how to
build a simple state-dependent GUI application using the
library. A noteworthy aspect of the example application is
that it has infinitely many states, where each state differs in
the GUI elements used. In Section 3.2, we introduce a rep-
resentation of state-dependent objects from previous work
that underlies our implementation of GUI event handlers.
We then use this to define generic handlers in Section 3.3
whose interfaces are generated from the GUIs they depend
on. The handler is part of a data type that collects all of the
components of a GUI application together.

In our library, the structure and appearance of an applica-
tion’s GUIs (the view) are declaratively specified separately
from the handler objects that process events generated by
users interacting with those GUIs (the controller). This sepa-
ration of concerns is similar to current practice with model-
view-controller frameworks [41] and graphical GUI-builder
tools [70]. However, a distinguishing feature of our approach
is that handler objects are dependently typed with respect
to the GUIs they interface with. This means that GUI specifi-
cations can be programmatically generated and dynamically
modified (e.g. a button may be dynamically added at runtime)
without sacrificing the static guarantee of consistency with
the handler objects. As a GUI dynamically changes, the inter-
faces of the corresponding handler objects (which methods
exist and their types) dynamically change in response. Such
dynamically changing GUIs are not well supported by the
GUI-builder model, and the consistency guarantees are not
provided by programmatic MVC frameworks.
We say that our library supports state-dependent GUI ap-

plications since the GUI can dynamically change based on
the state of the model and since the GUI is itself a dynam-
ically changing state of the handler objects. The dynamic
interfaces of handler objects, based on the type of their GUIs,
are illustrated in the following example.

3.1 Introductory Example: A GUI with Infinitely
Many States

In this subsection, we present a simple example that both
illustrates the use of the GUI data type and demonstrates
that we can develop GUIs with infinitely many states where
each state differs in the GUI elements used. The example is
a GUI application with n buttons. Clicking button bi extends
the GUI with i additional buttons. First, we define a func-
tion nFrame that constructs a GUI with n buttons. Creating
an empty frame is trivial. A button is added to a frame by
providing its label as a String.

nFrame : (n : N)→ Frame
nFrame 0 = emptyFrame
nFrame (suc n) = addButton (show n) (nFrame n)

Next we define a function nGUI that constructs a GUI
application with n buttons.

infiniteBtns : ∀{i}→ (n : N)→ GUI {i}
infiniteBtns n .gui = nFrame n
infiniteBtns 0 .obj .method ()
infiniteBtns (suc n) .obj .method (m , _) =
returnGUI (infiniteBtns (n + finToN m))

The argument ∀{i} introduces a hidden dependency on a size
i , which is also a hidden argument of GUI. This argument
is boilerplate needed so that Agda’s termination checker
accepts the corecursive definition of infiniteBtns. The GUI
application is defined by defining the two fields of the con-
structed GUI value: the GUI .gui, and its handler .obj. The
GUI is constructed by GUI. The handler object must han-
dle all of the events that can be triggered from the GUI, in
this case button clicks from n different buttons. For the case
when n = 0, the handler will be empty, indicated by the
base case of the handler method. In the non-empty case, the
handler object’s method accepts an argument of the form
(m, s ), where m is a finite number (bounded by the num-
ber of buttons in the GUI) that indicates which button was
clicked, and s contains all of the strings obtained by text
boxes in the GUI. Since there are no text boxes in the GUI,
the second component will be empty and is not used in the
handler (indicated by _). The result of the handler method is
an interactive program that returns a new GUI application
to replace the current one—in this case, a new infinite button
GUI withm additional buttons.
While this example is admittedly contrived, the ability

to define dynamically expanding GUIs is an expressiveness
gain over standard GUI builders. GUI builders only support
constructing finitely many GUIs for a particular application.

Finally, we compile our GUI application into an element of
NativeIO. This is a type that can be compiled using Agda’s
foreign function interface (FFI) into native Haskell code,
and can then be executed in Haskell. We use Agda’s do
notation, which is similar to Haskell’s, and supports creating

4
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an interactive program from a sequence of IO actions, where
outputs of preceding actions can be used by later actions.

main : NativeIO Unit
main = do win <- createWindowFFI

compile win (infiniteBtns 3)

3.2 State-dependent Objects
GUI events are handled by objects, which we have defined
in our previous work [1], where they are described in de-
tail. An object can receive commands, and, depending on
the responses to those commands, it returns a result and
changes its internal state. Since Agda is a purely functional
language, we model state changes by returning an updated
object together with the return value as a pair. In dependent
type theory, we also have state-dependent objects where the
methods available depend on the external state of the object,
which forms part of its type. Depending on the response for
the method call, the object switches to a new state. So, an
interface for a state-dependent interface Interfaces consists
of a set of external states, a set of methods depending on
the state, a set of responses depending on state and methods,
and a next state function, which depends on state, methods,
and responses.

