
Automated Verification of Signalling

Principles in Railway Interlocking Systems1

Karim Kanso
2

Faron Moller
3

Anton Setzer
4

Dept. of Computer Science
Swansea University

Swansea,UK

Abstract

In this paper we present a verification strategy for signalling principles for the control of a railway interlock-
ing system written in ladder logic. All translation steps have been implemented and tested on a real-world
example of a railway interlocking system. The steps in this translation are as follows: 1. The development
of a mathematical model of a railway interlocking system and the translation from ladder logic into this
model. 2. The development of verification conditions guaranteeing the correctness of safety conditions.
3. The verification of safety conditions using a satisfiability solver. 4. The generation of safety conditions
from signalling principles using a topological model of a railway yard.

Keywords: ladder logic, railway interlocking systems, SAT solvers, verification, automated theorem
proving, signalling principles, safety properties.

1 Introduction

In this paper we summarise the work carried out in a small case study, some of

which is reported in [9]. Within the scope of this project we have written software

which allows for the fully-automated verification of railway interlocking systems

using SAT solver technology. This software has been applied to the interlocking

system of a small UK railway yard.

Westinghouse Rail Systems, the project sponsor, is currently interested in ap-

plying formal methods to the development of software controlling the equipment on

the railway, i.e. signals and points. Software is developed using ladder logic, a low

level language representing Boolean-valued assignments. This software is simulated

1 The research described in this paper was carried out as a Master of Research (MRes) project by the first
author under the supervision of the second and third authors, and was supported by Westinghouse Rail
Systems, Chippenham, UK.
2 Email: cskarim@swansea.ac.uk
3 Email: F.G.Moller@swansea.ac.uk
4 Email: A.G.Setzer@swansea.ac.uk

Electronic Notes in Theoretical Computer Science 250 (2009) 19–31

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.015

mailto:cskarim@swansea.ac.uk
mailto:F.G.Moller@swansea.ac.uk
mailto:A.G.Setzer@swansea.ac.uk
http://www.elsevier.com/locate/entcs


by experienced signalling engineers to look for errors. The engineers will try many

scenarios, which are typically listed in signalling books.

This technique, commonly used in industry, catches many flaws in software,

but does not guarantee correctness of the ladder implementing signalling principles.

This research was commissioned to determine whether it is feasible to apply formal

methods to ladder logic and to verify that signalling principles hold in a ladder logic

program.

Part of the research was to implement a prototype verification system. This

system takes as input: the ladder logic to verify, a model of the railway yard, and a

signalling principle; if a counter-example is identified, the system provides a LATEX

document detailing the state of the system when the counter-example appears.

LATEX is used, as opposed to simply outputting the state of the system in plain text,

so that the produced counter-examples can be elegantly formatted and presented

to make it easier for an engineer to understand.

Signalling principles for the UK railway industry are written in plain English.

A second component of the research was to define a formal language in which to

precisely represent signalling principles. We have written a program which takes

signalling principles defined in this language, and produces safety conditions for

which the ladder logic is to be verified.

Overview

This paper is structured as follows. We start by providing some background knowl-

edge on railways and interlocking systems. We then provide a discussion of the

verification technique used in this research. Then a discussion of the production of

safety conditions from signalling principles follows. Finally, we present a survey of

related work and some conclusions to the research carried out.

2 Railways

Before explaining how the verification system works, we will provide some back-

ground information about the railway domain.

Railways are split up into railway yards – ie, train stations and depots – and

open lines connecting the yards. An example railway yard is presented in Fig. 1.

This research focuses on interlocking systems controlling railway yards. A railway

yard is made up of the following components:

Track Segments. Train lines are split up into segments, and each segment is as-

sociated with a track circuit which can detect if a train is on the segment.

Signals. Signals are placed between track segments, and a signal is only visible

from one direction. Signals show different aspects; these aspects inform the train

driver about the state of the line ahead.

