
Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

Topoi: Theory and Applications

Oliver Kullmann1

1Computer Science, Swansea University, UK
http://cs.swan.ac.uk/~csoliver

Categorical logic seminar
Swansea, March 19+23, 2012

http://cs.swan.ac.uk/~csoliver
http://cs.swan.ac.uk/~csfnf/catlog/


Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

Meaning

I treat “topos theory” as a theory, whose place is similar
to, say, group-theory in relation to semigroup-theory:

1. A “topos” is a special category.

2. Namely a category with “good” “algebraic” structures.

3. Similar to the operations that can be done with finite
sets (or arbitrary sets).

4. A “Grothendieck topos” is a special topos, having
more “infinitary structure”.

5. It is closer to topology.



Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

Terminology I

◮ “Topos” is Greek, and means “place”.

◮ Its use in mathematics likely is close to “space”,
either “topological space” or “set-theoretical space”.

◮ Singular “topos”, plural “topoi” (“toposes” seems to
be motivated by a dislike for Greek words).

◮ Concept invented by Alexander Grothendieck.

◮ What was original a “topos”, became later a
“Grothendieck topos”.

◮ Grothendieck topoi came from algebraic geometry:
“a “topos” as a “topological structure”.

◮ Giraud (student of Grothendieck) characterised
categories equivalent to Grothendieck topoi.

http://en.wikipedia.org/wiki/Alexander_Grothendieck
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Terminology II

◮ Then came “elementary topoi”, perhaps more
motivated from set theory.

◮ William Lawvere (later together with Myles Tierney)
developed “elementary” (first-order) axioms for
Grothendieck topoi.

◮ The “subobject classifier” plays a crucial role here.

◮ Elementary topoi generalise Grothendieck topoi.

◮ Nowadays it seems “topos” replaces “elementary
topos”.

http://en.wikipedia.org/wiki/William_Lawvere
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Generalised topology

From [Borceux, 1994]:

◮ A Grothendieck topos is a category equivalent to a
category of sheaves on a site.

◮ A Grothendieck topos is complete and cocomplete.

◮ Every Grothendieck topos is a topos.

◮ A topos in general is only finitely complete and
finitely cocomplete.
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Three operations with sets

Three related properties of the category SET:

Function sets For sets A,B we have the set BA of all
maps f : A → B.

Characteristic maps For set A the subsets are in 1-1
correspondence to maps from A to {0, 1}.

Powersets For a set A we have the set P(A) of all
subsets of A.

Via characteristic maps we get powersets from function
spaces:

P(A) ∼= {0, 1}A.

◮ Perhaps in categories which have “map objects” and
“characteristic maps”, we have also “power objects”?

◮ Conversely, perhaps from power objects we get, as
in set theory, map objects and characteristic maps?
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Exponentiation: The idea

Fix a category C. We consider “exponentiation” with an
object E — easiest to fix E :

powE : B ∈ Obj(C) 7→ BE ∈ Obj(C).

What could be the universal property? “Currying”?!:

Mor(A × E ,B) ∼= Mor(A,BE).

So we need products in C. Looks like adjoints?! Recall
F : C → D, G : D → C yields an adjoint (F ,G) iff there is
a natural isomorphism

Mor(F (A),B) ∼= Mor(A,G(B)).

So F (A) := A × E and G(B) := powE(B).

http://en.wikipedia.org/wiki/Currying
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Exponentiation: The formulation I

Definition
The category C has exponentiation with power
E ∈ Obj(C) if the functor A ∈ Obj(C) 7→ A × E ∈ Obj(C)
has a right adjoint B ∈ Obj(C) 7→ BE ∈ Obj(C).

According to the general theory of adjoints, this is
equivalent to the property that for all B ∈ Obj(C) the
functor P := (A × E)A∈Obj(C) has a universal arrow
(“cofree object”, “coreflection”) from P to B, that is, a
morphism

e : BE × E → B

such that for all e′ : A × E → B there exists a unique
f : A → BE with e′ = e ◦ (f × idE).
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Exponentiation: The formulation II

Definition
A category C with binary products has exponentiation, if
all powers admit exponentiation.