record Interfaces : Set1 where
States : Set
Methods : States → Set
Results : (s : States)→Methods s→ Set
nexts : (s : States) (m : Methods s)→ Results s m

→ States

More precisely an object obj for an external state s is an
element of the type of objects (Objects s ) for this interface.
A method call is invoked by invoking the field .method m
of obj, wherem : Methods s . Whenm is called it runs an
interactive program, which concludes by returning a result
r : Results s m and an updated object. The updated object
has a new state s ′ = nexts s m r and is therefore an element
of Objects s ′. Therefore (Objects s ) is a recursive definition.
Since an object can be called infinitely many times, this
recursive definition is coinductive.

3.3 A Data Type for GUIs
In this section we briefly describe the representation of GUIs.
A GUI can be broken into two parts: the frame and widgets
that make up the interface, and the data-dependent object
that handles events generated by the interface. The data type
is defined below, with fields .gui and .obj for accessing the
respective parts.

record GUI : Set where
gui : Frame
obj : FrameObj gui

For the purposes of this paper, we treat the first part,
Frame, as an abstract data type with the following oper-
ations for creating an empty frame, adding labeled buttons,
adding text labels, and adding text boxes.

emptyFrame : Frame
addButton : String→ Frame→ Frame
addLabel : String→ Frame→ Frame
addTextbox : Frame→ Frame

The handler object, FrameObj, is a state-dependent object
whose state is the .gui interface it must handle events for. As
described in Section 3.1, the handler method accepts pairs
(m, s ), wherem is a finite number indicating which button
has been clicked, and s is a list of strings representing the
text in all of the text boxes in the interface. In response to a
method call, an interactive program will be executed. This
may perform arbitrary IO actions, such as performing a data-
base query or interacting with the console. In the future, we
plan to add additional commands to support interactions
with other external devices, such as medical equipment. The
result of the interactive program is a new GUI, which re-
places the current one.

3.4 Implementation Details
GUIs are translated into a value of NativeIO by the function
compile.

compile : SDLWindow→ GUI→ NativeIO Unit

The required argument SDLWindow can be obtained from a
native interactive program createWindowFFI. The resulting
NativeIO value can be compiled to and invoked fromHaskell,
which will create and execute the GUI that we have defined.

On the Haskell side, we use the libraries SDL [66] and
Rasterific [62] as a backend. Rasterific is one of the outcomes
of the STEPs project [39], which is focused on the concise
formulation of declarative GUIs based on FRP and objects.
At its core is an elegant DSL for vector graphics [18] that
was also ported to Haskell [29]. We used this Haskell port
(Rasterific), the bindings to the SDL library, and some addi-
tional glue code that we contributed ourselves. Our Agda
GUI library binds to this Haskell glue code and presents
vector-based GUI elements that are rasterized via Rasterific
and then presented on the screen via an SDL window.
This approach solves a previous issue when using the

library wxHaskell [78], which exhibits a mismatch for func-
tional/declarative programming. In wxHaskell, handler func-
tions are IO programs which only have side effects and no
return value, and are implemented via pointers in Haskell.
With some effort, wewere able to implement state-dependent
objects and declarative GUI data types using wxHaskell, but
the complexity was substantial. This made verification chal-
lenging. Switching to Rasterific solved this problem.
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4 Reasoning About GUI Applications
We can reason about GUI applications by reasoning about
the GUI’s states. The state of a GUI is given by a frame, its
properties, and its handler object. When an event is trig-
gered, the handler IO program is executed. The handler may
trigger IO commands that yield IO responses and eventually
determines a new state to transition to. Thus, we can reason
about the transition graph for a GUI application by reasoning
about the different responses each command could yield.
However, a complication is that the IO programs used to

implement event handlers are coinductive, meaning they
may have infinitely many interactions and never terminate.
Ideally, IO programs for event handlers would be inductive
since we typically want event handlers to always terminate
so that the GUI is responsive. However, this is much more
difficult to integrate within a general GUI framework since
GUI applications are naturally coinductive.
In the rest of this section, we introduce infrastructure

for reasoning about coinductive programs (Section 4.1), and
for specifying properties over the state transition graphs
of GUI applications (Section 4.2). In Section 5.2, we use the
infrastructure developed in this section to prove properties
about the case study described in Section 5.