Points. Points are a special type of track segment used to merge two lines into

one line. A train can drive over a set of points if it has been locked, i.e. reached

a definite position, and has been so locked into position physically and virtually

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3120



by software. The two possible positions of a set of points, when it is locked, are

called normal and reverse. The normal position is when the points allow trains

to travel straight over the points and reverse is when the points allow trains to

branch off of, or on to, the line. 5 Each set of points in a railway yard is given a

unique identifier in addition to the unique track segment identifier.

Routes. Routes consist of a sequence of sequentially-connected track segments that

begin and end at signals, possibly through a set of points. Routes are defined by

control tables which are created when a railway yard is designed. Routes can be

set to indicate that a train is using – or about to use – the route.

ts0a

ts0b

ts1a

ts1b

ts2a

ts2b

ts3a

ts3b

ts4a

ts4b

ts5a

ts5b

ts6a

ts6b

pt1 pt2

pt3 pt4

s1 s2 s3

s4 s5 s6

Signal

Points

Platform

Track Segment

Fig. 1. An example railway yard, all parts of the yard are named. The grey boxes on the right are platforms.
The arrows on the left side indicate the direction trains are supposed to travel down the lines. The black
boxes on the right are “end of line” markers. The “lollipops” named s1, s2, . . . , s6 are signals. The big
arrow depicts route C, see Table 1.

Track plans, such as presented in Fig. 1, describe how these components are

topologically configured. The operation of the various components in a railway yard

is defined using control tables. These contain information about when a route can be

set, positions of the points, and the aspect a signal should display. Control tables

are responsible for enforcing the signalling principles. Table 1 gives an example

control table defining four routes.

Route C from the control table is graphically depicted as a large arrow in Fig. 1.

Route C starts at signal s2 and ends at s4, and spans track segments ts4a, ts3a,

ts2a, ts2b and ts1b. As a safety precaution, track segment ts0b is also required

to be unoccupied before a train is allowed to enter the route. Track segments

ts3a, ts2a and ts2b are also points; ts3a must be locked in the normal position

and ts2a, ts2b must be locked in the reverse position. Points in this scenario are

always moved together in pairs so that point ts3b must also be locked in the normal

position before a train is allowed to enter the route.

5 Although in many situations, like the example in Fig. 1, it is clear which position is supposed to be
normal and which to be reverse, in general it is a matter of convention as to how to make this decision (for
instance in the situation where a main line forks into two lines).

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 21



G = Green and R = Red

R
o
u
te

N
a
m

e

S
ta

r
t

E
x
it

S
ig

n
a
l
A

sp
e
c
t

C
o
n
d
it

io
n

T
r
a
c
k

S
e
g
m

e
n
ts

P
o
in

ts
N

o
r
m

a
l

P
o
in

ts
R

e
v
e
r
se

A s1 s3
G Route Set ts1a, ts2a, ts3a, ts4a, ts5a,

ts6a
ts2*,
ts3*R Route Unset

B s1 s6
G Route Set ts1a, ts2a, ts3a, ts3b, ts4b,

ts5b, ts6b ts2* ts3*
R Route Unset

C s2 s4
G Route Set ts4a, ts3a, ts2a, ts2b, ts1b,

ts0b
ts3* ts2*

R Route Unset

D s5 s4
G Route Set

ts4b, ts3b, ts2b, ts1b, ts0b ts2*,
ts3*R Route Unset

Table 1
An incomplete control table for the railway yard of Fig. 1. The ‘Start’ and ‘Exit’ columns indicate signals

the route begins and ends at; the ‘Track Segments’ column displays track segments that must be
unoccupied for a train to enter the route. The two ‘Points’ columns together show the position that points

must be in for a route to be set. tsn* is short hand for tsna and tsnb. Route C is depicted in Fig. 1.

3 Interlocking Systems

Railway interlocking systems are designed to implement the constraints in the con-

trol tables. The interlocking systems with which this research is concerned are

programmed using ladder logic, a graphical representation of a sequence of Boolean

assignments

x1 := ϕ1; · · · xn := ϕn

where each ϕi is a propositional formula with variables taken from the set of input,

output and intermediate propositional variables (latches).