◮ If C has exponentiation, then so does its skeleton,
and thus having exponentiation is an invariant under
equivalence of categories.

◮ For exponentiation we need the existence of binary
products, however, as usual, a different choice of
binary products leads to (correspondingly)
isomorphic exponentiations.

◮ So the above “with” can be interpreted in the weak
sense, just sheer existence is enough (no specific
product needs to be provided).
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Cartesian-closed categories

Definition
A category is cartesian-closed, if it has finite limits and
exponentiation.

◮ Being cartesian-closed is just a property of
categories, no additional structure is required (“has”
means “exists”).

◮ If a category is cartesian-closed, so is its skeleton,
and thus being cartesian-closed is an invariant under
equivalence of categories.

The category CAT of all (small) categories is
cartesian-closed, with FUN(C,D) as the exponential
object of C,D, and so we can write DC := FUN(C,D).
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Subobject classifier: The idea

Now let’s turn to “characteristic functions”. Consider a
category C with finite products and an object X .

A subobject A of X shall correspond
to that morphism χA : X → Ω

for some fixed “subobject classifier” Ω ∈ Obj(C),
such that the image of A under χA

is the same as t : 1 → Ω

for some fixed t.

◮ If such a pair (Ω, t) exists, it is called a “subobject
classifier” of C.

◮ So consider a subobject(-representation) i : A →֒ X .
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Subobject classifier: The conditions

We get the diagram

A
1A //

i
��

1
t
��

X χA
//Ω

What are the conditions?

1. For every mono i : A →֒ X there shall be exactly one
χA : X → Ω making the diagram commute, and
fulfilling the further conditions.

2. A pushout?

3. No, a pullback!
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Definition

Definition
For a category C with a terminal object 1C, a subobject
classifier is a pair (Ω, t) with Ω ∈ Obj(C) and t : 1C → Ω,
such that for all monos i : A →֒ X there is exactly one
χA : X → Ω such that (i , 1A) is a pullback of (t, χA).

◮ All subobject classifiers for C are pairwise
isomorphic.

◮ If C has a subobject classifier, then so does its
skeleton, and thus having a subobject classifier is an
invariant under equivalence of categories.



Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

Definition of (“elementary”) topoi

Definition
A topos is a cartesian-closed category which has a
subobject classifier.

◮ Being a topos is just a property of categories, no
additional structure is required (“has” means
“exists”).

◮ If a category is a topos, so is its skeleton, and thus
being a topos is an invariant under equivalence of
categories.
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Equivalent characterisation of topoi

With [Lane and Moerdijk, 1992], Section IV.1:

◮ The “global” point of view is used, similar to the use
of adjoints in characterising exponential objects.

◮ The “power object” operation P is assumed.

◮ This is a map P : Obj(C) → Obj(C) such that for all
objects A,B ∈ Obj(C) there are natural isomorphisms

Sub(A × B) ∼= Mor(A,P(B))

(between sets).

Using Ω := P(1) we get the subobject classifier.
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Reminder: limits

◮ The category of sets is complete, that is, has all
(small) limits.

◮ It is also cocomplete (has all (small) colimits), but we
do not need this here (finite cocompleteness follows
from being a topos).

◮ Completeness is equivalent to having all (small)
products and all (binary) equalisers.

◮ The canonical terminal object is the empty product,
i.e.,

∏
∅ = ∅∅ = P(∅) = {∅} = {0} = 1.

(Xi)i∈I 7→ ∏

i∈I

Xi

prp

����
��
�

prq

��7
77

77

· · · Xp · · · Xq · · ·

X
f //

g
// Y 7→ {x ∈ X : f (x) = g(x)} in // X

f //

g
// Y
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Reminder: pullbacks

C

A

f
??��������

B

g
__????????