4.1 Reasoning about Coinductive Programs
To cope with the fact that IO programs and thus GUI appli-
cations are coinductive, we do not reason about GUI states
directly. Instead we introduce an intermediate model of a
GUI application where the IO programs in handlers are un-
rolled into potentially infinitely many states. This model is
itself coinductive, so we cannot reason about it directly since
an infinite sequence of IO commands will induce an infinite
number of states. Therefore, we instead reason about finite
simulations of this GUI model.
To define the model, we first introduce a data type to

indicate whether an event handler has been invoked or not.
The notStarted constructor indicates that the handler has
not yet been invoked, while started indicates the handler
has been invoked. The argument pr of started captures the
remaining IO program still to be executed.

data MethodStarted (g : GUI) : Set where
notStarted : MethodStarted g
started : (m : GUIMethod g)

(pr : IO consoleI∞ GUI)→MethodStarted g

Now, a state in the GUI model can be represented by the GUI,
its properties, the handler, and the invocation state.

data State : Set where
state : (g : GUI)→MethodStarted g→ State

Using this model, we can simulate the execution of a GUI ap-
plication. To do this, we define a simulator for state-dependent

IO programs. The simulator matches states of the GUI model
and either triggers events (e.g. by pressing buttons), provides
responses to IO commands, or transitions to subsequent
states of the model. The following function defines the types
of available actions at each state in the model.

Cmd : State→ Set
Cmd (state g notStarted) = GUIMethod g
Cmd (state g (started m (exec’ c f ))) = IOResponse c
Cmd (state g (started m (return’ a))) = ⊤

If the model is in a notStarted state, the event simulator
can trigger an event drawn from the methods supported
by the GUI interface. If the model is in a started state, then
there are two sub-cases: If the IO program has not finished,
the program has the form (exec’ c f ). This means that the
next real-world command to be executed is c and once the
world has provided an answer r to it, the interactive program
continues as ( f r ).4 In this case the GUI is waiting on a
response to the IO command c, which the event simulator
must provide. The second subcase is, if the remaining IO
program has already returned. Then the simulator can take
the trivial action (⊤) to return to the notStarted state.
Using this definition, we can define a transition function

for the simulator with the following type:

guiNext : (g : State)→ Cmd g→ State

That is, given a model state and an action of the appropriate
type, we can transition to the next model state.

To simplify proofs over the model, the transition function
makes a few optimizations. First, in the case where the new
state corresponds to a completed IO program, we can skip to
the next notStarted state directly rather than requiring this
unit step be made explicitly. Second, we reduce sequences
(shorter than a given finite length) of consecutive trivial IO
actions, such as print commands, into single transition steps.

4.2 Properties Over GUI Application States
Many of the properties we want to express about GUI appli-
cations contain data dependencies. That is, we want to state
that starting from a given state, if the user provides certain
inputs (e.g. text in a text box) and those inputs satisfy certain
conditions, then a certain result state is either reached or not.
To support writing such data-aware properties, we define
the following data type Cmds that formalizes a sequence of
user inputs and a function guiNexts that computes the state
obtained after a sequence of inputs.

data Cmds : State→ Set where
nilCmd : {g : State}→ Cmds g
_»>_ : {g : State} (l : Cmds g)→ Cmd (guiNexts g l)

→ Cmds g

4Previously we used do instead of exec, but do has now become a keyword
in Agda.
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guiNexts : (g : State)→ Cmds g→ State

Note that the Cmds essentially defines a sequence of com-
mands parameterized by a State type that statically ensures
that each input corresponds to the preceding state. This is
an example of an inductive-recursive definition [21, 22].
We can now define a relation between two states s and

s ′ of a GUI. The following data type formulates that s ′ is
reachable from s by a sequence of GUI commands.

data _-gui->_ (s : State) : State→ Set where
refl-gui-> : s -gui-> s
step : {s’ : State}(c : Cmd s)

→ guiNext s c -gui-> s’
→ s -gui-> s’

The first constructor defines that the relation is reflexive,
while the second links two GUI states via a command.

Finally, we define a property that, starting from one GUI
state start, we will eventually reach another state final, for
all possible user interactions. It holds if start and final are the
same state (constructor hasReached) or if we will eventually
reach final from the next state reached after any input a user
provides (constructor next).

data _-eventually->_ :
(start final : State)→ Set where

hasReached : {s : State}→ s -eventually-> s
next : {start final : State}

(fornext : (m : Cmd start)
→ (guiNext start m) -eventually-> final)

→ start -eventually-> final

5 Case Study: Healthcare Process Models
In this section, we present a healthcare case study that we
have developed in cooperation with the Medical University
of Vienna. It investigates the prescription of anticoagulants
(“blood thinners”) to patients admitted to the accident and
emergency department of Vienna General Hospital (AKH).
In Section 5.1 we provide a high-level description of our

case study by presenting an overview of the domain and
its significance, and by presenting a business process model
that describes the healthcare process we want to implement.
In Section 5.2 we define Agda data types and functions for
specifying business processes and translating them into GUIs.
This allows us to build GUI applications directly from the
business process descriptions already used in the domain. In
Section 5.3 we describe the implementation of the health-
care process for prescribing anticoagulants, and finally, in
Section 5.4 we demonstrate how to prove medically relevant
properties about the resulting GUI application.