The Boolean-valued assignment z := (w ∧ ¬x) ∨ y, as it would be presented

in ladder logic, is graphically depicted in Fig. 2. The variables w, x, y and z

|w|

|y|

|�x| (z)

Fig. 2. Assignment Expressed in Ladder Logic

represent latches (propositional variables), �x is a negation, and the brackets around

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3122



z indicate that it is the resultant. Literals in series such as w∧¬x in Fig. 2 represent

conjunctions and literals in parallel represent disjunctions. The diagram’s semantics

are very similar to that of a circuit diagram, as ladder logic was originally developed

to program microchips.

A ladder is executed by a program of the form

Initialise;

while(true){

output();

input();

x1 := ϕ1;
...

xn := ϕn}

In the initialisation phase, some variables are set to initial values, while others

remain undefined. A perpetual loop is then entered in which the following steps are

carried out: the values of the output variables are sent to the signals, points, etc.;

the input variables are set to the inputs (states of buttons from the control panel,

sensors from the track segments, sensors from the points, etc.); and the ladder is

executed. Note that, while executing the assignments, the output variables are not

modified; therefore, correctness is only required at the end of each execution of the

ladder. (The system need not be safe directly after initialisation, since the system

will be used by trains only after the ladder has been executed a given number of

times, say n times. We require that the system is correct after at least one execution

of the ladder, but it would be sufficient to require correctness after at least n steps.)

4 Verification

Verification of safety properties in systems defined with ladder logic can be achieved

in a number of different ways. Ladder logic is conceptually trivial to translate into

propositional logic; this is exploited to allow the verification to be performed within

the framework of propositional logic. Thus, safety conditions to be verified are also

defined in propositional logic.

The safety conditions are propositional formulæ in which the atomic propositions

range over the atomic propositions within the ladder. In this paper, ψ is used to

denote a safety condition, or the conjunction of safety conditions.

To prove the correctness of a safety condition ψ, we need to show that ψ holds

after executing the ladder n times for every n ≥ 1. Note that ψ is not required to

hold when n = 0 because the initial state is allowed to violate the safety conditions.

In our system, we prove this by induction: we show that ψ holds after initialisation

and one execution of the ladder; and that, if ψ holds before an execution of the

ladder, it holds afterwards as well. This technique is a strengthening of the first

method introduced by Fokkink in [8]; see our Section 7 for a detailed comparison

of the two approaches.

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 23



More formally, we define a propositional formula ψI which defines the initial

state of the system (the ladder logic program does not assign a fixed value to all

variables in the initial state). For instance, if variables x, y, z are initially set to

values a, b, c, then ψI = (x ↔ a) ∧ (y ↔ b) ∧ (z ↔ c). Furthermore, we define a

formula ϕL which models the execution of the ladder. Assuming for simplicity that

the xi are all different and represent the state of variables before execution of the

ladder, then ϕL has the form

(x′
1 ↔ ϕ′

1) ∧ · · · ∧ (x′
n ↔ ϕ′

n)

Here, x′
i

are new variables representing the state of the variables after execution;

and ϕ′
i

is the result of replacing x1, . . . , xi−1 by x′
1, . . . , x

′
i−1 in ϕi. The first proof

formula, corresponding to the base case, has the form

ψI ∧ ϕL → ψ′

where ψ′ is the result of replacing each atomic proposition x in ψ by x′. It expresses

that after the first iteration of the ladder the interlocking system is in a safe state.

The second formula is the inductive step, and proves that from an arbitrary state

where the safety condition ψ holds, after executing the ladder the safety condition

still holds.

ψ ∧ ϕL → ψ′

These two formulæ should always hold to prove correctness of the safety condition

in the ladder. When employing a SAT solver, both formulæ are negated; thus, if

the safety condition holds, neither formula should be satisfiable.