7→ C

A

f
99ssssssssssss

B

g
eeKKKKKKKKKKKK

{(a, b) ∈ A × B : f (a) = g(b)}
pr1

eeKKKKKKKKKK pr2

99ssssssssss
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Exponentiation and subobject classifier

Exponentiation:

(X ,Y ) 7→ Y X := {f : X → Y}

e : Y X × X → Y , e(f , x) := f (x).

Subobject classifier:

Ω := {0, 1} = P(1)

t : 1 = {0} →֒ Ω, 0 7→ 1.

P(X ) →֒→ ΩX , A 7→ χX (A) := A × {1} ∪ (X \ A)× {0}
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The category of finite sets

◮ The full subcategory of SET given by all finite sets
(in the current universe, of course) is a topos, with
the same operations.

◮ In general, if for a topos T and a full subcategory C

◮ C is closed under the the topos-operations (finite
product, exponentiation, subobject classifier),

◮ C is closed under subobject-formation,

then also C is a topos.
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Monoid operations

Consider a fixed monoid M = (M, ·, 1).
An operation of M on X is given by a map

∗ : M × X → X

such that for all a, b ∈ M and x ∈ X we have

1 ∗ x = x

a ∗ (b ∗ x) = (a · b) ∗ x .

◮ (M, ∗) is also called an M-set.
◮ Isomorphically, we have the point of view of a

“representation via transformations”: a morphism
from M into the transformation monoid
T(X ) = (X X , ◦, idX ).

See Section 4.6 in [Goldblatt, 2006] for basic information
on the topos of M-sets.
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The category of M-sets

For M-sets X ,Y , a morphism f : X → Y is a map fulfilling

∀ a ∈ M ∀x ∈ X : f (a ∗ x) = a ∗ f (x).

The category of M-sets is denoted by OPRM(SET).

◮ I use the terminological distinction between “action”
and “operation”, where for the former structure on the
object acted upon is involved (e.g., the action of a set
on a group via automorphisms), and for the latter
structure on the side of acting object (the operation
of a group on a set).

◮ OPRM(SET) is a concrete category.

OPRM(SET) is canonically isomorphic to the functor
category SETM , considering M as a one-object category.
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Some remarks

1. The functor O : MON → CAT′, mapping monoid M
to category OPRM(SET), is a contravariant functor.

2. Here CAT′ is the category of “large” categories (in
the parameter-universe).

3. More generally, the functor
O : MON× CAT′ → CAT′, given by (M,C) 7→ CM ,
mapping a monoid M and a category C to the
category of operations of M on C, is a bifunctor,
contravariant in the first argument.

4. More generally, the mapping
FUN : CAT× CAT′ → CAT′, (C,D) 7→ DC, is a
bifunctor, contravariant in the first argument.

5. More generally, for a cartesian-closed category C,
the mapping C2 → C, (X ,Y ) 7→ Y X , is a bifunctor,
contravariant in the first argument.
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Limits

The forgetful functor V : OPRM(SET) has a left-adjoint,
the formation of free operations. So V preserves limits.

◮ I.e., if limits exist, they must have the underlying sets
as given by the limits in SET.

◮ It is easy to see, as in all algebraic categories, that
the operations of M defined in the obvious ways for
the SET-limits, yield limits in OPRM(SET).

It also follows that the monomorphisms of OPRM(SET)

are precisely the injective morphisms.
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Representable functors

The representable functors of a category C are those
functors F : C → SET which are isomorphic to a
Hom-functor X ∈ ObjC 7→ Mor(A,X ) ∈ Obj(SET) for
some A ∈ Obj(C) (the representing object).

◮ We consider the objects of OPRM(SET) as functors
(“covariant presheafs”).

◮ There is then only one object, thus only one
Hom-functor.