5.1 A Process for Prescribing Oral Anticoagulants
Most patients prescribed anticoagulants are treated for atrial
fibrillation (AF), which is an abnormal heart rhythm that

Med D Med A Med E Med C Med W

Contraindicated if GFR < 30 < 15 < 15 < 15 N/A
Use in hospital if GFR ≥ 30 ≥ 25 ≥ 30 ≥ 30 N/A
Dose reductionwhenGFR 30–49∗ ≤ 60kgs† 15–49 15–49 N/A
Antidote (fall risk) yes no no no yes

∗ non-mandatory constraint † note non-GFR measurement
Table 1. Indication and contraindications of NOACs and
warfarin according to the European Society of Cardiology.
All numerical units are GFR (glomerular filtration rate) unless
otherwise noted. Medications are: D, dabigatran; A, apixaban;
E, edoxaban; C, rivaroxaban; and W, warfarin.

affects 3% of the population in the EU/US. For these pa-
tients, four new oral anticoagulants (called NOACs) have
been shown to be equally effective at stroke prevention com-
pared to the older medication warfarin. The NOACs are
preferable in many cases because they are faster acting and
have shorter half-lives than warfarin.

However, NOACs are also frequently associated with med-
ication errors. Studies have shown an 11–16% error rate in
NOAC prescriptions [32, 79], and these errors can lead to
serious or fatal events [63, 64]. The problem is that prescrib-
ing the correct NOAC is complex and depends on several
clinical factors, such as the grade of renal impairment, age,
and risks of falls/accidents.
In this case study we consider the process of prescribing

anticoagulants to treat AF. Figure 1 specifies the business pro-
cess using the language BPMN.5 In BPMN, steps of the pro-
cess are indicated by rounded rectangles and data artefacts
are depicted as notes with three black bars. For example, the
step Patient registration involves recording the patient’s age
and weight, the step Patient history involves assessing and
recording the patient’s stroke risk (CHA2DS2-VASc-Score)
and fall risk, and most importantly, the step Receive blood test
results involves recording the result of a GFR (glomerular
filtration rate) blood test. GFR is an estimation of kidney
function, and is also called a renal value.

While the upper half of the diagram in Figure 1 is related
to the acquisition of data and an ensuing diagnosis of AF,
the lower half illustrates the critical steps of the doctor’s
decision of which anticoagulant to prescribe. In BPMN, the
X-symbol represents exclusive decision path branching and
merging. At the MD Choice step, the doctor may choose to
either prescribe warfarin or a NOAC. If the doctor chooses to
prescribe a NOAC, they must choose one of the four specific
medications (Med A–D) and a suitable dosage (high or low).
As mentioned, the safety constraints for this decision-

making process are complex. A subset of the constraints is
summarized in Table 1. While the full clinical specification
is more complex, we focus on the constraints presented in
the table for brevity. The first non-header line of the table
5https://www.omg.org/spec/BPMN/2.0.2/
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Figure 1. Specification of a healthcare process for prescribing oral anticoagulants to treat
atrial fibrillation.

Figure 2. Screenshot from the
corresponding GUI application.

captures one such safety constraint: patients with severe
kidney damage (GFR below 30) cannot be given dabigatran
and patients with kidney failure (GFR below 15) cannot be
given any NOAC and so must be treated with warfarin. Con-
sequently, an implementation of the process in Figure 1 must
not reach the step Prescribe NOAC or any subsequent NOAC
step if the GFR is below 15. A stricter version of this prop-
erty (incorporating hospital-specific constraints, see below)
is proved as theoremWarfarin in Section 5.3.

In addition to safety constraints from the medication man-
ufacturer, additional constraints can be imposed by the hos-
pital to further reduce risk. In AKH, the hospital of our case
study, the second row captures additional AKH-specific con-
straints. By applying these, we see that if the GFR is between
25 and 30, apixaban is the only NOAC that may be prescribed.
The third row of the table captures constraints related to the
dosage of a NOAC. For most NOACs, a smaller dosage must
be prescribed when the GFR is in a particular range. How-
ever, apixaban dosage is instead constrained by the weight
of the patient. An additional constraint not reflected in the
table is that patients over the age of 75 should always be
given a restricted dosage.