Example 1

If

• the initialisation sets variable x to true:

ψI := x ↔ true
• the safety condition is y ↔ x:

ψ := y ↔ x and ψ′ := y ↔ x′

• and the ladder has one assignment representing x := y:

ϕL := x′ ↔ y

then we obtain the formulæ
(
(x ↔ true) ∧ x′ ↔ y

)
→ y ↔ x′

and
(
(y ↔ x) ∧ x′ ↔ y

)
→ y ↔ x′

which, in this toy example, are provable. For the verification, we use a SAT solver

to search for a satisfying assignment which falsifies one of the two formulæ above.

Limitations

The proof system described above suffers from the problem that we may obtain a

false positive when trying to verify a safety condition, that is, a counter-example

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3124



which can not actually arise. There may be a state in which the safety condition

holds, but such that after the execution of the ladder the safety condition is violated;

however it may be that the original state is unreachable. In order to find out whether

the counter-example is genuine, it is necessary to find a trace from the initial state

to the identified counter-example. This is not straight forward with our inductive

proof system 6 .

To mitigate the identification of false positives the inductive statement is relaxed

to:

(ψ ∧ ϕL ∧ ψInv) → ψ′

where ψInv is an invariant of the ladder. We used two orthogonal techniques for

identifying such an invariant ψInv:

1) Not all choices of input variables correspond to physically possible states. An

example is a 3-way switch which has 3 positions A, B, C (e.g. “control from

central panel”, “control by local station” and “control by emergency panel”).

The output of such a switch would then be represented by 3 variables, one

indicating whether A was chosen, one for B and one for C. At any time at

most one of A, B or C is chosen (possibly none of these is chosen, e.g. if the

switch is between positions). Therefore we obtain the invariant

A → (¬B ∧ ¬C)

∧ B → (¬A ∧ ¬C)

∧ C → (¬A ∧ ¬B)

2) Some combinations of variables are unreachable. When looking carefully at

false positives, it was usually found that some variables were in a state which

should not be reachable, typically when two variables are related to each other;

e.g. if a signal’s green aspect is activated, its red aspect should not be activated,

and vice versa. In this instance we would obtain the invariant

signali is red ↔ ¬signali is green.

When such a possible invariant ψInv is discovered we try to prove that it is in fact

an invariant, i.e. that it always holds:

(ϕI ∧ ϕL) → ψ′
Inv and (ψInv ∧ ϕL) → ψ′

Inv

If this is provable, then we can assume that this invariant holds before executing

the ladder. Alas, it is a major area of research to efficiently identify invariants

automatically.

6 Solutions for producing error traces are known but have not been explored in this research. One such
solution is to use time copies as introduced by Fokkink in [8] or to apply a model checking technique that
successively identifies sets of reachable states from the initial state to the counter-example, yielding the
computation path [1,4].

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 25



5 Translating Signalling Principles to Safety Condi-

tions

Signalling principles, as used in this research, refer directly to the railway industry.

They are used as heuristics by the designers and are typically written in a natural

language as precisely as possible.

One aim of the research is to define a formal unambiguous language with which

to formulate signalling principles. A typical signalling principle would be:

“Points in a railway yard should not be set to

the normal and reverse positions simultaneously.”

Normal and reverse are the two possible positions of a set of locked points. Signalling

principles do not refer directly to any specific railway yard, or the entities within

them. First-order logic with general predicates is ideal for formally expressing these

principles; the above principle would be translated to:

∀ pt ∈ Points : ¬ [normal(pt) ∧ reverse(pt)]

These first-order formulæ need to be translated into a propositional formula

(safety condition); to do this we build a topology model of the railway yard for

which the interlocking system was designed. A Prolog database is used for this

topology model. The entities in a railway yard are given names, and relations are

used to model the topographic aspect. For instance, two connected track segments

would be related using the binary predicate connected. For this research, the

track plans and control tables were (manually) converted into a Prolog database.

This database can then be automatically queried to help translate the signalling

principles.