◮ This is the canonical operation of M on itself, via
multiplication.
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Exponentiation

For M-sets B,E the exponential BE is defined as having

◮ base set Mor(M × E ,B)

◮ operation (for m ∈ M and a morphism f : M ×E → B)

(m ∗ f )(a, e) := f (m · a, e)

◮ evaluation e : BE × E → B given by

e(f , e) := f (1, e).
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Alternative for groups

If M is a group, then we have a simple (of course,
isomorphic) possibility to define the exponential BE :

◮ base set MorSET(E ,B)

◮ operation (for g ∈ M and a map f : E → B)

(g ∗ f )(e) := g ∗ f (g−1 ∗ e)

◮ evaluation e : BE × E → B given by

e(f , e) := f (e).
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Reminder: Yoneda lemma

Lemma
Consider a category C, an object A ∈ Obj(C) and a
functor T : C → SET. The Yoneda map

YA,T : NAT(MorC(A,−),T ) → T (A)

is a bijection.

So, for C = OPRM(SET), for every M-set X we have a
natural bijection

Mor(M,X ) ∼= X .

This is also easy to see directly, since a morphism from
M to X is uniquely determined by the image of 1 (M is the
free operation generated by one element).
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Subobject classifier

What shall be Ω ?!
Let’s consider the M-set M and its subobjects:

1. Subobjects are the left ideals of the semigroup M
(subsets stable under left multiplication).

2. As we have seen, Mor(M,Ω) ∼= Ω holds.

So we should take as the base set of Ω the set of left
ideals of M:

Ω := {I ⊆ M | ∀ a ∈ M ∀ x ∈ I : a · x ∈ I}.

(Thus |Ω| ≥ 2.) It is natural to choose t := M ∈ Ω.
What is now the operation of M on Ω ?

a ∗ ω := {b ∈ M : b · a ∈ ω}

for ω ∈ Ω and a ∈ M.
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Determining morphisms into Ω

Lemma
For an M-set X and a morphism f : X → Ω we have

∀ x ∈ X : f (x) = {a ∈ M : f (a ∗ x) = M}.

For a subset A ⊆ X there exists a morphism f : X → Ω

with f−1({M}) = A iff A is closed (i.e., is a subspace), in
which case f is unique, namely f = χA with

χA(x) := {a ∈ M : a ∗ x ∈ A}.

Proof: For a morphism f : X → Ω we have:

f (a ∗ x) = M ⇔ a ∗ f (x) = M ⇔

{b ∈ M : b · a ∈ f (x)} = M ⇔ a ∈ f (x).

M operates trivially on M ∈ Ω, so f−1({M}) is closed.
Finally a ∗ χA(x) = {b ∈ M : b · a ∈ χA(x)} = {b ∈ M :

(b · a) ∗ x ∈ A} = {b ∈ M : b ∗ (a ∗ x) ∈ A} = χA(a ∗ x).



Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

General directed graphs
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Generalisation to functor categories

With Remark B:2.3.19 in [Johnstone, 2002]:

◮ If C is a finite category and D is a topos, then DC is a
topos.

◮ If C is a small category and D is a cocomplete topos,
then DC is a topos.

For a small category C

the category SETC t
of presheaves

is a topos.
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Reminder: Comma categories

See

http://en.wikipedia.org/wiki/Comma_category

for more information.
Consider functors F : A → C, G : B → C. The comma
category (F ↓ G) is defined as follows:

1. objects are triples (a, b, ϕ), where a ∈ A, b ∈ B, and
ϕ : F (a) → G(b)

2. morphisms f : (a, b, ϕ) → (a′, b′, ϕ′) are pairs
f = (α, β), where α : a → a′, β : b → b′, and
ϕ′ ◦ F (α) = G(β) ◦ ϕ.

Special cases:
◮ An object X of a category C stands for 1 7→ X .
◮ A category C stands for idC.
◮ (C ↓ X ) also written as “C/X ” (“slice category”).
◮ (C ↓ G) also written as “C/G” (“Artin glueing”).

http://en.wikipedia.org/wiki/Comma_category
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Comma categories yielding topoi

Consider topoi B,C and a functor G : B → C.