Finally, if a patient may need immediate surgery, or in the
case of an elderly patient who has an increased risk of falling
and sustaining an injury, one should prescribe only NOACs
which have an antidote that can reverse the thinning effect
of the medication. This is not the case for Med A (apixaban).

Therefore, in case of fall risk, Med A needs to be substituted
by a different NOAC or by warfarin.

5.2 Formalization of Business Processes
The healthcare process of our case study is specified as a
business process, in BPMN, plus additional safety constraints.
We could implement and verify a GUI application for our
case study by directly constructing GUIs and handlers as
described in Section 3. However, we expect many healthcare
processes (and other safety-critical business processes) can
be expressed in a similar way as our case study, and so build-
ing a GUI application directly would miss out on potential
for reuse among implementations of such processes.

Instead, we define an inductive data type for directly repre-
senting business processes as Agda values, and then translate
these specifications into GUIs that implement each step. This
illustrates how our library is suitable not only as a way to
build verified GUIs from scratch, but also as infrastructure for
defining domain-specific libraries or languages for building
GUI applications from higher-level specifications. Crucially,
the GUI applications generated in this way are still directly
verifiable executable programs.

A simple data type for specifying business processes is
given below. The data type includes only the cases needed
to realize our case study, but could easily be extended to
support more of the BPMN language.

data BusinessModel : Set where
terminate : String→ BusinessModel
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xor : List (String × BusinessModel)
→ BusinessModel

input : {n : N}→ Tuple String n
→ (Tuple String n→ BusinessModel)
→ BusinessModel

simple : String→ BusinessModel→ BusinessModel

A value of type BusinessModel represents a business process
as illustrated in Figure 1, augmented with some additional
information needed to generate a corresponding GUI appli-
cation. The terminate constructor represents a final step of
the process, whose string argument represents a concluding
message. The xor constructor represents a branching step,
where the possible next steps are represented by a list of
string-labeled business models. The input constructor cor-
responds to a step requiring n inputs from the user. The
function argument determines the next step based on the
inputs provided by the user.6 Finally, the simple constructor
represents a basic step in the process, which consists of a
message to display and a business model that is the next step
in the process.
A value of type BusinessModel can be translated into a

GUI using the following function.

businessModel2Gui : BusinessModel→ GUI

A simple or xor step will be translated into a GUI with string-
labeled buttons leading to the corresponding next steps. An
input step will be translated into a form with text boxes
for each input and a handler that collects these inputs and
invokes the provided function to transition to the next step.
The function associated with an input step may perform

arbitrary processing. For example, in the input step associ-
ated with collecting the GFR test result (renal value), the
string input from the text box is converted into an integer,
and then categorized into elements of the following data
type, which is used to select the next step in the process.

data RenalCat : Set where
<25 ≥25<30 ≥30<50 ≥50 : RenalCat

Finally, the initial state of the GUI application for a busi-
ness process can be obtained from the following function.

businessModel2State : BusinessModel→ State
businessModel2State b
= state (businessModel2GUI b) notStarted

6The repository contains a more advanced variant where the input construc-
tor also accepts an input validation function. The resulting GUI application
will then validate its inputs; if validation fails, the validation function speci-
fies an error message to display and the application will return to the input
form. In our example, this can be used to ensure that numeric values are
entered as numbers and fulfil reasonable range conditions. The repository
shows as well how to adapt the verification of health care process given
below to processes with validation of inputs.

5.3 From Business Processes to GUI Applications
Using the BusinessModel data type defined in Section 5.2,
we can encode the business process depicted in Figure 1.
We show only a representative sample of the full encoding
of the process. First, we start from the end and work our
way backwards. The following three lines define the final
discharge step and two of the simple steps that precede it.
discharge = terminate "Discharge Patient"

lowdoseSelection = simple "Low Dose" discharge
highdoseSelection = simple "High Dose" discharge

Many xor steps in the business process are not points
where doctors should be able to make arbitrary decisions.
Rather, the next steps are fully determined by safety con-
straints and by data acquired earlier in the process. Therefore,
we model such steps not with xor, which would enable ar-
bitrarily choosing among next steps, but with simple and
a next step computed by a function on the incoming data.
For example, from the Med A step, whether to choose the
high dosage or low dosage depends on the patient’s weight
(see Table 1). This is implemented below by defining Med
A (NOACSelectionA) to be a simple step whose next step is
computed by the doseSelectionA function.
doseSelectionA : WghtCat→ BusinessModel
doseSelectionA ≤60 = lowdoseSelection
doseSelectionA >60 = highdoseSelection