The translation has two steps: the first removes quantification, and the second

resolves predicates into literals from the ladder or a constant Boolean value depend-

ing on the context. Variables in the signalling principle range over finite domains,

as all railway yards are finite. Thus, universal quantification can be replaced by a

finite conjunction, and existential quantification can be replaced by a finite disjunc-

tion. The topology model would be queried for a finite set of quantified values. For

instance the variable pt in the example signalling principle introduced ranges over

the domain of all points in the railway yard.

Secondly, the predicates are resolved into literals. This is done by specifying

a list of predicates along with how they are reduced. This list is unique for each

railway yard, as different railway yards follow different naming conventions. For

instance, the predicate normal(pt) used in the example signalling principle would

be reduced to a literal “pt.Normal” by means of a string concatenation operation.

Predicates that are not specified in the railway yard specific list are resolved using

Prolog, and the topology model, to a constant Boolean value (see Example 2 below).

Thus, the second class of predicates greatly simplifies the formulation of signalling

principles, as a safety condition can be given a guard.

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3126



Example 2

Consider a signalling principle such as

“All points that are part of a route must be locked if the route is set.”

This is formalised as

∀ pt ∈ Points : ∀ rt ∈ Routes : point part of(pt, rt) → [set(rt) → locked(pt)]

where the predicates set(rt) and locked(pt) are reduced to literals; and

point part of(pt, rt) is reduced to true if point pt is part of route rt within the

topology model, and to false otherwise. In this case, the verification consists of

proving that set(rt) → locked(pt) holds for all cases where point pt is part of

route rt.

Example 3

Consider a simple railway yard with only two points pta and ptb and a signalling

principle:

∀ pt ∈ Points : ¬[normal(pt) ∧ reverse(pt)]

After removal of the quantification and predicates, the following safety condition is

produced:

¬[pta.Normal ∧ pta.Reverse] ∧ ¬[ptb.Normal ∧ ptb.Reverse]

In order to identify more precisely the reason for a possible counter-example, the

safety conditions – which often form a large conjunction – are split into their con-

juncts which form more specific safety conditions.

6 Implementation

The software implemented for this research takes as input a signalling principle,

an interlocking system’s ladder logic, and a topology model; using these inputs, it

generates clause sets and starts the verification. LATEX documentation is produced

if a counter-example is identified. The SAT-Solver used for this project is called

OKSolver, written by Kullmann [12,10], which is part of the OKlibrary [11]. The

interlocking system verified has 331 assignments and 599 variables. For illustration

purposes, two signalling principles have been verified; Table 2 contains information

about the verification of the clauses. The first section in the table verifies that the

interlocking system can never move the points to the normal and reverse position

in the same execution cycle. The second section shows that counter-examples have

been identified while attempting to verify that if a point is occupied, then it is locked

into position. This second signalling principle is only for demonstration purposes

and does not mean the railway is unsafe, as the proof system allows for trains to

magically appear and disappear. Thus, if a point is not locked, then the SAT-Solver

will place a train on the point, thus creating a counter-example.

Interestingly, the first signalling principle, when the clause sets are all unsat-

isfiable, has a very fast running time while verifying the clause sets. The second

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 27



Clause Set
Number of

Clauses

Number of

Variables

OKSolver

Running

Time

(Seconds)

pointsNotNormalAndReverse0 14713 4076 0.06

pointsNotNormalAndReverse0.ind 12916 3559 0.06

pointsNotNormalAndReverse1 14713 4076 0.13

pointsNotNormalAndReverse1.ind 12916 3559 0.14

occupiedPointsLocked0 14713 4076 0.25

occupiedPointsLocked0.ind 12930 3560 1.34

occupiedPointsLocked1 14713 4076 0.21

occupiedPointsLocked1.ind 12930 3560 1.33

occupiedPointsLocked2 14716 4076 0.25

occupiedPointsLocked2.ind 12930 3560 1.37

occupiedPointsLocked3 14713 4076 0.27

occupiedPointsLocked3.ind 12930 3560 1.3

Table 2
Clause sets and there verification time, the clause sets in italic are satisfiable. Clause sets that end with

ind are the inductive step of the verification, those without are the base cases.

signalling principle, when the clause sets are all satisfiable, has a greater average

running time, especially through the inductive steps.