Theorem [Wraith 1974, [Carboni and Johnstone, 1995]]:

If G preserves pullbacks, then (C ↓ G) is also a topos.

Special cases:

1. The product of two topoi is a topos.

2. Slices of a topos are topoi.
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The topos of (labelled, generalised)
clause-sets

Consider a fixed monoid M.
Consider the (forward) powerset functor

Pf : OPRM(SET) → SET
which

◮ maps an M-set X to Pf(X ),
◮ maps f : X → Y to Pf(f ) : Pf(X ) → Pf(Y ), where

Pf(f )(S) := f (S).
Now let

LCLSM := (SET ↓ Pf)

Pf does not preserve pullbacks, nevertheless these
categories are topoi.

◮ LCLS{1} is the category of labelled hypergraphs
◮ LCLSZ2 is the category of labelled clause-sets

(allowing degenerated and non-polarised literals!).
Without the labelling, we obtain quasi-topoi.
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A little problem

Actually, [Carboni and Johnstone, 1995] show for topoi
B,C and a functor G : B → C:

G preserves pullbacks if and only if (C ↓ G) is a topos.

Now G clearly does not preserve pullbacks, however we
have a topos ...
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Factorisation

Consider a category C and a morphism f : A → B.
◮ f has an epi-mono factorisation if

f = i ◦ π

for some epimorphism π : A → C and some
monomorphism i : C → B.

◮ Such a factorisation is unique if for every other
epi-mono factorisation f = i ′ ◦ π′, i ′ : A → C′,
π′ : C′ → B, there is an isomorphism ϕ : C → C′ with
commutative

C
π

  @
@@

@@
@@

@

ϕ

��

A

i
>>~~~~~~~~

i ′ ��@
@@

@@
@@

B

C′
π
′

>>~~~~~~~
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Topoi have unique factorisations

◮ A category has epi-mono factorisation (also “epi-
mono decomposition”, or just “factorisation” or
“decomposition”) if every morphism has an epi-mono
factorisation.

◮ And similarly one says a category has unique
epi-mono factorisation.

Lemma
A topos has unique epi-mono factorisation.
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Topoi are balanced

Recall:

◮ A bimorphism is a morphism which is epi and mono.

◮ A category is balanced if every bimorphism is iso.

Lemma
Every category with unique factorisation is balanced.

Proof: Consider a bimorphism f : A → B.

A
f

��?
??

??
??

?

ϕ

��

A

idA

??��������

f ��?
??

??
??

? B

B
idB

??��������
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Topoi have power objects

The (global) “power object map” can also be localised.
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Topoi are finitely cocomplete

Lemma
Every topos is finitely cocomplete.

Proof: (not completely trivial)



Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

External Heyting algebra

With [Lane and Moerdijk, 1992], Section IV.8:

Lemma
For every object A in a topos, the partial order Sub(A) of
subobjects is a Heyting lattice.



Topoi

Oliver Kullmann

Introduction

Grothendieck topoi

Topoi
Exponentiation

Characteristic maps

The category of
sets

The topos of
presheaves
Monoid operations

Directed graphs

Generalisations

Comma categories

Properties

Internal Heyting algebras

With [Lane and Moerdijk, 1992], Section IV.8:

Lemma
For every object A in a topos, the power object P(A) can
be given the structure of an Heyting algebra object (an
“internal Heyting algebra”). In particular, this applies for
the subobject classifier Ω = P(1).
For each object X the internal structure of P(A) makes
Mor(X ,P(A)) a Heyting algebra. Now the canonical
bijection between Sub(X ×A) and Mor(X ,P(A)) becomes
an isomorphism of Heyting algebras.

Proof: Conjunction ∧ : Ω× Ω → Ω is the characteristic
morphism of 1 → Ω× Ω. ...
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Summary

I The notion of a “topos” has been defined.

II Examples via categories of presheafs and comma
categories have been discussed.

III Basic elementary properties of topoi have been
presented.
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