NOACSelectionA : WghtCat→ BusinessModel
NOACSelectionA w = simple "Med A" (doseSelectionA w)

For the other three NOAC medications, the transition to the
corresponding dosage step is determined by the following
function, which implements the remainder of the third row
of Table 1, plus the additional constraint that patients over
75 years of age should receive a low dosage.
doseSelection¬A : RenalCat≥30→ AgeCat

→ BusinessModel
doseSelection¬A ≥30<50 <75 = lowdoseSelection
doseSelection¬A ≥50 <75 = highdoseSelection
doseSelection¬A r ≥75 = lowdoseSelection

The first several steps of the process model are concerned
with collecting data about the patient. The following defines
the input step for entering the patient’s blood test results.
bloodTestRes : FallRisk→ AgeCat→WghtCat

→ BusinessModel
bloodTestRes f a w =
input "Enter Bloodtest Result" λ str→
diagnosis f (str2RenalCat str ) a w

The subsequent state is determined by the diagnosis func-
tion, which takes into account the renal value (converted
to a categorical value of type RenalCat), and the categori-
cal values for fall risk and age, obtained at previous input
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steps. The rest of the business process is constructed simi-
larly to the steps illustrated above. The compiled program
is now obtained by applying businessModel2GUI to the ini-
tial business process patientRegistration. Figure 2 shows a
screenshot of the resulting GUI application.

5.4 Verifying GUI Applications
Now we want to verify medically relevant safety proper-
ties about our GUI application. In particular, we want to
verify that for various kinds of inputs, our application will
recommend the correct coagulant and dosage.
To express and prove such properties, we need a way

to automate and abstract over the initial input steps of the
process. The following function takes several string values
corresponding to each of the inputs requested in the ini-
tial steps of the process (age, weight, fall risk, stroke risk
score, and blood test result) and returns the state of the GUI
application after submitting each of these inputs.

stateAfterBloodTest :
(strAge strWght strFallR strScore strBlood : String)
→ State

stateAfterBloodTest strAge strWght strFallR strScore strBlood
= guiNexts
patientRegistrationState
(nilCmd
»> textboxInput2 strAge strWght
»> textboxInput2 strFallR strScore
»> btnClick
»> textboxInput strBlood)

The body of this function returns the next state of the GUI
after executing a sequence of user actions on the initial pa-
tient registration state. The sequence of actions follows the
sequence of steps at the top of Figure 1: it inputs the age
and weight strings in the GUI corresponding to the first step,
inputs the fall risk and stroke risk in the next step, clicks to
confirm that blood has been drawn, and finally inputs the
blood test result in the fourth step.
Our first theorem states that, given a complete set of

inputs, if the blood test yields a renal value of less than
25, then we will eventually reach the state where warfarin
is prescribed. The theorem is expressed in terms of the
-eventually-> relation defined in Section 4.2.

theoremWarfarin :
(strAge strWght strFallR strScore strBlood : String)
→ str2RenalCat strBlood ≡ <25
→ stateAfterBloodTest strAge strWght strFallR

strScore strBlood
-eventually-> warfarinState

theoremWarfarin strAge strWght strFallR strScore strBlood =
theoremWarfarinAux (patientHist2FallRisk strFallR)

(str2RenalCat strBlood) (str2AgeCat strAge)
(str2WghtCat strWght)

The proof relies on an auxiliary theorem where the string-
valued inputs have been converted into the corresponding
categorized values to support pattern matching.

theoremWarfarinAux : ( f : FallRisk)(r : RenalCat)
(a : AgeCat)(w : WghtCat)
→ r ≡ <25
→ diagnosisState f r a w

-eventually-> warfarinState
theoremWarfarinAux r .<25 a w refl =
next (λ _→ next (λ _→ hasReached))

The proof expresses that no matter which inputs are pro-
vided in the first two steps of the GUI, we will reach the
warfarin state if the categorized renal value is <25. The proof
constructs a value of the -eventually-> type. Each next con-
structor corresponds to a GUI state that must be clicked
through before reaching the desired warfarin state. Since
no further inputs are needed or used, each step ignores its
inputs as indicated by _.
The second theorem states that if the blood test yields a

renal value of between 25 and 30, and if we reach the state
where dabigatran (D) is prescribed, then a low dosage is not
prescribed.

theoremNoLowDosis<30 :
(strAge strWght strFallR strScore strBlood : String)
→ str2RenalCat strBlood ≡ ≥25<30
→ (r’ : RenalCat≥30)
→ (a’ : AgeCat)
→ stateAfterBloodTest strAge strWght strFallR

strScore strBlood
-gui-> NOACSelectionDState r’ a’

→ {s : State}
→ NOACSelectionDState r’ a’ -gui-> s
→ ¬ (s ≡ lowdoseSelectionState)

The proof of this theorem is carried out by a case distinction
on possible paths. We do this manually, but current work
on Agda will make it possible to perform such finite case
distinctions automatically in the future.