7 Related Work

There have been many attempts to apply formal methods to railways and their

associated interlocking systems. Indeed, this is the subject of the TRain Grand

Challenge proposed by Dines Bjørner [3].

Eriksson has applied formal methods to the problem with great success for over

ten years, notably on behalf of Banverket (the Swedish National Rail Administra-

tion) [5,6,7]. This approach works by creating two mathematical models: the first

is that of the interlocking system and consists of rules, and the second is of the

topological aspects of the railway yard for which the interlocking system has been

designed. Verification proceeds by proving that a signalling principle holds for the

interlocking system model in the topology model of the railway yard. The NP-Tools

software produced by the company Prover 7 was used for the verification [5]. NP-

Tools is a collection of tools packaged with a proof engine; these tools translate

various problems into an acceptable format for the proof engine to process. The

7 www.prover.com

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3128



proof system implemented by NP-Tools is documented in [15]. NP-Tools has been

used by many other companies for formal verification of critical systems such as

ADTranz, Saab and Volvo.

Morley applied formal methods to the British Rail Solid State Interlocking

(SSI), focussing on safety properties and communication protocols between the

SSI’s [14,13]. Our approach is somewhat different as we focus on the low level

Boolean logic whereas SSI’s are programmed at a high level with a language which

merges the logic with geographic data.

Fokkink demonstrated how an interlocking system programmed using ladder

logic can be automatically verified to ensure that it implements the control tables

correctly [8]. This work did not cover the direct verification of signalling principles;

only safety conditions that were derived from the control tables were verified. The

paper discusses two verification techniques. The first proves that a safety condition

is a logical consequence of executing the ladder. Let ϕL be a model of the ladder

in propositional logic and ψ be a safety requirement. The proof obligation used by

Fokkink is

ϕL → ψ′

If this obligation holds it proves that after any execution of the ladder the safety

requirement will always hold, even if the system was in an unreachable state before

executing the ladder. Note that our approach only demands that the obligation

holds if, before an execution of the ladder, the system was in the initial state or in a

state where the safety requirements hold as well. Our approach, therefore, restricts

the number of states for which the safety condition is required to hold to a smaller

subset of states which contains all reachable states and possibly some unreachable

states. By adding invariants, we further cut down the number of unreachable states

to be considered, therefore reducing the number of false positives.

The second technique introduced by Fokkink creates time copies of the propo-

sitional model of the ladder. He introduces variables xi(j) denoting the state of

variable xi after j executions of the ladder 8 . A time copy ϕ(i) would be the same

as ϕ with all of the atomic propositions x in ϕ replaced by x(i). This technique does

not show that after any execution of the ladder the safety requirement will hold,

but only after a finite number k of executions of the ladder. The proof obligation is

ϕ(0) ∧ ϕ(1) ∧ . . . ∧ ϕ(k) → ψ(k)

This technique can be used to prove temporal safety requirements, but is deprecated

as such safety conditions are verified for only a finite number of iterations; there

will always be uncertainty as to whether the safety requirements hold beyond k

iterations of the ladder. However, if a counter-example is found, then it is the case

that the counter-example is reachable, and from a falsifying assignment we obtain

a trace from the initial state to it.

8 So in our notation xi denotes xi(0) and x′

i
denotes xi(1).

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 29



8 Conclusion

Our approach was applied to a model provided by our industrial sponsor of a modest

yet typical railway yard with 331 assignments and 599 variables, representing a

station with two platforms and one railway line with two tracks feeding into it. The

running time of the SAT solver itself was never longer than a couple of seconds.

We were able to prove a large variety of safety conditions. We found some counter-

examples, which were already known to the company but recognised not to be safety

critical, being intermittent and occurring for only one cycle of the ladder. In order

to prove that these counter-examples really occur only for at most one cycle, we

could adapt the proof obligation and prove that if the system is in a state in which

the safety condition ψ does not hold, then it will hold after a single execution of

the ladder. The proof formula would be

¬ψ ∧ ϕL → ψ′

and we could restrict it to states fulfilling the invariant, i.e.