6 Related Work
In our previous article [1], we introduced an Agda library for
developing state-dependent, interactive, object-based pro-
grams. We demonstrated its use for the development of basic
GUIs. In this paper, we have extended this work by adding
a declarative specification of GUIs as a data type that cap-
tures all aspects of a GUI application (components, handlers,
etc.). Also new to this work is the verification of GUI ap-
plications, as demonstrated in Sections 4–5. This includes
verifying properties such as data-dependent reachability and
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unreachability constraints for GUIs generated from declara-
tive business process specifications.

FunctionalReactive Programming (FRP) FRP is another
approach to writing interactive programs in functional pro-
gramming languages [76]. In connection with dependent
types, FRP has been studied from the foundational perspec-
tive [65] and for verified programming. Jeffrey [33] con-
tributed an embedding of linear temporal logic (LTL) into
Martin-Löf type theory. This embedding supports program
verification in which specifications are expressed as LTL for-
mulas. An extension of FRP with side effects was introduced
in Agda [9].
Krishnaswami and Benton [42] introduced a semantic

model of GUIs based on the Cartesian closed category of
ultrametric spaces using FRP. However, their work doesn’t
address the verification of GUIs.
The STEPs project [39] led by Alan Kay presented an

approach to declarative GUIs based on FRP and Morphic
(Smalltalk GUIs). Its vector graphics library is particularly
concise and elegant, which is why it can be considered as
suitable for use in vector-based GUI backends. We used it
in our work for our Haskell GUI backend. A major differ-
ence between the STEPs project and regular FRP is that it is
based on dynamically-typed languages without static type
guarantees.

Formlets Formlets [17] are abstract user interfaces that
define static, HTML-based forms that combine several inputs
into one output. However, they do not support sequencing
multiple intermediate requests. Formlets could conceivably
be used to define individual states of a larger state-dependent
GUI application within our library.

Formalizations in Isabelle There has been work on for-
malizing end-user-facing applications in Isabelle. There are
formalizations of distributed applications [12] and confer-
ence management systems [34]. In both cases, the verifica-
tion provides confidentiality guarantees about the informa-
tion flow. However, only the core of the server is verified.
The user interface and server API are external to the system
and therefore not part of the Isabelle formalization and not
checked for consistency. Since this aspect is of particular
interest for the healthcare domain, we plan to implement
similar confidentiality guarantees and other security proper-
ties. We can define stronger guarantees since we can define
them over the entire running system (including the GUIs),
and not just the core information flow.

Semantic Reasoning in the Healthcare Domain Abidi
et al. [4] present a decision support system for the prescrip-
tion of NOACs. They use semantic reasoning (OWL) to ad-
dress the challenge of determining the appropriate medica-
tion. However, their work does not involve formal verifica-
tion. The fact that this system has been developed illustrates

the difficulty of the medication process and thus the need
for automated systems.

Process Models in the Healthcare Domain Healthcare
processes have been specified using Declare [52], which is a
declarative modeling language [71] for business processes
based on human-readable diagrams. The Declare constraints
are often embedded in linear temporal logic (LTL) or finite
automata theory. A useful extension for healthcare processes
is to model patient data in the underlying business models.
This was studied from the perspective of databases [16] and
implemented as an extension for Declare [54]. A first-order
logic approach is presented by [44], which would be suffi-
ciently expressive, however, it is undecidable and which is
problematic (e.g., most model checkers don’t support it).
In the current paper, in contrast to [16, 52, 54] and other

approaches to process models, we apply formal verification
using a theorem prover (Agda) and provide machine-checked
proofs as safety guarantees. We have found only two papers
using formal specifications: Debois [20] proves in Isabelle a
general result that a certain labeling of events in a business
logic guarantees orthogonality of events. Montali et al. [55]
developed a language DecSerFlow to model properties of
business processes via choreographies mapped to LTL and
then to abductive logic programming. These properties can
be reasoned about with automated theorem provers. How-
ever, that limits their use to finite systems. Furthermore, it
doesn’t deal with the execution of process models/GUIs.