¬ψ ∧ ψInv ∧ ϕL → ψ′

We do not know how well our approach scales up, since we have only applied

it to a modest railway yard. Current interlocking systems being developed have

over 3000 assignments. We do not anticipate any serious problems although the

nature of the satisfiability problem means that the computational complexity will

grow exponentially when attempting to verify interlocking systems with more and

more assignments.

This project demonstrates that automated verification of railway interlocking

systems, at least for smaller examples, is feasible. The main advantages of our

approach is its simplicity and that it verifies safety at the lowest level – the level at

which it is actually executed.

References

[1] Baier, C. and I. Katoen, J.P., “Principles of Model Checking,” The MIT Press, 2008.

[2] Biere, A., M. Heule, H. van Maaren and T. Walsh, “Handbook of Satisfiability,” IOS Press, Amsterdam,
(to be published) 2008.
URL http://www.st.ewi.tudelft.nl/sat/handbook/toc.html

[3] Bjørner, D., TRain: The Railway Domain, in: Building the Information Society, IFIP International
Federation for Information Processing 156/2004 (2004), pp. 607–611.
URL http://www.springerlink.com/content/527p7237102w5741/

[4] Clarke, E., O. Grumberg and I. Peled, D.A., “Model checking,” Springer, 1999.

[5] Eriksson, L., Formal Verification of Railway Interlockings, Swedish National Rail Administration
Technical Report 4 (1997).

[6] Eriksson, L., Formalising Railway Interlocking Requirements, Swedish National Rail Administration
Technical Report 3 (1997).

[7] Eriksson, L. and M. Fahlén, An Interlocking Specification Language, ASPECT IRSE 99 (1999).

[8] Fokkink, W., P. Hollingshead, J. Groote, S. Luttik and J. van Wamel, Verification of interlockings: from
control tables to ladder logic diagrams, Proceedings 3rd Workshop on Formal Methods for Industrial
Critical Systems (FMICS’98) (1998), pp. 171–185.

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–3130

http://www.st.ewi.tudelft.nl/sat/handbook/toc.html
http://www.springerlink.com/content/527p7237102w5741/


[9] Kanso, K., “Formal Verification of Ladder Logic,” Master’s thesis, Swansea University, Swansea, SA2
8PP, UK (2008).

[10] Kullmann, O., Investigating the behaviour of a SAT solver on random formulas, Technical
Report CSR 23-2002, Swansea University, Computer Science Report Series (available from
http://www-compsci.swan.ac.uk/reports/2002.html) (2002).

[11] Kullmann, O., The OKlibrary: A generative research platform for (generalised) SAT solving, Technical
Report CSR 1-2008, Swansea University, Computer Science Report Series
(http://www-compsci.swan.ac.uk/reports/2008.html) (2008).

[12] Kullmann, O., Present and future of practical SAT solving, in: N. Creignou, P. Kolaitis and H. Vollmer,
editors, Complexity of Constraints, Lecture Notes in Computer Science (LNCS) 5250, Springer, 2008
pp. 283–319.

[13] Morley, M., Safety in Railway Signalling Data: A Behavioural Analysis, LECTURE NOTES IN
COMPUTER SCIENCE (1994), pp. 465–465.

[14] Morley, M., Safety-level communication in railway interlockings, Science of Computer Programming
29 (1997), pp. 147–170.

[15] Stälmarck, G. and M. Saflund, Modeling and verifying systems and software in propositional logic,
Safety of Computer Control Systems (SAFECOMP90) (1990), pp. 31–36.

K. Kanso et al. / Electronic Notes in Theoretical Computer Science 250 (2009) 19–31 31

http://www-compsci.swan.ac.uk/reports/2002.html
http://www-compsci.swan.ac.uk/reports/2008.html

	Introduction
	Railways
	Interlocking Systems
	Verification
	Translating Signalling Principles to Safety Conditions
	Implementation
	Related Work
	Conclusion
	References