Deductive Verification of Imperative Programs Another
avenue of research is to use a co-inductive approach to di-
rectly verify imperative programs. In [57], there is a formal-
ization of four coinductive operational semantics for the
while language (a small subset of an imperative language)
The semantics and their equivalence proofs are formalized
in Coq. However, in order to be applicable to IO and GUI pro-
gramming, the work needs to be extended with IO and higher
imperative constructs (e.g., subroutines, objects). Beckert and
Bruns [13] present Dynamic Trace Logic (DTL), which com-
bines dynamic logic with temporal logic. This forms a basis
of proving functional and information-flow properties in
concurrent programs. It allows to specify and prove proper-
ties of interactive programs using modal operators. We also
plan to develop our specifications into a full modal logic.

Idris and Algebraic Effects. Bauer and Pretnar [10, 11]
have introduced the notion of algebraic effects. Brady [14]
adapted this approach in order to represent interactive pro-
grams in Idris [15, 31]. In [1], Sect. 11 we have conducted
a detailed comparison of the IO monad used in Agda and
the use of algebraic effects in Idris. Additionally, we have
detailed how to translate between the two approaches.

Idris has been primarily designed to be a language for de-
pendently typed programming while being able to be used as
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an interactive theorem prover. It is used for practical depen-
dently typed programming. Regarding GUIs, we could only
detect a forum post [60] which shows that GUI programming
should be possible using the FFI interface of Idris but has yet
to be performed.

7 Future Work
We plan to evaluate the GUI application developed in our
case study by running it on live, anonymized patient data.
This is awaiting the approval of the AKH hospital’s ethical
board.

A constraint imposed by our framework is that a GUI has
one event handler object that handles all events generated by
the GUI. We are working on a version that removes this con-
straint by allowing the composition of more loosely coupled
GUI objects, which is desirable from several perspectives,
including modularity, security, and performance.
We also plan to investigate combining the formlets ap-

proach with our notion of GUIs. This would allow us to
create generic GUIs that compute results from user inputs,
which can be plugged together. Specifically, it would enable
better composition and reuse of high-level GUI components.

Currently, our library generates application programs. We
plan to extend this to also support web-based GUIs and
mobile apps. Event handlers in our framework are writ-
ten in Agda and compiled to Haskell. We plan to use the
Threepenny-gui framework [7], which is a Haskell API for
developing GUIs that run in a web browser via JavaScript.
The JavaScript layer for Threepenny-gui is lightweight while
most of the heavy lifting happens in Haskell. This makes it
ideal as an alternate back-end for our library, allowing us
to generate both application and web-based GUIs from the
same Agda code.

One important application we have in mind is to use our
approach to create a verified mobile app to be used by medi-
cal professionals. Trials of this app with real patients could
be made in collaboration with our partners in the Medical
University of Vienna.

Appel et al. [8] proposed that a key building principle for
deep specifications is vertical composionality, which means
that higher specification levels are related provably correct
ton lower specification levels. This allows proving properties
at the higher specification level that hold at the lower specifi-
cation levels. For us, it would be useful to be able to translate
properties on the level of business processes to properties on
the level of GUI applications. Since verification at the level
of business processes is easier, this would facilitate easier
verification of process-based GUI applications.

Model checking provides a convenient way to verify prop-
erties about finite state machines. We could build on the
work by Kanso [35–37] on integrating model checkers into
Agda. Such a verification could take place on the business

process logic and then translate, via vertical compositional-
ity, into verification of the GUI. With integrated automated
theorem proving, interactive theorem proving can focus on
generic systems and universal statements, such as properties
of operators on GUIs, while proofs of properties of concrete
systems can be carried out by model checking. This would
enable automatically proving the theorems in this paper.

Finally, we plan to support new kinds of properties of GUI
applications by extending the language of properties with
LTL or related modal logics. To be compatible with Agda,
this requires adapting one of several constructive modal
logics [19, 40, 46].

8 Conclusion
GUI applications are ubiquitous in real-world systems but are
inherently difficult to verify through software testing. This
is problematic because many GUI applications are safety-
critical, such as in the healthcare domain. In this paper, we
presented a library for implementing state-dependent GUI
applications in Agda to address this problem instead through
formal verification. In our library, a GUI application consists
of a declarative GUI specification and an object that handles
its events. The type of the event handler depends on the
GUI specification, ensuring that the two are consistent. We
demonstrated how to create an application with infinitely
many steps in a straightforward way. In order to generate
GUIs from a higher-level specification, we formalized busi-
ness processes and translated them into GUIs. As a case study,
we formalized an error-prone example from the medical do-
main as a business process. We generated a GUI from it and
proved correctness properties. The properties expressed that
if one starts at the beginning, gives the inputs as required
by the GUI, then one reaches a state such that if the inserted
value fulfils certain conditions, then a certain state will even-
tually be reached, and another state will never be reached.
This shows that it is possible to formalize GUI applications at
this level of complexity and formally prove their correctness.
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